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The stability and postcritical behaviour of a horizontal flag undergoing gravity-induced
deformation and periodic contact with a nearby horizontal rigid wall are experimentally
investigated. The results elucidate the combined effects of gravity and contact on flutter,
and reveal design principles for application to triboelectric energy harvesting. By varying
the free-stream velocity, flag thickness and distance between the flagpole and the wall,
the dynamics of the flag are classified into quasistatic equilibrium, flutter, partial contact
and saturated contact modes. Considering the significance of gravitational effects, a new
dimensionless flow velocity is proposed to identify the distribution of the dynamic modes,
and its definition varies according to whether the wall is placed above or below the flag.
The critical conditions for transitions between the dynamic modes are determined from
the balance of fluid dynamic and gravitational effects. The distance from the flagpole to
the wall is found to be more critical for transitions in the lower-wall configuration than in
the upper-wall configuration. The peak contact force as well as the oscillation amplitude
and frequency at postequilibrium exhibits remarkably different trends depending on the
location of the wall. The peak contact force imposed on the wall by the fluttering flag
weakens as the distance to the wall increases in the case of an upper wall, whereas it
becomes stronger in the case of a lower wall.

Key words: flow-structure interactions

1. Introduction

The interaction of thin elastic sheets with a uniform flow has long been studied to
understand biological phenomena such as leaves fluttering in the wind, snoring, animal

† Email address for correspondence: daegyoum@kaist.ac.kr

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 977 A2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:daegyoum@kaist.ac.kr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.931&domain=pdf
https://doi.org/10.1017/jfm.2023.931


M. Lee, C. Jung, J. Lee and D. Kim

locomotion (e.g. Ellis, Williams & Shneerson 1993; Ristroph & Zhang 2008; Ryu et al.
2019; Zhang, Huang & Lu 2020; Yang et al. 2021) and industrial phenomena such as the
production of papers or films and flow control devices for convective heat transfer (e.g.
Watanabe et al. 2002; Shoele & Mittal 2014; Park et al. 2016; Lee et al. 2017; Jeong
et al. 2022). A flag, which is considered to be an elastic sheet with a fixed front end
and a free rear end, exhibits distinct behaviours depending on the flow conditions and
material properties, ranging from a stable equilibrium state to an unstable postcritical
state. Numerous studies on the critical conditions and dynamic characteristics of a flag
subjected to a free stream parallel to the flag have been conducted, including experiments
(Huang 1995; Zhang et al. 2000; Kumar, Arekar & Poddar 2021), high-fidelity numerical
simulations (Farnell, David & Barton 2004a; Connell & Yue 2007; Huang, Shin & Sung
2007; Sawada & Hisada 2007; Wang & Tian 2019) and low-order theoretical modelling
(Guo & Païdoussis 2000; Argentina & Mahadevan 2005; Alben & Shelley 2008; Eloy
et al. 2008; Michelin, Smith & Glover 2008). In addition, the dynamics of a flag interacting
with a nearby structure have been examined using a system of multiple flags (Zhu & Peskin
2003; Farnell, David & Barton 2004b; Jia et al. 2007; Ristroph & Zhang 2008; Schouveiler
& Eloy 2009; Kim, Huang & Sung 2010; Tian et al. 2011; Mougel, Doaré & Michelin
2016) and a single flag considering the ground effect or an upstream bluff body (Akaydın,
Elvin & Andreopoulos 2010; Dessi & Mazzocconi 2015; Kim, Kang & Kim 2017). A wall
located close to a flag has also been considered, in which a considerable distance between
the flag and the wall exists, precluding direct contact between them during the flutter of
the flag. The presence of the nearby wall affects both the critical velocity and postcritical
dynamics of the flag when the wall distance changes by several orders of magnitude (Alben
2015; Mougel & Michelin 2020) and serves a function similar to that of an added mass
(Jaiman, Parmar & Gurugubelli 2014).

Regarding engineering applications, the flow-induced flutter of a flag has been used to
convert fluid kinetic energy to electrical energy by implementing piezoelectric patches
(Allen & Smits 2001; Taylor et al. 2001; Dunnmon et al. 2011; Giacomello & Porfiri 2011;
Akcabay & Young 2012; Michelin & Doaré 2013; Lee et al. 2015). In the past decade,
triboelectric nanogenerators (TENG) based on the direct contact–separation process of
a fluttering flag with a rigid wall have also been proposed (Fan, Tian & Wang 2012;
Bae et al. 2014; Quan et al. 2016; Zhao et al. 2016; Xu et al. 2017; Sun et al. 2020;
Zhao et al. 2022). These studies have focused on evaluating the energy harvesting
performance of TENG devices, rather than analysing the contact dynamics of a fluttering
flag from the perspective of fluid–structure interactions. Recently, Lee, Kim & Kim (2021)
experimentally investigated the behaviours of a fluttering flag that periodically collides
with a rigid wall. As the dimensionless flow velocity increases, the flag shows diverse
modes, sequentially transitioning from tapping to regular clapping to weakly chaotic and
finally fully chaotic motions. Despite the interaction of the flag with the wall, the critical
conditions for flutter and dynamic characteristics such as the amplitude and Strouhal
number are barely affected by the presence of contact. By adopting a vertical configuration
for the initial flag state and the wall, the model of Lee et al. (2021) indicates that the effect
of gravity is less important than the effects of fluid inertia and flag bending.

Most preceding studies of flag flutter have neglected gravitational effects.
Experimentally, the effect of gravity has been minimized by positioning a flagpole
vertically and fabricating a flag from a sufficiently stiff material, which prevents
three-dimensional deformation by sagging and twisting. Numerical simulations have
generally excluded the gravitational term from the equation of flag motion, even for
three-dimensional flag models (Yu, Wang & Shao 2012; Banerjee, Connell & Yue 2015;
Tang & Lu 2015; Chen et al. 2020). However, to consider the more realistic situations
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that occur in nature and to improve the performance of engineering applications, the
flag behaviours should be comprehensively examined under gravity, because gravity
dramatically changes the response of a flag subjected to a uniform flow. Using numerical
simulations of a three-dimensional flag with a vertical flagpole, Huang & Sung (2010)
found that the asymmetric initial configuration of a flag in the presence of gravity
significantly influences the stability and flutter dynamics of the flag. Depending on the
Froude number Fr = gL/U2, based on the flag length L and free-stream velocity U,
gravity has dual effects on flag stability. If the Froude number exceeds a certain level,
the flag sags entirely and does not exhibit regular flutter because the strong gravitational
force contributes to the stabilization of the flag. However, at small Froude numbers, the
magnitude of the pressure force acting on the flag increases compared with the case
under the same flow conditions without gravity, leading to a large oscillation amplitude.
Furthermore, Hœpffner & Naka (2011) identified the generation of an oblique wave on the
flag, which is attributable to the influence of gravity during the elevation of the flag by
fluid force.

