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ERGODIC AVERAGES FOR WEIGHT FUNCTIONS 
MOVED BY NON-LINEAR TRANSFORMATIONS ON K 

DAVID I. MCINTOSH 

ABSTRACT. Let R+ denote the non-negative half of the real line, and let A de
note Lebesgue measure on the Borel sets of R". A function ip: R" —» IR+ is called a 
weight function if JR« (pd\ = 1. Let (X, f, /x) be a non-atomic, finite measure space, 
let/: X —• R+, and suppose { JTV}V€R/I is an ergodic, aperiodic R"-flow on X. We consider 
the weighted ergodic averages 

mf{x) = /R„/(rv*)¥>*(v)A(</v) 

where {y?#}£i is a sequence of weight functions. Sufficient as well as necessary and 
sufficient conditions for the pointwise, almost-everywhere convergence of ^^f{x) are 
developed for a particular class of weight functions ip^. Specifically, let {rk\ R

n —• R"} 
be a sequence of measurable, non-singular maps with measurable, non-singular inverses 
such that the Radon-Nikodym derivatives dX ork/d\ and d\ or^1 jd\ arei^oo (IT), and 
such that Tfç and T^1 map bounded sets to bounded sets. We examine convergence for 
the sequence 

where 0* is an a.e.-convergent sequence of weight functions which are dominated by a 
fixed L\(R") function with bounded support. 

1. Introduction. 
Background. In recent years a great deal of work has been done with Hardy-Littlewood 
types of maximal inequalities and related convergence results. In 1984, Nagel and 
Stein [17] examined the maximal operator fAf̂  defined by 

1 f 
MQ/(X0) = sup / \f(x0 +x + v)\\{dv) 

where Q C Rn x R+ is open. They obtain a characterization of the regions Q, for which 
MQ is weak type (1,1) and strong type (p,p) for/7 > 1. In 1987, Sueiro [21] provided a 
short, elegant proof of Nagel's and Stein's result. 

In 1990, using techniques similar to those of Nagel, Stein and Sueiro, and using 
Calderon's transference principle, Bellow, Jones and Rosenblatt [4] derive similar max
imal estimates and convergence results for the sequence 

lk i=\ 
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of ergodic averages where {(a*,/*)} C Z x Z+. Jones and Olsen [12] generalize these 
results from Z actions of Tk to Z" actions {Tv}veIn. 

Turning to the continuous ergodic case, Broise, Déniel and Derriennic [8] have re
cently examined the averages 

(1) **/(*) = / R / / ( 7 > M V ) A ( < / V ) 

where now {Tv} is an IRw-flow onXand cp is a weight function. Specifically, they examine 
maximal estimates and convergence for the sequence of weight functions {</>*}, obtained 
from a fixed weight function ip by a sequence {Î>} of linear transformations on Rn, via 
the formula 

Akçoglu and Déniel examined similar problems for affine transformations 7> on R. Un
der various conditions o n / and ip, they obtain maximal estimates, and necessary-and-
sufficient conditions for the a.e. convergence, of the averages ^ * / ( J C ) for sequences of 
affine transformations 7>(Y) = r]~l(t — a^). 

Many others have examined similar and related ergodic averages and harmonic aver
ages, of which we can only mention a few. See, for example, [13, 14, 19]. 

In the present treatment, we examine further problems, similar to those discussed 
above. Specifically, we examine the case of W1 -flows {rv}vGR« on a finite-measure space 
X, and we examine a very large class of transformations 7> on Rn which are used to 
generate a sequence of weight functions (p^ via the formula 

<P*(v) = dx *(v) • (f o 7>(v). 

We obtain a maximal theorem for the maximal operator corresponding to the ergodic 
averages (1). In very rough terms, Theorem 5.1 states that, under suitable regularity con
ditions, the following inequality holds: 

H{{x I 3k, W*f(x) > a}) < ^ [nt)<p*(t)dl Va > 0 
(X •'K 

where/* and </?* are the decreasing re-arrangements. From this we obtain pointwise con
vergence results for the sequence {JWkf}. 

The organization of the paper is broadly as follows. In the remainder of Section 1, 
we present the required notation and definitions, followed by a precise statement of the 
main results. The reader may wish to go immediately to the main results, for motivation, 
prior to examining all the definitions. Section 2 contains a discussion of the meaning of 
some of the regularity conditions, and a few related lemmas to be used in the sequel. 
In particular Lemma 2.1 is non-trivial. In Section 3 we obtain divergence of the ergodic 
averages using techniques similar to those used in [3] and elsewhere. For the reader's 
convenience Section 4 contains various technical lemmas to be used later. Their proofs 
can be found in [16]. Section 5 contains the statement and proof of the maximal theorem. 
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This is the key theorem of the paper. Section 6 then uses the maximal theorem to prove 
the convergence results. 

Notations and definitions. The cardinality of a set A will be denoted by #(A). The char
acteristic function of a set E in any space will be denoted by 1#. The support of a non-
negative function/ on a set X will be denoted by Sf = {x G X \ f(x) > 0}. If A and B are 
two sets in a topological space, A denotes the closure of A, Bc denotes the complement 
ofB,A\B denotes Bc D A, and A A B denotes the symmetric difference A \ B \J B \ A. 

Let N be the set of natural numbers, Z the integers, and R the real numbers, k will 
always denote a positive integer, so when we speak of a sequence {•AJ^N* we will 
usually omit the spécification k G N. Denote the non-negative half of the reals by 
R+ = {t G R | t > 0}. In general, we will use a superscript + to indicate objects 
which take on only non-negative values, the meaning should be clear from the context. 
If t G R, then [t\ will denote the integer part of t and [[t]] will denote the fractional part 
of t\ thus t = [t\+ [[t]]. We will be dealing extensively with Rn for fixed n G N. For 
subsets of R and Rw, "measurable" will always mean Borel measurable. I will denote 
Lebesgue measure on R, and A will denote Lebesgue measure on Rn. 

The results in this paper hold for any norm | • | on Rn. For any such norm, the open 
ball of radius r > 0 and centre v G R" will be denoted by Bv{r) = [u G Rn I |v — u\ < r}. 
When dealing with a collection of balls such as {BVk(rk)}, we will often abbreviate BVk(rk) 
by Bjç. If a > 0 and B is any ball, then aB denotes the ball with the same centre, but 
radius multiplied by the factor a; thus aBv(r) = Bv(ar). (This is not standard notation, 
but it will prove very useful.) For v G Rn, E C Rn, we retain the standard definition of 
v + E = {v + w | u G E}. We shall reserve the notation d(-, •) to denote the Euclidean 
(Le. I2) distance between two points (or a point and a set, or two sets). The diameter of 
a set E G Rn will be denoted by £l(E) = sup{<i(w, v) | w, v G E}. Open intervals, half-
open intervals and closed intervals in R are denoted by (a, b), (a, b] or [a, b), and [a, b] 
respectively. 

Throughout the paper, we let (X, f, //) be a non-atomic, finite measure space. By this 
we mean that we have a a-algebra J of subsets of X, and a measure /i on 7 such that [i 
is non-atomic and 0 < \i(X) < 00. Also, to avoid technicalities, we will assume X is a 
Lebesgue space. 

