Lagrange and Wilson theorems for the generalized Stirling numbers

By E. T. Bell.

(Received 1lth February, 1938. Read 4th March, 1938.)

1. If m, n are integers, $m>0, n>1$, the generalized Stirling numbers ${ }^{1} S_{r}^{(m)}(n-1)$ are defined by the identity in x,

$$
\begin{equation*}
\prod_{a=1}^{n-1}\left(x+a^{m}\right) \equiv \sum_{r=0}^{n-1} S_{r}^{(m)}(n-1) x^{n-r-1} . \tag{1}
\end{equation*}
$$

The following notation will be fixed.
p is any prime $>0 ; m$ is any integer >0.
$\phi(m)$ is the number of positive integers $\leqq m$ and prime to m.
(a, b) is the greatest common divisor of the non-negative integers $a, b ;(0, b)=b$ if $b>0$.
$p \equiv \mu \bmod m,(m, \mu)=1,0<\mu \leqq m$.
$(\mu-1, m)=g$.
$(a)_{b}$ is the binomial coefficient $a!/ b!(a-b)!, a>0 ;(a)_{0}=1$.
$S_{r}=S_{r}^{(m)}(p-1)$.
Note that as μ runs through its $\phi(m)$ values, p runs through all positive primes.

We shall consider the interdependence of the five theorems, $L, F, W, L^{\prime}, W^{\prime}$:
L. (Lagrange's.) $\prod_{a=1}^{p-1}(x-a) \equiv x^{p-1}-1 \bmod p$, in which \equiv is the sign of identical congruence (the coefficients of like powers of x on both sides are congruent $\bmod p$).
F. (Fermat's). $\quad x^{p-1}-1 \equiv 0 \bmod p$ has the $p-1$ incongruent roots $1, \ldots, p-1$.

[^0]W. (Wilson's). $\quad 1+(p-1)!\equiv 0 \bmod p$.
$L^{\prime} .{ }_{a=1}^{p-1}\left(x-a^{m}\right) \equiv\left(x^{(p-1) / g}-1\right)^{g} \bmod p$.
$W^{\prime} .^{1} \quad S_{r} \equiv 0 \bmod p, 0 \leqq r \leqq p-1, r$ 丰 $0 \bmod (p-1) / g ;$
$$
S_{t(p-1) / g} \equiv(-1)^{t(p-g-1) / g}(g)_{t} \bmod p, 0 \leqq t \leqq g
$$

If only one of these five, say A, is used in the deduction of another. say B, we shall write $A>B$; if $A>B$ and $B>A$, we write $A=B$. Hence, if A, B, C are any three of the five such that $A>B, B=C$, we can assert $A>C$. Obviously, if $A>B$ and $B>C$, then $A>C$. If none of the five is used in the deduction of A, we write $0>A$. In this symbolism we shall prove

$$
0>L ; \quad \text { (3) } L>F ; \quad \text { (4) } L>W ; \quad \text { (5) } L^{\prime}=W^{\prime} ; \quad \text { (6) } L=L^{\prime}
$$

2. As in the usual proofs, (3), (4) are immediate consequences of (2), and (5) is obvious. To recall a proof of (2), we let n in (1) be an odd prime and take $m=1$. In the resulting identity x is replaced by $x+1$, and the new identity is multiplied throughout by $x+1$. Comparison of like powers of x then gives $S_{1}^{(1)}(n-1)=\frac{1}{2} n(n-1)$, $\equiv 0 \bmod n . \quad$ From this the successive equations for $S_{r}^{(1)}(n-1), r>1$, give W^{\prime} in the case $p=n, m=1$, and from this L follows for the same p, m. Since L holds for $p=2$, the proof of (2) is complete.

Again, (6) is $L>L^{\prime}$ and $L^{\prime}>L$, the second of which follows on taking $m=1$ in L^{\prime}. For then $\phi(m)=1$, and $\mu=1$ is the only value of μ, so that $g=1$, and hence $L^{\prime}>L$. We shall give a proof of $L>L^{\prime}$ in § 3 .

A shorter proof of L^{\prime}, which however is essentially less simple than the proof by $0>L, L>L^{\prime}$, in that it tacitly uses several known theorems which require longer proofs, is as follows. In L^{\prime} replace $1^{m}, \ldots .,(p-1)^{m}$, as permissible, by their least positive residues $\bmod p$. Among these residues each of the $(p-1) / g m$-ic residues of p, which are the incongruent roots of $x^{(p-1) / g}-1 \equiv 0 \bmod p$, occurs g times. Hence we have L^{\prime}.
3. Let $\theta=e^{2 \pi i / m}$, and in the statement of L replace x by $\theta^{8} x$. A short reduction gives

$$
\prod_{a=1}^{p-1}\left(x-a \theta^{s}\right) \equiv x^{p-1}-\theta^{(p-1) s} \bmod p
$$

[^1]In this we take $s=0, \ldots, m-1$ and form the products of corresponding members of the resulting m congruences. Then

$$
\prod_{a=1}^{p-1}\left(x^{m}-a^{m}\right) \equiv \prod_{s=0}^{m}\left(x^{p-1}-\theta^{(p-18)}\right) \bmod p
$$

Referring to the notation in §l, we write $p=k m+\mu,(\mu-1, m)=g$, $\mu-1=g \sigma, \quad m=g n, \quad(n, \sigma)=1$. Hence $p-1=g(k n+\sigma)$, and we have

$$
\prod_{a=1}^{p-1}\left(x^{n}-a^{m}\right) \equiv \prod_{s=0}^{\underline{\eta}}\left(x^{(p-1) / g}-e^{2 \varepsilon \sigma \pi i / n}\right) \bmod p
$$

If $s_{1} \neq s_{2}$ and $s_{1}<n, s_{2}<n$, the congruence $s_{1} \sigma \equiv s_{2} \sigma \bmod n$ is impossible, since $(n, \sigma)=1$. Hence

$$
\prod_{s=0}^{\mu n}\left(x^{(p-1) / g}-e^{28 \sigma \pi i / n}\right)=\left(x^{n(p-1) / g}-1\right)^{g}
$$

and we have

$$
\prod_{a=1}^{p-1}\left(x^{n}-a^{m}\right) \equiv\left(x^{n(p-1) / g}-1\right)^{g} \bmod p
$$

The last, with x replaced by $x^{1 / n}$, is L^{\prime}. Hence $L>L^{\prime}$.

California Institute of Technology, Pasadena, California, U.S.A.

[^0]: ${ }^{1}$ So designated by C. Tweedie, Proceedings Edinburgh Mathematical Society, 37 (1918-19), p. 24.

[^1]: 1 The case $m=2$ of W^{\prime} was given by Glaisher, Quarterly Journal, 31 (1900), 34. His method differs from that used here to obtain the general result, and would probably be troublesome to extend.