In this study, we experimentally investigate the behaviours of a flag under the influence
of gravity and contact with a wall to unravel the fluid-dynamical principles of flutter-driven
TENG devices. In contrast to most previous studies in which a flagpole is placed vertically,
the flagpole is placed horizontally so that the flag is deflected downwards even in the
absence of flow, as shown in figure 1(a). Furthermore, the flutter induced by a free
stream may cause the flag to contact with a horizontal wall positioned above or below
the flag. Our experimental models and measurement techniques are described in § 2. The
behaviours of the flag are classified based on the contact process with the wall by varying
free-stream velocity, wall distance and flag thickness in § 3.1. In § 3.2, new dimensionless
parameters are proposed to characterize the fluid–structure interaction of our model, and
the boundaries of mode transition are predicted from scaling analysis. The contact force
and dynamics of a flag in the postequilibrium state accompanying periodic contacts are
discussed in § 3.3. Finally, the key findings from this study are summarized in § 4.

2. Experimental set-up

Experiments were conducted in an open-loop wind tunnel. The wind tunnel had a
cross-section of 60 cm × 60 cm and could produce a free-stream velocity U from
1.8–13.0 m s−1. A flagpole, which clamped the leading edge of the flag, and a rigid
wall were placed horizontally (figure 1a). Both the upper-wall configuration, where the
wall is above the flag (figure 1ai), and the lower-wall configuration, where the wall is
below the flag (figure 1aii), were considered. To realize sufficient deformation of the
flag so that it could make contact with the rigid wall, the flag was made of silicone
rubber (Young’s modulus E = 5.0 × 107 N m−2, Poisson’s ratio ν = 0.49 and density
ρs = 2.3 × 103 kg m−3). Significant downward deformation of the flag due to gravity was
observed in the absence of flow.

The length l and width w of the flag were fixed at 10 and 5 cm, respectively, giving
a constant aspect ratio w∗(= w/l) = 0.5 in this study. The thickness h of the flag
was set to be either 0.5 or 1.0 mm. In this geometrical condition, twisting of the flag
along the spanwise (crosswise) direction did not occur; that is, the deformation was
two-dimensional, restricted to the x–y plane. Because the flag density ρs, air density ρf

(= 1.22 kg m−3) and flag length l were held constant, the mass ratio m∗(= ρsh/ρf l) only
varied with the flag thickness h; m∗ = 9.58 and 19.16. The distance from the flagpole to
the wall, d, was the main parameter in determining the flag behaviour in the present study
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Figure 1. (a) Static equilibrium state of the flag in the absence of free stream: (i) upper-wall configuration and
(ii) lower-wall configuration. (b) Definitions of geometric parameters and shapes of the fluttering flag in the
presence of a free stream. The red arrows indicate the direction of gravity, and the yellow parts in (ai) and (aii)
denote the wall segment attached to the force sensor.

(figure 1b), and the wall distance ratio was defined as d∗ = d/l. Within the free-stream
velocity range of our set-up, contact did not occur when d∗ was greater than 0.5 in either
the upper-wall or lower-wall configuration. Thus, the wall distance ratio d∗ was varied
between 0.10 and 0.45 in increments of 0.05.

To capture the flag motion, one side edge of the flag was painted white, and the rest was
painted black. The background of the test section was covered with black paper to highlight
the white edge. The flag was illuminated by halogen lamps, and flag images were recorded
at a sampling rate of 250 frames per second by a high-speed camera (FASTCAM MINI
UX50, Photron Inc.) mounted on the side of the test section. The recorded images were
processed with MATLAB (Mathworks Inc.) to acquire the position data of the flag.

To quantitatively analyse the contact process of the flag, we also measured the force
generated by the collision of the flag with the rigid wall. A piezoelectric force sensor
(97112B quarts, Kistler Inc.) was attached to a separate small segment (50 mm × 50 mm)
of the wall (figure 1a). The voltage signal from the force sensor was sampled at a rate
of 10 kHz and filtered using a band-pass filter with a lower cutoff frequency of 1 Hz
and a higher cutoff frequency of 500 Hz through a signal conditioner (482A21, PCB
Piezotronics Inc.). The contact force was measured three times under the same conditions
to ensure the repeatability of the force data. The time history of the contact force exhibited
periodic peaks during periodic contact and separation of the flag. We defined the average
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(i)
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Figure 2. (a) Superimposed images of the flag for the upper wall: (i) quasistatic equilibrium mode;
(ii) flutter mode; (iii) partial contact mode; (iv) saturated contact mode. (b) Superimposed images of the flag
for the lower wall: (i) quasistatic equilibrium mode; (ii) partial contact mode; (iii) saturated contact mode. See
supplementary movies 1 and 2 for (a) and (b), respectively.

of force peaks for 10 oscillation cycles as Fc,p. Among three repeated trials, the difference
in the magnitude of Fc,p was within 5 % of the average value of the three trials.

3. Results and discussion

3.1. Mode classification
Four distinct modes of the flag are identified according to the free-stream velocity U and
the distance d between the wall and the flagpole. The classification of the modes depends
on the location of the wall. When a wall is installed above the flag, the wall distance d
does not affect the initial configuration of the flag at U = 0 (figure 1ai), and the initial
configuration is determined by gravity and the bending rigidity of the flag. Under a fluid
flow, the fluid force exerted on the flag is balanced by the weight and internal bending
force of the flag, yielding quasistatic deformation of the sheet with negligible vibrations:
quasistatic equilibrium mode in figure 2(ai) and supplementary movie 1 available at
https://doi.org/10.1017/jfm.2023.931. As U increases beyond a critical value Uc1, the flag
becomes unstable and flutters asymmetrically due to the effect of gravity (figure 2aii).
With a further increase in U, the amplitude of the flag increases accordingly, and the flag
begins to contact the wall periodically (figures 2aiii and 2aiv).

By contrast, when a wall is installed below the flag, the wall distance d affects the initial
configuration of the flag at U = 0 (figure 1aii), and the flag is in contact with the wall in the
entire range of d examined in this study. As U increases, the quasistatic equilibrium state
directly transitions to the periodic contact state at a critical velocity Uc1 (figure 2b and
supplementary movie 2). In the postequilibrium state, the flutter mode without contact,
which corresponds to figure 2(aii) for the upper wall, does not occur, and the flag contacts
the wall periodically once it begins to flutter. The chaotic contact mode reported in the
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Figure 3. Sequences of contact process for the upper wall: (a) small wall distance d and (b) large d.

previous studies with a vertical flag and a nearby vertical wall (Bae et al. 2014; Lee et al.
2021) is not observed for the flow velocity range available in the present study.