We let {Tv}ve&n be a measurable R"-flow o n J . By this we mean that: 
i) For each v G Rn, Tv: X —> X is a measurable, measure-preserving transformation 

onX 
ii) TuoTv= Tu+V for all w, v G Rw. 

iii) To(X) is a measurable set. 
iv) If E C Xis measurable, then {(v,x) | Tv(x) G E} is a measurable subset of R" xX 

with the product a-algebra and measure A x / / . 
From these properties, { r v } v G ^ is a commutative group under composition, and there 
is a set Jf C X of full measure on which all Tv are invertible. {7V} is called ergodic if 
whenever B satisfies /i(£ A TVB) = 0 for all v G Rw, then either n(B) = 0 or fi(B°) = 0. 
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{Tv} is called aperiodic if there is a setX C Xof full measure so that if x G Xanâ v G W1, 
v ^ 0, then Tv(x) ^ x. 

A function yr. W1 —> R+ is called a weight function if J^ </? dA = 1; it is called a 
compact weight function if the closure of its support is compact. Given/: X —-» IR+, we 
wish to consider the pointwise convergence of the ergodic averages defined by 

(2) JV*f(x) = JRJ(Tvx)Mv)\(dv) 

where {<Pk}keN is a sequence of weight functions defined as follows. Let {T>}*GN be 
a sequence of measurable, non-singular transformations rk\ W

1 —> Rn with measurable, 
non-singular inverses. (By non-singular r, we mean that r~x takes sets of A-measure zero 
to sets of A-measure zero.) We consider the sequence 

d\ O T]ç 
<Pk(y) = ^ (v) • (p O Tk(v) 

where <p is a fixed weight function and JA o 7>/</A is the Radon-Nikodym derivative. 
Essentially, rk is the device used to "spread out" or "compress" the weight function ip, 
and dX ork/dX is the natural correction factor used to keep the total weight at 1. In 
Theorem 1.4 below, we also consider more general sequences. 

When investigating the convergence of the averages (2), we make use of various regu
larity conditions, specified below, and prove a Hardy-Littlewood-type maximal theorem. 
We need some definitions in order to formulate these regularity conditions. Let {Ek} be 
a sequence of bounded, measurable, non-null sets in W1. (A measurable set is called non-
null if its Lebesgue measure is non-zero.) 

SUPER-REGULARITY. For any bounded, measurable set £ c R", define $SE) = 
inf{r | 3v G Rn,E C Bv(r)}. Thus ^ ( £ ) is the radius of the smallest closed ball which 
is a super-set of (i.e. contains) E. The sequence {Ek} will be called super-regular if 
supkHC(Ek)/\(Ek)<oo. 

/3-SEQUENCES. The sequence {Ek} is called a ^-sequence if there is a constant /3 
such that, for any open ball B C R", 

A({v G R" | 3k, v + Ek C B}) < p\(B). 

ASYMPTOTIC CONVEXITY. We will say that {Ek} is asymptotically convex if there is 
a sequence {Kk} of compact, convex sets such that lim*-^ X(Ek A Kk)/X(Eic) = 0. 

Regularity. We define here a number of regularity conditions on {Î>} which we will be 
considering. They will be referred to by number throughout the paper. 

(Ri) Tk are measurable, non-singular mappings with measurable, non-singular in
verses. 

(R2) Tk and r^1 take bounded sets to bounded sets. 
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(R3 ) (Loo boundedness) The Radon-Nikodym derivatives dXork/ d\ and dX o r^x / dX 
are L^W1). Henceforth, we will denote these two functions by <5* and 6% respec
tively. We require that 

Q = SUpdl^Hoo • Halloo) < 00. 
k 

(R4) (Super-regularity) For any ball B, {r^lB} is super-regular. 
(R5) (^-regularity) For some ball B, {r^lB} is a ^-sequence. 

(Rs)c There is a sequence of balls {2?,-},-eN
 s u c n t n a t #/ C #/+i, U ï i #/ — "̂> a n ^ s u c n 

that, for all /, { T ^ 1 ! ? , - } ^ is not a ^-sequence. 
(R^) (Localizing regularity) ||<Ŝ ||oo and I T ^ O ) ! both converge to zero. 
(R7) (Globalizing regularity) ||^||oo converges to infinity. For any ball B, {r^lB} is 

asymptotically convex, and 

lim f 
'c-*OOJT7lB 

X(dv) = 0. 

The last property will be called asymptotic flatness of {8k}. 
These conditions on {?>} will not all be imposed simultaneously—in fact the last two 

are mutually exclusive. The first two, however, will always be assumed. We prove a 
Hardy-Littlewood type maximal theorem using regularity conditions (Ri)-{R5). Then, 
to obtain pointwise convergence of the averages JV*/(x), we impose the additional re
quirement that the sequence {r*} satisfy either (R6) or (R7). Conversely, we obtain di
vergence when the {?>} fail to satisfy a particular one of these regularity conditions, the 
^-regularity property (R5). 

Principal results. 

THEOREM 1.1. Assume {Tv} is an aperiodic, ergodic W1 flow. Suppose {r^} satisfy 
(R\), (R2), and(Rs)c. Then, for every weight function tp on W1, there is a bounded function 
f on X such that 2LiPkf(x) diverges on a set of positive measure. 

THEOREM 1.2. Assume that {rk} satisfy (R\f-(R5) and either (R6) or (R7). Then 
!A?kf{x) converges a.e.for any bounded function f and any weight function (p. 

Before presenting the next two theorems, we need one more definition. Let (Y, % v) 
be a measure space, not necessarily of finite measure, and let/ : Y —> R+. We define 
the distribution off to be the measure Df on the Borel sets of R given by Df(E) — 
v of~l (j? Pi (0,00)). If this measure is finite for all sets of the form E = {a, 00), where 
a > 0, then there is an a.e.-unique function £: R —> R+ which satisfies 

i) £(0 = 0 fo ra l l *<0 
ii) £ is non-increasing on (0,00), and lim^oo £(/) = 0 
iii) Df = D^. 

Any function £ satisfying (i) and (ii) will be called a re-arrangement,and if £ also satisfies 
(iii) for some/, then we call £ the re-arrangement of/ and denote it by/* = £. 
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THEOREM 1.3. Assume that {rk} satisfy (R\)-{R5) and either (Re) or (Rj). Let <p be 
a compact weight function. Then fftPkf(x) converges a.e.for all functions f on X such 
that 

" \f\*(p*dl <oo. JR 

We also examine convergence for a slightly more general sequence of weight func
tions. Let {8k} be a sequence of weight functions which are all bounded by a fixed func
tion 0 G Li(Rn) of bounded support, and which converge a.e. to a function </?. ip is thus 
necessarily a compact weight function. Define 

iMv) = Sk(v) • 0k o rk(v). 