The general sequence of contact between the flag and the wall is illustrated in figure 3.
In the case of an upper wall, the contact process is determined by how close the flagpole
is to the wall, because the downward gravitational force interrupts the contact. For small
d (d ≤ 2.0 cm), the contact commences at a specific point in the middle of the flag and
propagates downstream, increasing the area of contact (figures 3ai–3aiii). The contact
area then decreases until contact occurs at the trailing edge of the flag (figures 3aiv and
3av). Finally, the flag is fully separated from the wall (figure 3avi). This contact process
is similar to when a flag makes contact under the condition that the influence of gravity
is negligible, e.g. a vertical flag near a vertical wall (Bae et al. 2014). However, when d
is large (d ≥2.5 cm), contact begins near the trailing edge of the flag and propagates only
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slightly upstream (figures 3bi–3biii). The subsequent process is similar to the small-d case
until the flag is fully separated from the wall (figures 3biv–3bvi).

For the lower wall, the contact process is similar to that of the upper wall with small d, as
depicted in figure 3(a). Regardless of d, the contact starts at a specific point in the middle
of the flag and propagates downstream. Gravity acting downwards makes the contact begin
in the middle of the flag and propagate along the streamwise direction, even for the large-d
case. This is the distinction in the contact process with a large d between the upper wall
and lower wall. In summary, as our flag model is horizontal and sufficiently soft for large
deflection, the influence of gravity is sufficiently strong that the distance d and the location
of the wall significantly affect the contact process.

The contact state is subdivided into partial and saturated contact modes for both the
upper and lower walls (figure 2) according to the dramatic change in the contact process
across a threshold of U. To analyse the contact process in depth, two quantities are
considered. The location at which contact begins is identifiable from the images, and the
streamwise distance between the leading edge and the first contact point is defined as Xc
(figure 4a). In addition, the duration from when the flag begins to contact the wall at a
certain point to when it becomes fully separated from the wall is defined as Tc; Tc = 0 in
the quasistatic equilibrium and flutter modes. Because the dynamics of our model during
contact are strongly affected by gravity and wall distance and is generally different from
that of a vertical flag with a nearby vertical wall, the new terms for contact modes are
introduced to describe the contact process more properly instead of employing the terms
used by Lee et al. (2021).

Irrespective of the wall location (either upper or lower) and distance d, Xc gradually
decreases with increasing U, implying that a greater area of the flag contacts the wall
during the contact process (figure 4b): partial contact mode. However, above a certain
U, Xc resides in a narrow range. This saturation of Xc indicates that the contact is fully
developed: saturated contact mode. Furthermore, the contact duration Tc increases rapidly
with U in the contact state, before reaching a plateau (figure 4c). For the same model
configuration (upper or lower wall), wall distance d and flag thickness h, the threshold
value of U beyond which Tc remains almost unchanged coincides with the threshold
corresponding to the saturation of Xc (figure 4b,c). In this study, the critical velocity for
the transition between the partial and saturated contact modes are termed Uc2 for both the
upper and lower walls; the critical conditions for mode transitions are discussed in § 3.2.

3.2. Mode distribution and critical velocity
To quantitatively analyse the interaction between a flag and a surrounding fluid, many
previous studies have adopted a dimensionless flow velocity U∗ = U(ρf l3/B)1/2, which
represents the ratio of the fluid force exerted on the flag to its internal bending force (e.g.
Connell & Yue 2007; Eloy et al. 2008; Kim et al. 2013, 2017). However, the gravitational
force is also important in our flag model. The bending force per unit width, Fb, scales as
B/l2 for large deflections, where the bending stiffness per unit width B = Eh3/12(1 − ν2)
and the gravitational force per unit width Fg scales as ρsghl. The ratio of the two forces,
Fb/Fg ∼ B/ρsghl3, is 0.24 for a flag thickness h of 1 mm and 0.06 when h is 0.5 mm. The
gravitational force is dominant over the bending force in our model, making it acceptable
to define the dimensionless flow velocity based on the ratio of fluid force to gravitational
force.

As mentioned in § 3.1, for the upper-wall case, the distance between the wall and the
flagpole, d, does not affect the initial configuration of the flag at U = 0. The fluid force
exerted on the flag scales with the vertical downward deflection δ of the flag trailing edge,
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Figure 4. (a) Definition of streamwise distance Xc between the leading edge and the first contact point for
(i) small d and (ii) large d. Here (b) Xc and (c) contact duration Tc with respect to free-stream velocity U for the
upper wall ([d, h] = [1.5 cm, 1.0 mm]). The green and yellow areas denote the partial contact and saturated
contact modes, respectively.

from the horizontal line on the flagpole, in the absence of flow (figure 1ai). Even for the
fluttering flag, the fluid force is more relevant to δ than to d because δ is greater than d
in our model. The fluid force per unit width then scales as Ff ∼ ρf U2δ. In the previous
studies regarding the interaction of an elastic sheet with a fluid flow, the large deflection
of the sheet was scaled as the length of the elastic sheet (Jung, Song & Kim 2021; Kim
et al. 2021; Lee, Joung & Kim 2022). Because of the use of soft material in this study, the
deflection of the flag is comparable to the flag length in the absence of flow and sufficiently
large in the most range of the quasistatic equilibrium state. Therefore, δ scales as the flag
length l, leading to Ff ∼ ρf U2l.

This scaling of the fluid force is the same as that found in previous studies on fluttering
flags in the absence of gravity and contact. With the gravitational force per unit width
Fg ∼ ρsghl, a new dimensionless flow velocity for the upper wall is suggested as

U∗ = U
(

ρf

ρsgh

)1/2

= Fr(m∗)−1/2, (3.1)

which indicates the relative magnitude of the fluid force with respect to the gravitational
force. Here U∗ can also be defined using the Froude number Fr(= U/(gl)1/2) and the mass
ratio m∗(= ρsh/ρf l).
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Figure 5. (a) Distribution of four modes in terms of U∗ in (3.1) and d∗ for the upper wall (m∗ = 19.16).
(b) Distribution of three modes in terms of Û in (3.2) and d∗ for the lower wall (m∗ = 19.16).

For the lower-wall case, it is clear that the fluid force Ff is influenced by d because the
flag is initially in contact with the wall and d determines the initial configuration of the
flag at U = 0; note that we limit the range of d so that the flag is in contact with the lower
wall at U = 0. The fluid force scales reasonably as Ff ∼ ρf U2d, while the scaling of the
gravitational force Fg is the same as in the upper-wall case. Considering the ratio of the
two forces, a new dimensionless flow velocity for the lower wall is defined as

Û = U
(

ρf d
ρsghl

)1/2

= Fr(m∗)−1/2(d∗)1/2, (3.2)

where Û can also be expressed in terms of Fr, m∗ and the wall distance ratio d∗(= d/l).
Using the dimensionless flow velocity (U∗ for the upper wall and Û for the lower

wall) and the distance ratio d∗(= d/l), the flag modes described in § 3.1 are illustrated
in figure 5. For the upper wall (figure 5a), the dimensionless first critical velocity U∗

c1
between the quasistatic equilibrium mode and flutter mode is independent of d∗. Because
the flag is deflected downwards and the initial configuration of the flag is independent of
the wall distance, d∗ is not a factor in the transition between these two modes. However, the
dimensionless second critical velocity U∗

c2 between the partial contact mode and saturated
contact mode increases monotonically with d∗. As d∗ becomes greater, the transition to
the saturated contact mode occurs at a higher dimensionless flow velocity U∗. Another
critical velocity for the transition between the flutter mode and partial contact mode, which
appears only for the upper wall, is not examined because the present study aims to compare
critical conditions for the upper-wall and lower-wall cases.

The trends in the dimensionless critical velocities for the lower wall are similar to
those for the upper wall, although we have different definitions of the dimensionless flow
velocity, (3.1) for the upper wall and (3.2) for the lower wall. By adopting a dimensionless
flow velocity appropriate for each configuration, it is possible to characterize the mode
transition trends consistently. In figure 5(b), the dimensionless first critical velocity Ûc1
exhibits little variation with d∗, whereas the dimensionless second critical velocity Ûc2
increases monotonically with d∗. Because the wall distance d is included in the definition
of Û in (3.2), the relationship between the dimensional wall distance d and the dimensional
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Figure 6. (a) First critical velocity Uc1 and (b) second critical velocity Uc2 with respect to wall distance d for
both the upper-wall and lower-wall configurations: h = 1.0 mm (m∗ = 19.16) and h = 0.5 mm (m∗ = 9.58).

critical velocities Uc1 and Uc2, with the other dimensional parameters unchanged, cannot
be directly captured from figure 5(b).

In contrast to our upper-wall configuration and the vertical flag/wall configuration of Lee
et al. (2021) in which the first critical velocity Uc1 is insensitive to d for d = 1.5–5.5 cm
and l = 5–16 cm, Uc1 decreases monotonically with increasing d for our lower-wall
configuration, over the entire range of d considered in this study (figure 6a). As d increases,
a greater fluid force is imposed on the flag, making the transition to the postequilibrium
state easier. For the lower wall with the smallest d = 1.0 cm, the gap between the flagpole
and the wall is too narrow, and the fluid force is not sufficient to induce the transition
to the postequilibrium state. For this reason, the value of Uc1 is omitted for d = 1.0 cm
in figure 6(a). In this study, the range of d for the lower wall is smaller than the initial
downward deflection δ of the trailing edge for the upper wall (figure 1ai). The magnitude
of the fluid force exerted on the sheet is smaller for the lower wall than for the upper wall at
a given U in the quasistatic equilibrium state. Consequently, Uc1 for the lower wall exceeds
that for the upper wall under the same wall distance d and flag thickness h (figure 6a).

As the second critical velocity Uc2 is a threshold that subdivides the postequilibrium
state into partial and saturated contact modes, its analysis should be conducted from a
different point of view to that of Uc1 related to the equilibrium state. When the flag is in
the equilibrium state, the fluid force scales with the flag length l for the upper wall and
the wall distance d for the lower wall. However, when the flag reaches the periodic contact
modes, the effect of the incoming flow is mainly determined by the oscillation amplitude
of the flag, which is generally comparable to or greater than the wall distance d. Therefore,
the relationship between Uc2 and d is expected to have a similar tendency, regardless of
the wall location (upper wall or lower wall). Indeed, Uc2 increases monotonically with
respect to d for both wall locations (figure 6b). When the fluttering flag contacts the wall
periodically, the y-coordinate of the flag’s centre of mass, yG, changes periodically as well,
and the vertical displacement of yG increases with d. The flag requires more potential
energy to make saturated contact. As the potential energy of the flag comes from the
kinetic energy of the incoming flow, Uc2 increases with d.

Although the tendency of Uc2 with respect to d is similar between the two wall locations,
the magnitude of Uc2 at the same d is clearly affected by the wall location, and Uc2 for the
upper wall exceeds that for the lower wall in most conditions (figure 6b). This is because,
for the upper wall, the presence of gravity acting in the opposite direction interrupts the
fully developed contact of the flag with the wall. Moreover, for both wall locations, Uc2
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becomes greater with increasing flag thickness h for a given d because a greater fluid force
is necessary for the heavier flag (figure 6b); this is also true for Uc1 (figure 6a). This trend
with respect to h can be attributed to the increase in internal bending force induced by the
enhanced bending stiffness, in addition to the increase in the gravitational force.

Thus far, we have reported the general trends of the critical velocities. Next, using
simple scaling analysis, we derive quantitative relationships between the wall distance
and two critical velocities (Uc1 and Uc2) for the upper wall and lower wall, respectively.
For the upper wall, the fluid force acting on the flag is balanced by the gravitational and
bending forces in the quasistatic equilibrium. As mentioned above, the gravitational force
is generally more significant than the bending force for our flag model. Therefore, it is
assumed that the transition from quasistatic equilibrium mode to flutter mode is initiated
when the fluid force becomes greater than the gravitational force. The fluid force per unit
width Ff ∼ ρf U2l and the gravitational force per unit width Fg ∼ ρsghl obey the following
scaling relations at the first critical condition U = Uc1:

ρf U2
c1 l ∼ ρsghl, (3.3a)

Frc1(m∗)−1/2 ∼ const. (3.3b)

Corresponding to U = Uc1, the first critical Froude number is defined as Frc1 =
Uc1/(gl)1/2. The term Frc1(m∗)−1/2 on the left-hand side of (3.3b) is actually the same
as U∗

c1 in (3.1). As shown in figure 5(a), Frc1(m∗)−1/2 (= U∗
c1) is independent of d∗.