THEOREM 1.4. Assume that {rh} satisfy (R\)-(R5) and either (R6) or (R7). Let ip, 
{6k}, and {xf)k} be as above. Then J^kf(x) converges a.e.for all functions f on X such 
that 

' |/1*0* rf€< oo. 
m 

Applications and examples. We may obtain many of the results found in [3], [7], [12], 
and [13] as a subcase of those found here. In [7], the authors deal with the class of linear 
transformations r: Rw —> R" satisfying ||r|| • \\r~x || < K, and examine the weight functions 
| detT|~ V ° T _ 1 • For affine transformations, note that 

Ideti 
dXor\\ IIdX o r 

dX L, dX 

so Q = 1. Thus (Ri MR3) a r e satisfied trivially. If I is the unit ball centred at 0, then for 
any sequence of linear transformations, {r]~lI} is necessarily a /3-sequence with constant 
/3 < 1, because all members of the sequence contain the common point 0. Thus (R5) is 
easily satisfied. The condition ||r|| • | |r_11| < K guarantees that 

1Ç{TB) K" 

X(TB) -A(7) ' 

and so (R4) is satisfied as well. Conditions (R^) and (R7) are also trivial in this setting. 
In [3], the conditions (Ri)-{R4) are again trivial. ((R4) holds because there we have 

only intervals in R1). (R5) is a direct generalization of the /3-sequence condition defined 
by Akçoglu-Déniel. The same techniques used there to apply their results to the discrete 
flow {Tk} may also be used in our setting. Here however, the non-linearity of T* allows 
us to obtain stronger results. To begin with, we restrict our attention to the case n = 1, 
that is, we consider only 7>: R —* R. We will use this to investigate the averages 
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for quite general sequences of sets of integers {Ek}. Given an ergodic, invertible measure 
preserving transformation T:X —> X, we consider the auxiliary system X = X x [0,1) 
(with the product measure \i x A), and Tt(x,s) = (T^t+S^x, [[t + s]]). This is the standard 
flow under a ceiling function of unit height. Let {Ek} be a sequence of sets of integers 
and set lk = #Ek. To be specific suppose 

Ek = \jk\ <jk2 <jk3 <"' <jklk} 

and define Ek = UJLI Uh Jki + 1) and Fk = (-oo,jkl) IJ Ek. Define rk: R —> R as 

rk(t) = i « ( o + - / ' I F 4 (01F 4 ( J ) + W O W * ) * 
* Ik JJk\ K * 

and finally let ip = l[o,i). With these definitions, we see that 

where the definitions for !ftPkf are implicitly assumed to be made with the elements of 
our auxiliary system. Thus we have reduced the question of convergence of ^kf(x) to 
examining the transformations {rk} and the question of whether or not (Ri)-(R5) and 
(R7) are satisfied. As usual, (Ri) and (R2) are trivial, and we assume lk —• 00. (R3) is 
also trivial, because ||^||oo = ll^llœ = ^l- ^Y examining {r^lI} = {Ek}, we see that 
(R5) holds if and only if the sequence {\jk\ J ^ + l ) } = {\jk\ Jk\ +Q(Ek))} is a /3-sequence, 
and so Theorem 1.1 implies that we get divergence whenever this fails. Conversely, to 
obtain convergence, both (R4) and the asymptotic convexity of (R7) are guaranteed if we 
impose the condition lim^—oo Q.(Ëk)/#Ek = 1, although we can weaken this somewhat. 
Indeed, in this context (R4) and the asymptotic convexity in (R7) are very similar to 
TempePman's [22] regularity conditions. 

2. Regularity. This section examines more closely the definitions and regularity 
conditions introduced in Section 1. The restrictions (Ri) and (R2) need no comment. 

Intuitively, the first statement of (R3) says that, for fixed k, rk cannot stretch or shrink 
sets by arbitrarily large factors. The second statement says that the variation between 
the maximum amount T> stretches sets to the maximum amount it shrinks (or "doesn't 
stretch") sets must be bounded uniformly for all k. We will denote this bound by Q = 

SUp^(||«it||oo- Hal loo) . 

Super-Regularity. Intuitively, a sequence {E^} is super-regular if none of the sets in the 
sequence are too dispersed. More precisely, a sequence is super-regular if each member 
Ek of the sequence occupies at least a certain fixed proportion of the measure of some 
ball Bk which contains it. As applied to the sequence {rj~lB}, where B is a fixed ball, this 
implies that we can choose a sequence of open balls {Bk} and a T > 0 such that r^xB C 
Bk and \{Bk) < T\{r^xB). Thus (R4) is essentially a strengthening the requirement that 
r̂ "1 take bounded sets to bounded sets. 

Similar types of "regularity" conditions appear throughout the literature. With nota
tion as above, Krengel [14, p. 209] defines a sequence of convex sets {Ek} to be regular 
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if there is a nested sequence of intervals Bk C W such that Ek C Bk and such that 
HB/c) < rA(£ife). He also defines the notion of restricted convergence along a sequence 
of intervals [0, v ]̂ where the corners v* remain in a sector. This notion is directly related 
to super-regularity. TempePman [22] defines regularity similarly to Krengel, but the se
quence {Bk} is any nested sequence satisfying a number of other conditions. Broise, 
Déniel and Derriennic's [7] condition ||r|| • \\T~1 \\ < K for all r corresponds precisely to 
our condition of super-regularity on the sequence {rj~lB} when applied to linear trans
formations. 

^-Sequences. Let 23 denote the collection of all open balls in our chosen norm on Rn, 
and let {Ek}keN be a sequence of bounded, measurable subsets of W1. Recall that this 
sequence is called a ^-sequence if there exists a constant /? G R+ such that, for any ball 
B G 23, 

(1) A({v G r I 3Jt, v + £* C 5}) < /3A(5). 

We enquire as to how this definition depends on the collection ÎJ of measurable sets 
from which we choose B. Suppose G and $ are two collections of measurable sets, and 
suppose there exists a constant C such that, for any set E G G, there is an F G $ with 
E C F and A(F) < C\{E). It is clear that if (1) holds for any B G $ (with a particular 
constant /?), then it also holds for any B G 6 (with the constant /?' = C/3—see Lemma 2.2 
below). Thus our definition of /J-sequence is independent of the particular norm | • | which 
we use. For most sequences {Ek}, the determination of whether or not the sequence is a 
^-sequence would change significantly if we widened our collection of test sets K from 
just the open balls to the whole Borel a-algebra. However, when {Ek} is a sequence of 
balls, it would not change. Indeed, we have the following lemma. 

LEMMA 2.1. For any sequence of balls {Bk}keN> the following are equivalent: 
i) {Bk}keN is a ^-sequence (with constant (3). 

ii) There is a constant ft, such that for any measurable set E C Rn, 

(2) A({v eRn\3k,v + BkC E}) < 0\{E). 

Hi) IfBk = BUk(rk), then there is a constant C such that, for all t > 0, 

\{{v\3K\v-uk\<{t-rk)})<Cf. 

REMARK. In the proof of this lemma, we use the following result. It is known that 
any norm on W satisfies the following decomposition property. There exist constants 
L G N and / > 0 such that any non-trivial open set O C R" can be written as a union of 
open balls O = | J£ i Bk satisfying 

a) IBknCf^Q; 
b) for all v G O, #{& | v G Bk} < L, i.e. the collection {Bk} is "L-overlapping". 
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This form of decomposition, called a Whitney decomposition, is taken from [10, pp. 66— 
71]. The pair of constants /, L will be called Whitney constants. With this definition, we 
may add the following statement to the lemma: 
The minimum possible constants for (i) and (ii) are related by 

P<(3f <L(2 + l)n(3 

where I andL are Whitney constants for the norm | • |. 