Regarding the lower wall, the wall distance d, rather than l (or δ), is the key length
parameter in determining the fluid force in the equilibrium state. The fluid force Ff ∼
ρf U2d instead of ρf U2l. The gravitational force Fg ∼ ρsghl is the same as for the upper
wall. Accordingly, at U = Uc1,

ρf U2
c1d ∼ ρsghl, (3.4a)

Frc1(m∗)−1/2(d∗)1/2 ∼ const. (3.4b)

The contact force from the lower wall is neglected because only the trailing edge of the
flag is in contact during the transition between the quasistatic equilibrium and partial
contact modes. The term Frc1(m∗)−1/2(d∗)1/2 on the left-hand side of (3.4b) is identical
to Ûc1 in (3.2). Relation (3.4b) is consistent with the experimental results in figure 5(b), in
which Frc1(m∗)−1/2(d∗)1/2 (= Ûc1) exhibits little variation with respect to d∗. To validate
(3.4b), figure 6(a) is reconstructed in figure 7 using dimensionless variables (Frc1, m∗, and
d∗). The fitting curve Frc1(m∗)−1/2 = 0.75(d∗)−1/2 from scaling relation (3.4b) is in good
agreement with the experimental results.

As for the scaling analysis of the second critical velocity Uc2, it is more appropriate to
consider energy rather than force because Uc2 is defined in the midst of the postequilibrium
state. In our model, four energy quantities of the flag need to be accounted for: strain
energy (Es); kinetic energy (Ek,flag); potential energy (Ep); and the energy dissipated
during the contact process (Ec). As scaling analysis is based on the relation between two
dominant physical quantities, it is necessary to identify the dominant energy component of
the flag, which is balanced with the fluid kinetic energy input imposed on the flag (Ek,fluid).

We first calculate each energy component from the experimental data to compare the
magnitudes of the energy components. The strain energy Es of the flag per unit width is
defined as Es = 1

2 B
∫ l

0 κ2 ds, where κ (= (d2y/dx2)/[1 + (dy/dx)2]3/2) is the curvature
of the flag. The curvature is computed from the position data obtained from the images.
The sheet is discretized equally into 200 segments along its length. For each segment, the
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Figure 7. First critical condition Frc1(m∗)−1/2 with respect to distance ratio d∗ for the lower wall. The
symbols denote experimental data, and the black dashed line denotes the fitting curve from scaling
relation (3.4b).

central difference scheme is used to acquire d2y/dx2 and dy/dx. In addition to the bending
energy, the stretching energy may be considered for the strain energy. However, the tension
acting on the flag and the resultant change in the flag length are negligible. For this reason,
the stretching energy is assumed to be zero. The kinetic energy Ek,flag of the flag per unit
width is defined as Ek,flag = 1

2ρsh
∫ l

0 v2 ds, where v (= [(dx/dt)2 + (dy/dt)2]1/2) is the
velocity magnitude of the flag. For each segment, the central difference scheme is used
to obtain dx/dt and dy/dt. The potential energy Ep of the flag per unit width is defined
as ρsgh

∫ l
0 y ds, where y is the vertical position of the flag. As y = 0 is set at the leading

edge (flagpole), as shown in figure 1, the potential energy can be negative when the flag is
located below the flagpole.

The three energy components (Es, Ek,flag and Ep) of the flag at the second critical
velocity are compared in figure 8. Although the energy is dissipated as acoustic energy
during the contact process, the overall magnitude of the dissipated energy Ec appears to
be negligible because the material of the flag does not absorb energy, and the duration of
the contact is very small compared with the period of flutter. The peak-to-peak value of
Ep in one cycle is dominant over those of the other energy components for both the upper
and lower walls. Although figure 8 presents the data at the second critical condition for
two specific cases of [d, h] = [1.5 cm, 1.0 mm], the potential energy of the flag is found
to be dominant in the postequilibrium state regardless of the wall location, d, and h. Based
on this result, it is reasonable to consider the fluid kinetic energy Ek,fluid and the potential
energy of the flag Ep for scaling analysis.

The two energy quantities Ek,fluid and Ep should be balanced in a cycle-averaged sense
in terms of scaling: Ēk,fluid ∼ Ēp. The kinetic energy Ek,fluid of the fluid per unit width
is defined as the total power imposed on the sheet by the uniform flow during a cycle.
Here Ek,fluid = ∫ T

0

∫ l
0 F f ·v ds dt, where F f is the fluid force vector acting on the flag

per unit area, v is the velocity vector of the flag and T is the period of flutter. From
this integral expression, the fluid kinetic energy can be scaled without using the flutter
period T . The fluid force F f scales as Ff ∼ ρf U2, the dynamic pressure induced by
the free-stream velocity. Here

∫ T
0 v dt scales as the peak-to-peak oscillation amplitude

A of the flag, and
∫ l

0 ds = l. Consequently, Ēk,fluid ∼ ρf U2 lA. At postequilibrium, the
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Figure 8. Time histories of strain energy Es (black), kinetic energy Ek,flag (yellow) and potential energy Ep
(red) of the flag per unit width at the second critical velocity Uc2 for the (a) upper wall and (b) lower wall.
[U, d, h] = [9.79 m s−1, 1.5 cm, 1.0 mm] for the upper wall and [10.18 m s−1, 1.5 cm, 1.0 mm] for the lower
wall.

vertical displacement �yG for the centre of the flag determines the potential energy.
As d increases, the magnitude of �yG required for saturated contact increases, which
indicates that the potential energy may scale with d. Indeed, Ēp computed from our
experimental results tends to increase linearly with d for both the upper wall and lower
wall; see Appendix A. Thus, the cycle-averaged potential energy of the flag per unit width
is regarded as Ēp ∼ ρsghld.

As the peak-to-peak amplitude A defined in figure 1(b) is a dependent variable that
should be obtained from experiments, it is necessary to employ a different length scale
based on the input parameters. For the upper wall, the oscillation amplitude of the flag is
almost independent of d, and A∗(= A/l) converges to a specific value as the dimensionless
flow velocity increases (as reported in § 3.3). Hence, it is reasonable to argue that A scales
as the flag length l, leading to Ēk,fluid ∼ ρf U2l2. At the second critical condition U = Uc2
of the upper wall, the following scaling relations are established from the energy balance
Ēk,fluid ∼ Ēp:

ρf U2
c2l2 ∼ ρsghld, (3.5a)

Frc2(m∗)−1/2 ∼ (d∗)1/2, (3.5b)

where the second critical Froude number Frc2 = Uc2/(gl)1/2 and Frc2(m∗)−1/2 = U∗
c2. As

depicted in figure 5(a), U∗
c2 increases monotonically with d∗.

In contrast to the upper wall, the peak-to-peak amplitude A of the flag for the lower wall
is distinctly affected by d; a detailed explanation will be given in § 3.3. Thus, the effect of d
must be included when scaling the oscillation amplitude. The amplitude of the flag can be
divided into two parts based on y = 0 (figure 1bii). In the lower-wall case, the amplitude
in the region y < 0 is equal to d, and we assume that the amplitude in the region y > 0 is
proportional to the flag length l, having the form αl with the proportional constant α to
be determined later. As for the amplitude scale, A ∼ d + αl is adopted instead of A ∼ l.
From the energy balance between Ēk,fluid ∼ ρf U2l(d + αl) and Ēp, at the second critical
condition U = Uc2 of the lower wall,

ρf U2
c2 l(d + αl) ∼ ρsghld, (3.6a)

Frc2(m∗)−1/2(d∗)1/2 ∼ d∗(d∗ + α)−1/2. (3.6b)
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Figure 9. Second critical condition Frc2(m∗)−1/2 with respect to wall distance ratio d∗ for the (a) upper wall
and (b) lower wall. The symbols denote experimental data, and the dashed lines denote the fitting curves from
scaling relation (3.5b) for (a) and from scaling relation (3.6b) for (b).

Here, Frc2(m∗)−1/2(d∗)1/2 = Ûc2. Relation (3.6b) captures the trend of the experimental
results, with Ûc2 increasing monotonically with d∗ in figure 5(b).

The second critical velocity Uc2 in figure 6(b) is reconstructed in dimensionless form,
using Frc2, m∗ and d∗, in figure 9. For a given m∗, the fitting curves from scaling relations
(3.5b) and (3.6b) are also included. For the upper wall in figure 9(a), Frc2(m∗)−1/2 =
C(d∗)1/2 from (3.5b), where the fitting constant C is 5.42 for m∗ = 19.16 and 3.76 for
m∗ = 9.58. The values predicted from the scaling analysis are in good agreement with the
experimental results. Note that the constant C depends on m∗, although m∗ is explicitly
included in the scaling relation. Although the kinetic energy of the flag is not as dominant
as the potential energy of the flag and is not included on the right-hand side of (3.5a), it is
not actually negligible according to figure 8. The kinetic energy of the flag is proportional
to the mass ratio (flag thickness h) of the flag. Therefore, the dimensionless velocity
U∗

c2(= Frc2(m∗)−1/2) is expected to increase as the kinetic energy of the flag becomes
stronger (i.e. when m∗ increases), which is demonstrated experimentally in figure 9(a).

For the lower wall (figure 9b), α in (3.6b) is obtained empirically from the experimental
data in the postequilibrium state; α = (A − d)/l. The value of α averaged over seven
different d∗ cases is 0.55 for both m∗ = 19.16 and 9.58 (see Appendix B). Thus,
Frc2(m∗)−1/2 = C(d∗)1/2(d∗ + 0.55)−1/2 from (3.6b), where the fitting constant C is 4.19
for m∗ = 19.16 and 2.52 for m∗ = 9.58. The constant C varies with respect to m∗, as
for the upper wall. When d∗ is relatively low (d∗ = 0.15), the curve of the scaling relation
deviates notably from the experimental values. The value of α is fixed in the fitting process,
although it varies with respect to d and U (Appendix B). If α is chosen using only the
small-d∗ cases, the fitting curve in figure 9(b) will be good in the small-d∗ region but
give poor predictions in the large-d∗ region. Despite such limitations, we can successfully
predict the trend of the second critical velocity by applying simple scaling relations based
on energy balance.

For the given d in the range considered in this study, l > d + αl. From the above scaling
relations for Ēk,fluid and Ēp, Ēp of the upper wall is larger than that of the lower wall, and
accordingly the peak-to-peak value of Ep in one cycle for the upper wall exceeds that of
the lower wall, as exemplified in figure 8. The kinetic energy of the flag, Ek, also exhibits
similar trends when compared between the upper wall and lower wall. That is, the presence
of gravity and the location of the wall greatly affect the temporal distributions of the energy
components of the flag as well as its critical conditions.
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Figure 10. (a) Contact force Fc of partial contact mode, [U, d, h] = [9.39 m s−1, 3.0 cm, 1.0 mm],
and (b) Fc of saturated contact mode, [U, d, h] = [11.38 m s−1, 3.0 cm, 1.0 mm], for the lower-wall
configuration.

3.3. Flag dynamics in postequilibrium state
This section examines some representative quantities, such as the contact force, oscillation
amplitude and oscillation frequency, of the postequilibrium flag dynamics. The contact
force exerted on the wall by the fluttering flag, which is measured with a load cell, exhibits
periodic peaks following the oscillation period of the flag (figure 10). The temporal profile
of the contact force during the contact and separation process differs between the partial
and saturated contact modes and can thus be used to quantitatively distinguish the two
modes, in addition to the initial contact point Xc and contact duration Tc presented in
figure 4.

In the partial contact mode, the first peak appears as the flag makes contact with the
wall (figure 10a). After the first peak, the contact force does not decrease to zero but
increases again, producing a second peak with a slightly smaller magnitude than the first
peak. After the second peak, the contact force returns to zero when the flag separates
from the wall. The contacting parts do not separate simultaneously from the wall in
the partial contact mode, but instead, some parts remain in contact while the others
separate. This phenomenon leads to a relatively weak second peak. As the partial contact
mode transitions to the saturated contact mode with increasing free-stream velocity U,
only one stronger peak arises per cycle (figure 10b). In the saturated contact mode, the
contacting parts separate from the wall rapidly and almost simultaneously in contrast to
the partial contact mode, thereby yielding a single strong peak. Although U increases by
only 1.99 m s−1 from the partial contact mode in figure 10(a) to the saturated contact
mode in figure 10(b), the peak contact force increases dramatically, from 1.1 to 3.7 N. This
feature of the contact force is common regardless of the wall location and other geometric
parameters; during the transition of the contact mode, two peaks become a single peak,
and the magnitude at the peak increases remarkably.