PROOF, ii) => i) trivially with (3 = fi. 
i) => ii). Given e > 0, find an open set O such that E C O and X(0 \E) < e. Then 

{v | 3k, v + Bk C E) C {v | 3k, v + ^ c O } , s o w e need only show (ii) for O, since then 

A({v \3k,v + BkC E}) < \({v \3k,v + BkC O}) 

< fi\(E) + eft. 

Write O as a Whitney decomposition O = USi Ot. Suppose v + Bk C LGi ° i - I f Bk = 
BUk(rk), then v + uk G O,- for some i. Now, /O/ Pi (J ^ 0, so also /£/ H (v + £*)c ^ 0, and 
hence v + Bk c (/ + 2)0/. Thus {v | 3Jfc, v + Bk C 0 } C (JSi{v | 3Jfc, v + Bk C (2 + /)#,}, 
so 

CO 

A({v | 3k,v + Bk C 0}) < £ A({v | 3A:, v + 5* C (2 + QO,}) 
1=1 

CO 

<£/3A((2 + /)0,) 
1=1 

<j8(2 + /ylLA(0). 

Setting /?' = /3(2 + /fL yields the result. 
For the equivalence of iii), see, e.g., [3]. Condition iii) is the "cone" condition, used 

by Bellow, Jones, Rosenblatt, and Nagel, Stein, and Sueiro in [4, 17, 21]. • 
We state the following easy facts without proof. In fact we have used this result in the 

discussion above. 

LEMMA 2.2. i) If{Ek} is a ^-sequence and v G Rw, then {v + Ek} is a ^-sequence, 
ii) If{Ek} is a ^-sequence and Ek C Fkfor all k, then {Fk} is a ^-sequence. (We 

assume all Fk are measurable and bounded.) 

LEMMA 2.3. (R5)
c holds if and only if(Rs) is false. 

Localizing regularity. This property ensures that the averages !A^kf(x) are "local aver
ages" about the point x. The following lemma gives some equivalent formulations. 

LEMMA 2.4. Assume rk satisfy conditions (R\)—(R^). Then the following are equiv
alent. 

i) lim^oo 7-^(0) = 0, lim^oo ||^||oo = 0. 
ii) Let B be any ball. Then, for any e > 0, there is a K such that for all k > K, 

Tj-lBcB0(e). 
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Hi) For X-a.e. v G Rn, rk v converges to zero. 
iv) There is a set E of non-zero measure such that, for any v G E,r^lv converges to 

zero. 

It may seem odd that (R^) should depend on the values of the T> at the single point 
v = 0. This is merely a convenience which avoids many unnecessary "a.e." arguments. 
Furthermore, it emphasizes the parallels between this condition and similar conditions 
in the literature. Clearly we could replace (R^) by (ii) above. Then in the definition of 
%SE)i we would replace the containment E C Bv(r) by containment a.e. The arguments 
would merely become more cumbersome. Instead it is simpler to work with the defi
nitions made, and then note that all the convergence and maximal results clearly hold 
for any sequence {r'k} whose members are equal a.e. to a sequence satisfying the given 
regularity conditions. 

Globalizing regularity. The discussion of the consequences of (R7) is postponed until 
Section 6 where it is needed. 

3. Divergence of averages. In this section, we prove Theorem 1.1. We need some 
preliminary lemmas. 

The next result requires some notation. Let Q C W1. We say Q tiles W1 iff Q is mea
surable with compact closure, and if there exists a closed additive subgroup H cRn such 
that Rn/H is compact and such that the projection mapping IT: W1 —» W /H is bijective 
on Q. If F C X, let TQF = \JveQ TVF. TQF is called disjoint iff {TvF}veQ is disjoint. 
The following lemma is known (see [15]). 

LEMMA 3.1. Let {Tv}ve^n be an aperiodic W-flow on (X,^F,/x). Then for any Q 
which tiles W, and any e > 0, there is a measurable set E C Xsuch that TQE is disjoint 
and measurable, and such that \I{TQE) > (1 — e)ji{X). Furthermore, on TQE the measure 
\i is the completed product of a measure fi£ on E with X on Q. 

REMARK. The last statement in this lemma implies the following. Let Q and E be as 
in the lemma. If P C Q, F C E are measurable, then 

(1) KTpF) = ^KTQF). 

We will not need the condition ^(TQE) > ( 1 — z)p(X), but we require that any bounded 
set be contained in a set Q which tiles W1. This is trivial, since every cube Q = [—a, df 
tiles R". 

LEMMA 3.2. Let {Tv}ve^n be an aperiodic W-flow on (X, f, /1). Suppose that (R\), 
(R2), and (Rs)c hold. Let <p be any weight function. Then for each M > 0, K G N, and 
e > 0, we can find two sets C and D in Xsuch that 

0 < M/i(C) < /i(D) 
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and such that 

s u p ^ l c ( x ) > 1 - e , VJCGD. 
k>K 

PROOF. Find a ball B such that the integral of ip over B is greater than 1 — e. Then 
for any k, 

JT-iB M dX = / _ i 5 ^ ° Tk(v)8k(v)\(dv) = JB (p(y)\(dv) > 1 - e. 

By Lemma 2.3, the hypotheses imply that {r^lB} is not a /3-sequence for any ball B, so 
nor is its tail {r^lB}k>K for any K. Thus we can find a ball 4̂ such that 

A({v e R" | 3* > £ , V + T ^ J ? C i4}) > M\(A). 

Then there is an integer J such that 

A({v G R" | 3£,£ <k< J, v + r^ t f C ^}) > MX(A). 

LetP = {v G R" | 3£,# < k < J, v + r^ t f C ^ } , so A(P) > M\(A). Since ,4 andP are 
both bounded, we can find Q such that A UP C g and such that Q tiles Rw. Finally, let E 
be chosen as in Lemma 3.1, and let C = TA(E) and D — Tp{E). Then we see that C and 
D satisfy the requirements of the lemma as follows. 

We have 

and so by (1), 0 < M^L(C) < /i(D), satisfying the first requirement. 
Next, let x G D, so x = Tv(y) for some choice of v G P, y G E. Then there is a k, 

K < k <J, such that v + r^-1/? C A. Thus for all w G T^ 1 ^ , we have v + u e A, and so 
rM(x) = 7VM(y) G TA(E) = C. Then for this x, with this choice of A:, 

W'ldx) > [ ldT«x)ipk(u)\(du) = / xVk(u)\(du) > 1 - e, 
JrkB V * 

and so for all x G D9 s\xpk>K Jl^* l cW > 1 — £. • 
The following lemma follows easily from the ergodicity of the flow and the mean 

ergodic theorem. 

LEMMA 3.3. Let {At} be a sequence of measurable subsets ofX which satisfy 

oo 

YJ MAO = OO. 
J f c = l 

If{Tv}ve^n is an ergodic W-flow on X, then there is a sequence of points {vk \ vk G W1} 
such that 

M ( U TVtDk)=ii{X) 
yk=K 
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for any K G N. 

PROOF OF THEOREM 1.1. Given e, rj > 0, we may choose a sequence, {(Q, AOh 
of pairs of non-null subsets of X, and a sequence of integers Kk converging to infinity, 
such that the following conditions are satisfied: 

0 £ £ i KCk) < wQO. 
ii) E £ , MAO = oo. 

iii) suP/>^ WlCk(x) > 1 - e, Vx € A . 
Briefly, we see this as follows. Apply Lemma 3.2 repeatedly to generate the sequence 

{(Q, A0}> choosing successively larger ratios M in such a way as to guarantee (i). To 
satisfy (ii), we can repeat pairs in our sequence whenever fi(D) < fi(X)/2, and this can 
be done without violating (i). The sequence thus chosen will also satisfy (iii). 

Conditions (i) through (iii) are unaffected if we replace {Q} and {Dk} by {C'k = 
TVk Ck } and {D'k = TVkDk }, so by the previous lemma, we may also assume M(UÏ£A: fy) = 
/i(X) for all K £ N. Let E = U£i C£, and define/ = 1E. Then 

Jjd^i < W(X), 

yet 
sup^Y(;c)> \-e 
k>K 

for /i-a.e. x. If we choose rj + £ < 1, then J^*/(JC) must diverge on a set of positive 
measure. • 

4. Re-arrangements. This section contains a number of elementary, but very tech
nical results. These results are not readily available in the literature in the form that we 
require, and hence we present them here, primarily for the reader's convenience. Their 
proofs can be found in [16]. 

Let / be a non-negative, measurable function on some non-atomic measure space 
(7, *£, i/). Define the distribution off to be the measure Df on the Borel sets of R given 
by 

/>/<£) = i / ( r ' (£n (0 , oo))). 

Define f'(t) = Df(t, oo) for t > 0, and zero otherwise. Then/7 is non-increasing on 
(0, oo), but may be infinite at all points t in some interval (0, a). Whenever this is not 
the case, i.e. whenever/' < oo, define the re-arrangement of/ to bef* = f". We call 
any non-negative measurable function £ on R a re-arrangement if it is zero on (—oo, 0], 
non-increasing on (0, oo), and linv+oo £(0 = 0. Let L*(Y) denote the set of all functions 
/ for which \f\* is defined. As usual Ll(Y) denotes all non-negative/ € L*(Y). 

We note the following facts. 

LEMMA 4.1. Letf. Y —» R+ be v-measurable. 
i) Vf < °°> thenf* < oo, linv-+oo/*(0 = 0 (so we are justified in calling f* a 

re-arrangement) and 
Df = Df*. 
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iï) Any two re-arrangements with the same distribution are equal except possibly on 
a set of l-measure zero. 

Hi) f* is defined (andfinite) for any non-negative f with support of finite measure. In 
this case the support off* is a finite interval of length v{Sf), beginning at 0. 

iv) f* is defined (andfinite) for any non-negativef G Lp(Y), 1 <p < oo. Furthermore 

(f)* = (Tf a.e.,r € LP(R) and in fact \\f\\p = \\r\\P. 
v) Iff G Lœ is such thatf* is defined (andfinite), then \\f\\oo = ll/*||oo-

We remark that (iv) implies, for/ G LP(X)9 1 < /? < oo, 

A 0 < T | V/>O, 

and thus iffa —>f in LP(X), 1 <p <oo, then \f —fa\* —» 0 pointwise. 

LEMMA 4.2. Letf G Ll(Rn). Let r: Rn —> R" be a measurable, non-singular map
ping, and let 8~ = dX or"1 jd\ be the Radon-Nikodym derivative of the measure À or - 1 . 
IfS~ G Zoo(R"), then(foT)*(f) <y*(//||^||oo)-

LEMMA 4.3. For any f G Ll(Rn), there is a measure preserving map r:Sf —> Sf* 
such thatf(v) =f*(rv)for \-a.e. v. r is surjective but not necessarily injective. 

LEMMA 4.4. Letf G L*(RW). Given a re-arrangement function £ on R, there is a 
function g on Rn such that g* = £ and such that 

Furthermore, ifE C Rn is such that Sf C E and S^ C (0, \(E)\ then the support of g 
can be taken within E. 

LEMMA 4.5. Letf, g G L+(Y), and letAcY be measurable. Then 

JAfgdv<jR(flAy(glAydl 

</0 ntdi. 

Let (X, 7, M) be another non-atomic measure space, and let F be a function from Xx Y 
to R+ which is measurable with respect to [i x v. Define Fy(x) = F(x,y), and suppose 
that, for i/-a.e. yeY,Fye Ll(X). Define F: R x Y —• R+ by 

F(s,y) = F*y(s). 

LEMMA 4.6. If F G I t (X x Y) or F G J£(R x ^ **« F*=F*. 

Suppose F has the form F(x,y) = f(x,y)g(y) where f:X x 7 —> R+ and g: 7 —> R+ 

satisfy:^(s) = £(s/c(y)) for c(y) > 0 such that eg G Li(7)> and £ such that £ = £*. 
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LEMMA 4.7. F*(s) = i(s/C), where C = J> c(y)g(y) dy. 

We will use the following applications of Lemma 4.7. 

COROLLARY 4.8. i) Let {/J}^ be a collection of functions in L+(X) with disjoint 
supports {Ai}f=v satisfying f*{t) = £(/ /ci) for some fixed £ = £* and ct > 0. Iff — 
Ttifi, thenf = Ç(t/Q where C = £ Q . 

ii) Let Y = Rn, and let E C Rn be of non-zero, finite measure. Let X be a finite 
measure space, let {Tv} be an Rn-flow on X, and letf G L*(X). IfF(x, v) = f{TyX)\E(v), 
then F*(t) = f*(t/\(E)). In alternate notation, ifx^x(y) = f(Tvx)lE(v), then V>*(0 = 

r{t/KEj). 
in) Let (f* E ^t(R), ^et Y be a finite measure space, and let F(t,y) = ip*(t). Then 

F*(t) = <p*(t/v(Y)). 

LEMMA 4.9. Letf,g e L+(X x Y). Thenfy,gy £ L+
t(X) v-a.e. y and 

The following easy lemma will be used occasionally. 

LEMMA 4.10. If£ = £*, 77 = 77*, anda,b > 0, then 

JR ttt/a)rj(t/b) dt < max(a, b) JR WMt) du 

5. Maximal estimates. In this section we prove a Hardy-Little wood type maximal 
theorem: 

THEOREM 5.1. Suppose {T# } satisfy (R \) through (R5). Given any ball B, there exists 
a constant CB such that ifip is any weight function with S^ C B, then 

n{{x I 3k,W*f(x) > a}) < — ff(t)<p\t)de 
OC • 'K 

for alla>0 and allf: X -> R+. 

Once we have proved some preliminary lemmas, we prove a maximal-type theorem 
for the measure space Rn under the "flow" Tv(u) = v + u. Then we use Calderôn's trans
ference principle to get a maximal estimate for the general case (X, f, /J, Tv). 

For the remainder of this section, we will assume that {T*} satisfies regularity condi
tions (Ri) through (R5). Recall that if B' C B and {r^xB'} is a /3-sequence, then so is 
{rj~lB}. Thus our regularity conditions guarantee that given any B" D S^ we can choose 
a ball B, a constant T > 1, and a sequence of balls {Bk} such that 

i) Sv C B" C B; 
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ii) rk
 lB is a /J-sequence; 

iii) T^{B C Bk, so {Bk} is necessarily also a /^-sequence; 
iv) A ^ X r A ^ 1 ^ . 