With the same wall distance, the magnitude of the peak contact force Fc,p strongly
depends on whether the wall is located above or below the flag. Here Fc,p is acquired by
averaging 10 successive force peaks for contact modes. For flutter mode, the flag rarely
contacts the upper wall, and thus Fc,p is computed by dividing the sum of force peaks
during 10 oscillation cycles by 10. For the lower wall, when the wall distance ratio is large
(i.e. d∗ = 0.40), sufficient fluid kinetic energy Ek,fluid is supplied because it scales with
d + αl according to (3.6a). Thus, along with the positive contribution of the downward
gravitational force, the large input of the fluid kinetic energy causes Fc,p in the lower-wall
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Figure 11. Peak of contact force Fc,p versus free-stream velocity U for (a) d∗ = 0.20 and (b) d∗ = 0.40 (m∗ =
19.16): upper wall (circles) and lower wall (squares). The red and blue arrows indicate critical velocities for the
upper and lower walls, respectively.

case to exceed that of the upper-wall case significantly, and the difference between them
becomes greater as U increases (figure 11b). With a large d∗, the fluttering flag must move
upward to a higher location to contact the upper wall. Because the energy supplied to the
flag should be used to enhance the potential energy at the moment of contact, the peak
contact force Fc,p of the upper wall decreases notably from that of the small-d∗ case for
the same U; compare figure 11(b) with figure 11(a).

The trend in Fc,p differs notably for a small distance ratio d∗ = 0.20 (figure 11a). Fc,p
in the lower-wall configuration is less than that of the upper-wall configuration in the
intermediate range of U (= 6–11 m s−1), although gravity acts to enhance the contact
force for the lower wall. As mentioned above, the fluid kinetic energy Ek,fluid scales with
d + αl for the lower wall. In the small-d∗ condition, Ek,fluid for the lower wall is generally
smaller than that of the upper wall, eventually leading to a smaller Fc,p. However, in the
large-U regime (U > 11 m s−1), the oscillation amplitude of the lower-wall case becomes
sufficiently large, resulting in greater fluid kinetic energy. Thus, Fc,p of the lower-wall case
is comparable to that of the upper wall.

The contact force for the lower wall increases rapidly at a specific free-stream velocity U
(e.g. 9.39 m s−1 in figure 11a and 6.30 m s−1 in figure 11b) as the quasistatic equilibrium
mode switches directly to the partial contact mode. However, for the upper wall, the
contact force increases with a relatively gentle slope from a specific free-stream velocity
U (e.g. 6.30 m s−1 in figure 11a and 8.22 m s−1 in figure 11b), because the quasistatic
equilibrium mode does not switch directly to the partial contact mode, but goes through
the flutter-mode regime. In the flutter mode, the oscillations of the flag are not perfectly
periodic, and the flag can rarely contact the upper wall with small strength, which results
in non-zero Fc,p, albeit minor.

From the perspective of triboelectric energy harvesting applications, it is necessary
to address which wall configuration is desirable for system design. Under the same
free-stream velocity and flag parameters, the lower-wall configuration appears more
advantageous because gravity acts positively. However, as shown in figure 11, the desirable
wall position for energy harvesting based on the peak contact force depends on the
wall distance ratio d∗. According to figure 12, which presents the difference in peak
contact force between the upper wall and lower wall (�Fc,p = FU

c,p − FL
c,p), the lower

wall produces the larger peak contact force over the most range of U at large distance
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Figure 12. Difference in peak contact force �Fc,p(= FU
c,p − FL

c,p) between the upper and lower walls with
respect to free-stream velocity U (d∗ = 0.20–0.40 and m∗ = 19.16).
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Figure 13. Contact force efficient F∗
c,p with respect to (a) U∗ for the upper wall and (b) Û for the lower wall
(d∗ = 0.20–0.40 and m∗ = 19.16).

ratios (d∗ ≥ 0.30). Conversely, the upper wall yields the larger peak contact force at a
small distance ratio (d∗ = 0.20). Furthermore, under the small distance ratio, triboelectric
energy can be generated in a broader range of free-stream velocity with the upper-wall
configuration because the flow velocity threshold for initiating contact is much lower than
with the lower-wall configuration (figure 11a).

Although the dimensional Fc,p has been used to explain the trends in the contact
force, the contact force coefficient F∗

c,p(= Fc,p/(ρf U2S)), which is normalized by the
surface area S(= lw) of the flag and the free-stream velocity, may be a more suitable
parameter than Fc,p for evaluating how effectively the contact force is generated. Here
F∗

c,p is presented with respect to the dimensionless flow velocity U∗ for the upper wall in
figure 13(a) and with respect to Û for the lower wall in figure 13(b).

The dimensional Fc,p tends to increase monotonically with U, regardless of the wall
location and wall distance (figure 11). By contrast, F∗

c,p tends to increase and then
decrease with the dimensionless flow velocity (U∗ or Û) for most wall distance ratios
(figure 13). The optimal maximum value of F∗

c,p is clearly identified at d∗ ≤ 0.30 for the
upper wall and at d∗ ≥ 0.30 for the lower wall. In the low-dimensionless-velocity regime,
F∗

c,p generally increases with the dimensionless velocity. However, as the flow velocity
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Figure 14. (a) Normalized peak-to-peak amplitude A∗ and (b) Strouhal number St(= fA/U) with respect to
dimensionless flow velocity: (i) upper wall and (ii) lower wall (m∗ = 19.16).

increases further, the slope of the dimensional Fc,p versus U declines because the flag
transitions from the partial contact mode to saturated contact mode and undergoes fully
developed contact. Accordingly, F∗

c,p decreases after reaching its maximum. Furthermore,
figure 13 shows opposite trends of F∗

c,p with respect to d∗ between the two wall locations;
F∗

c,p tends to decrease with increasing d∗ for the upper wall, while it tends to increase with
increasing d∗ for the lower wall. For the lower wall, the wall distance is a more important
parameter in determining the magnitude of the fluid kinetic energy and contact force
than for the upper wall, as mentioned above. Hence, F∗

c,p exhibits more distinct variations
among the five d∗ cases at a given flow velocity.

The peak-to-peak amplitude A of the flag (figure 1b) is normalized by the flag length
l: A∗ = A/l. The normalized amplitude A∗ displays different tendencies depending on the
wall location. For the upper wall, when contact begins to occur in the partial contact mode,
the amplitude above the flagpole is limited to the wall distance d (figure 1bi). Therefore,
A∗ cannot continue to increase with U∗, but converges to a certain value for each distance
ratio d∗ (figure 14ai). The converged A∗ in the high-U∗ regime tends to be greater for
larger values of d∗, although its variations are minor between d∗ = 0.30–0.40. By contrast,
for the lower wall, the amplitude above the flagpole is not limited, and the amplitude
below the flagpole is equal to d because the fluttering flag contacts the wall in all cases
(figure 1bii). The amplitude above the flagpole increases with the free-stream velocity U,
and thus, at a given U, the peak-to-peak amplitude A becomes greater for larger values
of d. Interestingly, if the dimensionless velocity Û, which includes d in its definition, is
employed, the curves of normalized amplitude A∗ collapse, and the values of A∗ are similar
for a given Û regardless of d∗ (figure 14aii).
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In both the upper-wall and lower-wall configurations, the dimensional frequency f
tends to increase monotonically with the free-stream velocity U. To make the frequency
dimensionless, the flag length l or the peak-to-peak amplitude A can be regarded as the
characteristic length. In our model, A, which exhibits different trends depending on the
wall location, better represents the model configuration; moreover, l is independent of the
wall location. That is, the Strouhal number St(= fA/U), reflecting the relative magnitude
of the flutter speed of the flag tip to the free-stream velocity, is used to represent the
frequency of the flag. The overall trends of St versus the dimensionless flow velocity are
quite similar to those of A∗ (figure 14b). Here St suddenly increases and thereafter becomes
saturated for the upper-wall case, while it continues to increase and has a similar value
irrespective of d∗ for the lower-wall configuration.