Fix B, T and {Bk} in this manner, and fix any t/j G L*(Rn). Then for any Borel set E C Rw 

of finite, non-zero measure, define 

^ = A ( 5 ) L^'^i^h X(E). 

By Lemma 4.4, there is a ^ G Z-*(R") with support in £, such that 6*E(t) = 
<p* (tX(B)/X(E)), and such that 

For ip 6 Z,»(R") we abuse our notation slightly and define 

w m = L i>{u+v)vk{v)\{dv). 
This is just a special case of our previous definition of S^k, in which X = Rn and Tu(v) — 
u + v. 

LEMMA 5.2. If J T ^ ( M ) > a, then E(u + r^xB) > a/Q, where Cb = 

SUPifcH^llooll^lloo. 

PROOF. We begin by remarking that ||^||ooA(5)/A(« + T ^ 1 ^ ) > 1 and that 
Lemma 4.2 implies ip*k{t) < ||£*||oo <£>*(*/ll̂ iT II «>)• Since Sifk C r^xB, we may calculate 
as follows. 

a< [ é(u + v)(fk(v)X(dv) 

< M*» jRmu+r:tBnt)v*(t/\\6ï\\ooMdt) 

<QE(U + T^B). 

COROLLARY5.3. Supposer^1B C Bk andX{Bk) < rX^B). IfW'xp(u) > a, then 

E(u + Bk)>-^-. 
Cxi 

PROOF. 

_E(u+rk-
1B)^ a 

> csr 
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LEMMA 5.4. Let a > 0, R > 0 be fixed. Let H be the union of all open balls A C 
B0(R)for which E(A) > a. Then 

PROOF. From the collection of balls {At} whose union gives H we can find a finite, 
disjoint collection {A^ such that X(H) < 3" ET=i M4) (see [20], p. 164). Now, a < 
E(Aj) implies \(Aj) < \(B)/aJRn ip(v)9Ai(v) dv, and thus 

\(H) < 3-^P- fRn m(t ^){v)dv 

a h v K)if \ £», KAd) 

< — max 1, 'r1 ' / ip*(t)ip* t , \ dt 
~ a V \(B0(RJ) )J^y,r { \(B0(R))J 

3"A(B) r JtMB)_],t 

The two equalities hold by virtue of the disjointedness of {̂ 4/}™ ,̂ Corollary 4.8(i) and 
of course^/ C Bo(R). m 

For the proof of the main theorem, we expand the notation slightly. Instead of having 
a fixed -0 G Ll(Rn), we will now deal with a \jjx G Ll(Rn) which depends on x G X. Thus 
our function H depends on x, and we denote this by H(£, x). The set # also depends on x 
and on the value of a, so we denote this by H(a, x). 

PROOF OF THEOREM 5.1. Recall that for </? with compact support, we have chosen 
balls B, {BkjkeN and constant T > 1 to satisfy 

1) SyCB; 
2) {r^lB} is a /3-sequence (with constant /?); 

3) r^lBcBk; 
4) X(Bk) < r\(?£lB) for all k G N. 

Let / G ££(*)• Fix K G N and define 

EK = {x | 3k < K,Wkf(x) > a} 

Choose m > 0 such that B C £0(w) and Bk C #o("0 for all k <K. Fix arbitrary M > 0, 
and let R = M+ w, so 

T ^ £ + 50(M) C £* + 50(M) C B0(/w) + B0(M) C £0(#)-
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For all x G X, define ^ G Ll(Rn) by 

^x(u)=f(TuX)lBo(R)(u). 

Let W = {(JC,II) G X x r | u G B0(M),3k < K 3 Wk\l>x(u) > a}. For it < £ , 
S^ C r ^ 5 C 50(m), and so if w G B0(M) 

W^x{u) = JRnf(Tu+vx)lBo{R)(u + v)wt(v) Jv 

= £ , /(77
M+v^)l50(M+m)(w + v)^(v)Jv 

JBQ{m) 

= JRnf(Tu+vX)tpk(v)dv 

= W*f(T„x). 

Thus 

(3) W = {(x, w) | i/ G £0(M), TMx G £*}, 

which is clearly measurable since EK is measurable. Let Wx = {u \ (x,u) G JF}. If 

u G ^x, then Corollary 5.3 implies that for some k < K, E(u + Bk,x) > a/(QT). 

Now u + Bk C £0(K), so u+Bk C H(a/(C6r),x)9 and thus fFx C {w | 3£, w + £* C 

/ / ( a / ( Q r ) , i ) } . Since {^} is a /3-sequence of balls, Lemma 2.1 implies that 

where f3f < L(2 + If (5. Now we calculate / /xA(ff) and use Fubini's Theorem to get an 
upper bound. On the one hand 

HX\(W) = JRn fx\w{x,v)n{dx)\(dv) 

= LoiM)JxlEÀTvX)^dX)HdV) 

= n(EK)\(B0(MJ) 

by (3) and the fact that Tv is measure preserving. On the other hand 

fixX(W) = JxX(WxMdx) 

(3'3"Qr\(B) 

< 

a V U(s0(R))Jr I. vW^B^R))) 

, ./3'3"C6rmax(X(B),n(X)) , ^ ± = A(fioW)- J *W } Ir^dL 
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Dividing the resulting inequality by A (i?o(A/)) gives a bound on fi(EK). Letting M —> oo 
and then K —•» oo, we get 

/X({JC | 3£, ^ * / ( JC ) > a}) < * -̂ / / V ^ - • 

6. Convergence. In this section, we consider the point-wise convergence of the 
averages J?^*/(JC) under the assumption of regularity conditions (Ri MII5) and either lo
calizing regularity (R^) or globalizing regularity (R7). We begin with two lemmas which 
allow us to obtain the a.e. convergence of !ft?kf from the a.e. convergence of various 
sorts of approximations. 

For bounded functions/, we will use the following simple lemma. 

LEMMA 6.1. If(p and p' are two weight functions, andf G Loo(X), then 

\w*m - w*Ax)\ <\\v- <p'\\, n u . 

Thus, given a bounded function/, if %?kf converges a.e. for a class of weight functions 
that approximate any weight function in the L\(Rn) norm, then !A?kf converges a.e. for 
all weight functions. 

The next lemma is where the maximal estimate of Section 5 is applied. Let ip be a 
compact weight function. Define a maximal function fW^ by 

^ 7 W = sup|jr*/(x)|. 
k 

If (p has bounded support, then the maximal inequality in Theorem 5.1 implies that there 
is a constant C^ such that 

rt{x\M*f><*})<^f\f\*<p*d\. 
OS J«i 

LEMMA 6.2. Suppose (R\)-(Rs) hold. Let ip be any compact weight function and let 
f G L*(X). Suppose {fa\X—» R} is a family of functions satisfying 

i) {fa} approximates f in LP(X) for some p G [l,oo], i.e. 3p G [l,oo], Me > 0,3a 
such that \\f—fa\\p < £• 

ii) There is a re-arrangement £ such that fa £(p* dt < oo and such that for any a, 

\f~fa\*<t. 
Hi) For any a, J^L(fkfa(x) converges for [i-a.e. x. 