For both the upper and lower walls, St is restricted below 0.10, which is markedly
smaller than St(= 0.20–0.40) for a vertical flag with negligible gravity effects near a
vertical wall (Lee et al. 2021) and a typical flag model without an adjacent wall and gravity
effects (Shelley, Vandenberghe & Zhang 2005; Connell & Yue 2007). Compared with the
previous flag models without gravity, a significant portion of the fluid kinetic energy is
converted into the potential energy of the flag, thereby reducing the kinetic energy of the
flag. Hence, the flutter speed of the flag becomes relatively low compared with the previous
flag models without gravity for a given free-stream velocity, which eventually results in a
decrease in St. In contrast, the range of the normalized amplitude A∗ in our model is
comparable to that of previous flag models, A∗ = 0.4–1.0 (Connell & Yue 2007; Eloy
et al. 2008; Virot, Amandolese & Hémon 2013; Lee et al. 2021), because the downward
deflection of the flag by gravity offsets the negative effect of the reduced kinetic energy of
the flag on the oscillation amplitude.

For flag models, hysteresis generally occurs in a transition phase between equilibrium
and postequilibrium states, and a bistable state exists within a certain range of the
free-stream velocity (Eloy et al. 2008; Eloy, Kofman & Schouveiler 2012; Kim et al.
2013). Whether gravity and contact affect the emergence of hysteresis in our model is
now examined. The width e of hysteresis is defined as e = (Uc1,i − Uc1,d)/Uc1,i (Eloy
et al. 2012). Here Uc1,i is the first critical velocity at the transition from the quasistatic
equilibrium mode, which is measured while the free-stream velocity increases; and
Uc1,d is the first critical velocity at the transition to the quasistatic equilibrium mode,
and is measured while the free-stream velocity decreases. Hysteresis with a subcritical
bifurcation is identified from the plots of normalized amplitude A∗ for both profiles of
increasing and decreasing free-stream velocities (figure 15a); in the figure, U∗

c1,i = 1.27
and U∗

c1,d = 0.99. For both the upper and lower walls, the value of e is mostly between
2.6 %–7.8 % (figure 15b). Furthermore, to exclude the effect of contact and solely consider
the effect of gravity, the case in which contact does not occur is also considered by
removing the wall. The value of e averaged over 10 trials is 5.1 % for the non-contact
case in the absence of a wall, which is similar to the e values of contact cases. That is,
external factors such as gravity and contact do not alter the existence of hysteresis, which
is regarded as an inherent characteristic of a fluttering flag.

4. Concluding remarks

We have experimentally investigated the flutter and contact of a horizontal flag near a flat
wall under gravitational effects. The flag exhibits diverse dynamic modes according to the
flow velocity and the wall distance. For both upper- and lower-wall configurations, the
flag undergoes periodic contact with the wall under certain conditions, and the contact
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Figure 15. (a) Hysteresis of normalized peak-to-peak amplitude A∗ for the upper wall: increasing free-stream
velocity (solid) and decreasing free-stream velocity (dashed); [d∗, m∗] = [0.15, 19.16]. (b) Width of hysteresis
e for the upper wall (circle) and the lower wall (square); m∗ = 19.16. The red dashed line denotes the value of e
for the case without a wall.

modes can be divided into partial and saturated contact modes based on the contact
area and duration. In our flag model, gravity is dominant over the elasticity of the flag,
and thus the balance of the fluid inertia and gravitation is considered to characterize
the critical conditions and dynamic behaviours of the flag. The relationships between
the dimensionless critical flow velocities and the wall distance ratio were examined for
the transitions of the dynamic modes using simple scaling analysis. Importantly, the
wall distance has a greater influence in determining the critical conditions for the lower
wall than for the upper wall. At postequilibrium, the trends of the peak contact force
differ depending on the wall location and distance – counter-intuitively, the upper-wall
configuration is more beneficial to producing a greater contact force at small wall
distances. Due to the conversion to potential energy, the kinetic energy of the flag
decreases, having a smaller dimensionless oscillation frequency, compared with typical
flag models based on negligible gravity effects.

Although our flag model is limited to two dimensions, the results reported here offer
useful information for designing novel energy-harvesting devices based on triboelectric
generation. Admittedly, the contact dynamics of the flag, coupled with the free stream,
should be analysed in more detail to identify the optimal design of devices in terms of
power generation and efficiency. Furthermore, high-fidelity numerical simulations need
to be conducted to unravel the evolution of flow structure and the spatial distribution of
contact force.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.931
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Figure 16. Cycle-averaged potential energy Ēp versus wall distance d at the second critical velocity for
(a) h = 1.0 mm and (b) h = 0.5 mm.
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Figure 17. Proportional constant α with respect to dimensionless flow velocity Û for the lower wall
(d∗ = 0.15–0.45): (a) m∗ = 19.16 and (b) m∗ = 9.58.

Appendix A. Relationship between cycle-averaged potential energy and wall distance

The cycle-averaged potential energy Ēp of the flag at the second critical velocity Uc2 for
different wall distances d is shown in figure 16. Here Ēp increases almost linearly with
respect to d for both h = 1.0 and 0.5 mm. Although the experimental data do not pass
through the origin in the figure and the potential energy is a relative quantity depending
on a reference height, the change in Ēp is proportional to the change in d. In this regard,
we scale the vertical displacement �yG of the centre of the flag as d.

Appendix B. Acquisition of proportional constant α

For the lower wall, we scale the amplitude of the flag A as d + αl. For the fitting process,
α needs to be determined empirically. From the experimental data, α is obtained under
various Û and d∗ conditions in the postequilibrium state, and the averaged value of α is
0.55 for both m∗ = 19.16 (figure 17a) and m∗ = 9.58 (figure 17b). Note that the values of
α for the smallest d (d∗ = 0.15) are much smaller than the average value of 0.55.
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