Then !A^kf converges \i-a.e. 

PROOF. If !A?kf does not converge a.e. on X, then there is an a > 0 and a set E C X 
of non-zero measure such that lim sup^ !A?kf(x)—lim infk A^kf(x) > a on E. Since fl?kfa 

converges a.e. for any a, we have 

lim sup W'tf-faKx) - lim inf J^k (f - fa)(x) > a 
k k 
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for all xEE. Thus E C {x | 9rf^\f-fa\(x) > a / 2 } , for any a. On the other hand, the 
maximal inequality in Theorem 5.1 says that the measure of the last set is less than 

Since X\vdafa = / in the Lp norm, then by the remarks following Lemma 4.1, 
limfl \f —fa\*(t) = 0 for all /. By hypothesis \f —fa\*¥* < £<£* which is integrable on 
R. Thus by Lebesgue's Dominated Convergence Theorem, this last integral can be made 
arbitrarily small by suitable choice of a. This contradicts \i{E) > 0, so %?kf converges 
/i-a.e.onJ. • 

Local convergence. 

LEMMA 6.3. Suppose (R\}-(Re) hold, and let (p be any weight function. Then 5%Pkf 
converges [i-a.e. for any function f of the form f(x) — JBo(a) g(Tvx)X(dv), where g G 
LOQ(X) and a > 0. 

PROOF. The function F{u) =f(Tux) = JBu^ g(Tvx)\(dv) is a bounded and continu
ous function of u for all x E X. Thus it is enough to show that if F: Rn —» R is a bounded 
and continuous function then 

Ju F(v0 + v)ipk{v)\{dv) 
w 

converges to F(yo) for each vo € Rn. We may assume F(vo) = 0, without loss of gen
erality. Thus given e > 0, choose 77 > 0 such that \F(u)\ < s whenever \u — vo| < 77. 
By Lemma 6.1, we may assume ip has compact support, so choose B such that S^ C B. 
Then by Lemma 2.4, we may choose a K such that for all k > K,T^1B C Bo(rj)9 so that 
S^ (ZBotn). Then, for k>K, 

JB0(v) 

< 
JB0(J]) ' 

<e. 

I f F(v0 + v)ipk(v)Kdv)\ = \[ F(v0 + v)cpk(v)X(dvy 

f\F(vo + v)\^k(v)X(dv) 
JBniii) 

THEOREM 6.4. Suppose {?>} satisfies regularity conditions (R\)-(Rs) and (Re). Let 
Lp be any weight function. Then !Afkf converges [i-a.e.for every f G L^iX). 

PROOF. Again by Lemma 6.1, we may assume without loss of generality that ip has 
compact support. 

Le t / be a bounded function with M — ||/l|oo- Then the family of functions f(x) = 
1 / A (#o(£)) SB0(e)f(TvX)\(dv) converge t o / inL\(X) as e approaches 0+. Also, this family 
is bounded by the same boundM, and by the previous lemma fA^kf(x) converges for a.e. 
x and any e > 0. Thus by applying Lemma 6.2 with £ = 2Ml(o,/i(^)], Wkf(x) must 
converge for a.e. x. m 

Global convergence. In this part, we will be concerned with the convergence of the 
averages !Afkf when the sets r^xB become very large as k —> 00. To ensure conver
gence, we will impose the global regularity condition (R7). Specifically, we will prove 
the following. 
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THEOREM 6.5. Suppose {r*} satisfies regularity conditions (R\)-(R5) and (R1). Let 
(f be any weight function. Then 9^kf(^) converges ji-a.e.for every f G L^X). 

We will begin by proving the assertion for weight functions <p of the form (p(v) = 
1 /\(B)lB(v\ where B is a ball in Rn. For this type of weight function, we see 

Wkm = ^ l„lBf(Tvx)6k(v)\(dv) 

Asymptotic convexity in (R7) says that we can approximate rj~lB by compact, convex 
sets Kk. Combined with the asymptotic flatness in (R7) of 8k, we get the following ap
proximation for J^*/(JC). 

LEMMA 6.6. Suppose rk satisfy regularity conditions (R\)-(R2) and (R7). Let (p be 
as above, letf £ L^(X), and define AKkf(x) = 1 /X(Kk) JKkf(Tvx)X(dv) where Kk are the 
compact, convex sets from the asymptotic convexity in (R-j). Then 

lim \Wkf(x) - ftKkf{x)\ = 0 fi-a.e. x. 
k—>oo ' ' 

PROOF. 

X(B) 
\^m-^f(x)\<m^jT_iB Mv)-\,^u Hr^B) 

+ 11/1 

X(dv). 

1, mlw 

HKk) 

By the asymptotic flatness in (R7) of {($*}, the first term on the right goes to zero as 
k —> 00, and by asymptotic convexity, each of the last two terms go to zero as k —> oo. m 

Thus we need only consider the averages &Ktf(x). We need some lemmas concerning 
compact, convex sets. Let %, be the set of all compact, convex K CW with non-empty 
interior. For K E ^C, recall 

£ ( / 0 = inf{#-|3v,tfC2*v(r)}. 

We can make a similar definition regarding the radii of balls contained within K, namely 

g(K) = sup{r\3v,Bv(r)CK}. 

Corresponding to the notion of super-regularity, we have the notion of sub-regularity. 
We will say a sequence of sets {AT*} C %. is sub-regular if there is a 7 > 1 such that 
\{Kk) < l(g(KiS) for all k E N. To establish a connection between super-regularity 
and sub-regularity, we need the following lemma. 
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LEMMA 6.7. There is a constant C such that, for allK £ %, 

X(K)<C(^(K))n~lQ(K). 

PROOF. We need only show that this holds for the £2-norm, as the general case fol
lows easily from this. Let Pi and P2 be two parallel linear hyperplanes of dimension 
n — 1 which "sandwich" K, in the sense that K lies between Pi and P2. If d(P\, P2) is the 
distance between any two such planes, we define the width ofK, u(K), to be 

u(K) = mf{d(PuP2) I Pi andP2 sandwich^, andPi||P2} 

If K is contained within a ball B of radius R, then it is also contained within the inter
section of B and the space between any two planes which sandwich K. Thus if C\ is the 
Lebesgue measure of a solid unit sphere in Rn~\ then we have X(K) < C\Rn~luj(K), and 
so X(K) < Cx{%iK))n~Xu){K). It is known that u(K) < 2^/n~^lg(K) (see, e.g., [11], 

p. 112, Theorem 50), and thus X(K) < 2Cxy/n~T\[^{K))n~XQ{K). m 
The following complementary result is of interest, although we do not need it. 

LEMMA 6.8. There is a constant c such that, for all K G 9Ç, 

C(Q(K))"~1^(K)<\(K). 

COROLLARY 6.9. Given any T > 1, there exists 7 > 1 such that the following is true. 
For anyKe 1C if^C(K) < TX(K), then X(K) < lqn(K). We may take 7 = (CTf X(I), 
where I is the closed unit ball and C is the constant of Lemma 6.7. Similarly, given 
any 77 > 1, there exists a V > 1 such that the following is true. For any K G %j if 
X(K) < lfgn(K), then ^(K) < TfX(K). We may take T' = (Y/cf/X(I), where I is the 
closed unit ball and c is the constant of Lemma 6.8. Thus a sequence of convex sets is 
super-regular if and only if it is sub-regular. 

REMARK. In the literature, the condition g(Ak) —» 00 is often imposed on a sequence 
of compact, convex sets, in combination with some type of regularity condition. It seems 
more natural to require X(Afc) —» 00, which the previous corollary allows us to do in 
certain cases, as for example in Theorem 6.10 below. 

For any K G ^C and h > 0, define the "/z-frame of K" to be 

dhK={veRn \d(v,dK)<h} 

where dK is the boundary of K. Let F = [0,1]", a closed unit cube, and define 

zK={u\ ueZ\F+uCK} 

K = \J{F+u\uezK} 

K = {J{F+u\ W G Z , ( F + W ) P I A : ^ 0 } 
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The following facts are known (see, e.g., [18]). As Q(K) —» oo, we obtain 

1) X(K)/X(K)^l; 

2) X(K\K)/X(K)^0; 

3) X(dhK)/X(K) -> 0; 

4) #(KC\l")/X(K)^l. 

We combine these facts with the previous corollary to get the following. 

THEOREM 6.10. Let {Kk} be any super-regular sequence of sets in %j and let h > 0. 
7/'limi_00 X(Kk) = oo, then 

i) \mvk^00\{Kk)l\{Kk)=\; 

ii) l i m ^ » X(Kk \ Kk)/X(Kk) = 0; 

in) lim^oo X(dhKk)/X(Kk) = 0; 

rv; l im t_^0 0#(z^)/A(/: i)=l. 

LEMMA 6.11. Suppose {rk} satisfies regularity conditions (R\)—(Rs) and (Rj). Let B 
be any ball, and let (f = \/\(E)\B. Then 

i) Iff G L^X) satisfies f(Tux) = f(x) for all u G Zn, then Wkf(x) converges a. e. 
to 

[ f(Tvx)X(dv). 

ii) Iff is of the form f(x) = g(x) — g(Teix), where g G L^X) and et is the unit basis 
vector in the i-th co-ordinate direction, then fA^kf(x) converges a.e. to 0. 

PROOF. {rk
xB} is super-regular, so choose {Bk} and T such that r^lB C Bk and 

\{Bk) < TX(r^lB). {rk
xB} is asymptotically convex, so choose {Kk} C ^C such that 

\{Kk A T^1B)/X(T^1B) —» 0. We may assume that Kk C Bk because each member 
of {Kk Pi Bk} is in %, and this sequence still satisfies all the conditions of asymptotic 
convexity. With this assumption, {Kk} must also be super-regular. Furthermore, (R7) 
implies that lim^oo \(T]~1B) = oo, and so the same holds for {Kk}. By Lemma 6.6, we 
need only show that 3lKkf(x) converges to the given values in (i) and (ii). All integrals 
are with respect to X(dv). 

(i) 

|/ / (7» - &M\ < |//(TvX) - J L jKj{TvX)\ + J L J^ m*)\ 
X(Kk\Kk)„ „ 

< 
j _ #(iKk) 

X(Kk) 

X(Kk) uezKk • 

X(Kk\Kk)i 

X(Kk) 

By the previous theorem, both of the last terms go to zero as k —> oo. 

https://doi.org/10.4153/CJM-1995-044-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-044-0


874 DAVID i. MCINTOSH 

(>i) 

\(Kk). 

1 

L £(?>) - g(7W,)j 

X(KM^^SiTvX)-LeM^T^ 

-\k)L(^J8{TvX)] 

X(KkA(Kk + ei)) 
£ M - — Â Ô S ) — 

< I W U ^ . MA*) 

By the previous theorem, this goes to zero as k —» oo. • 

PROOF OF THEOREM 6.5. To begin with, let B be any ball, and let ip be of the par
ticular form \/\(B)1B. Iff G Lœ(X), then we can approximate/ in the L\{X) norm by 
functions of the form 

f{x)^h{x)^YJg{x)-g{Teix) 

where A and g are bounded in L^X) by ||/l|oo, and /* satisfies /z(x) = h(Tux) for all w € Zn 

(see, e.g., [14], p. 205). Then, by Lemma 6.11 and Lemma 6.2, !Afkf(x) must converge 
for /i-a.e. x. If ip and <̂ ' are any two weight functions and a, a! > 0, then J^(aiP+a <P )* = 
<z J?^* +a/JÎ</,i. Thus JÏ^*/(JC) converges a.e. for any positive linear combination of weight 
functions of the particular form above. Since any weight function can be approximated 
in the L\ norm by step functions of this type, applying Lemma 6.1 yields the required 
result. • 

Extensions. We begin by noting that Theorem 1.2 is merely the combination of Theo
rems 6.4 and 6.5. 

PROOF OF THEOREM 1.3. We may assume/ > 0, and the hypothesis implies that 
/ is integrable. Define fm{x) = min(/Xx),m), sofm approaches/ in the L\(X) norm. By 
Theorem 1.2 we know that ̂ Pkfm converges a.e., and (f —fm)* <f*. Then Lemma 6.2 
implies that f%Pkf(x) converges a.e. on X. m 

THEOREM 6.12. Suppose {rk} satisfy (R\)-(R5), and either (R6) or (R7). Let {0k} be 
a sequence of compact weight function which are dominated by an L\(Rn) function 0 
with bounded support. Suppose this sequence converges X-a.e. to a function ip, which is 
thus necessarily a compact weight function. Let 

and as before 

<Pk = ëk' (pork. 
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Iff:X->R satisfies 

JR\f\*®*dl <oo 

then 

Fk{x) = \Wf{x)-^f(x)\ 

converges to zero \L-a.e. on X. 

PROOF. The result will be obtained by applying our maximal theorem to the L\(Rn) 
function 

Olfl(v) = sup|^(v)-fl/(v)|. 
i>m 

To apply Theorem 5.1 with Om taking the role of <p, we define 

<$>m,k(v) = Sk(v) • <MT>V) 

in analogy with the definition of cp^. Now, for k>m, 

Fk(x) = \Wf(x) - #*f(x)\ 

< / r 1/1(7^)1^ -1>t\(v)\(dv) 

< j ^ IfkTvxW^Xidv) 

and thus the maximal inequality in Theorem 5.1 says that, for any a > 0, we have 

(1) »({x | supF*(x) > a}) < LI({X | sup A?-* \f\(x) > a}) < ^ f \ff<IPm dl. 
k>m k>m & m 

Since the supports of Om are all contained within the support of©, the constants C®m can 
be taken independent of m. Om is dominated by 0 and converges to zero pointwise, so 
it also converges to zero in ii(R"). Thus &$, is dominated by ©*, so by hypothesis this 
last integral is dominated by 

[ \f\*&dl <oo, 

and <P̂  converges to zero pointwise. Thus, by Lebesgue's Dominated Convergence The
orem, (1) converges to zero as m goes to infinity, which completes our proof. • 

Theorem 1.4 follows immediately from this. 
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