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Abstract

A-coalescents model the evolution of a coalescing system in which any number of
components randomly sampled from the whole may merge into larger blocks. This
survey focuses on related combinatorial constructions and the large-sample behaviour of
the functionals which characterize in some way the speed of coalescence.

Keywords: Coalescent with multiple mergers; exchangeable partitions; large-sample
asymptotics
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1. Introduction

Aldous in his 1999 survey [3] observed that the stochastic models of coalescence (clus-
tering, coagulation, aggregation, gelation), common in many scientific disciplines, had been
of only tangential concern in the applied probability literature. That same year Pitman [49]
and Sagitov [51] introduced a class of processes, called A-coalescents, which have become
increasingly popular in the probability community and largely stimulated the research in the
area of exchangeable partition-valued processes of coalescence and fragmentation.

The mathematical theory of coalescent processes originated in Kingman’s work [40, 41].
The idea comes from the study of genealogical relationships in biology: given a large population
of haploid organisms evolving over many generations, a sample of individuals from the current
generation is taken and their family history is traced backward in time. The ancestral lineages
coalesce at times when two or more individuals in the sample have a common ancestor. In
Kingman’s coalescent every pair of lineages coalesces at unit probability rate, and every merger
is binary.

The same type of process may also be interpreted forward in time as describing the evolution
of a system of components (particles, polymers, dust formations, political coalitions, etc.) which
accumulate in larger and larger blocks as time passes. There are more complex models which
depart from Kingman’s process in that they allow the coalescence rate to depend in some way
on the masses of the two merging parts [3].

A A-coalescent is another kind of generalisation, in which arbitrary multiple mergers are
possible. The transition rates depend only on the number of blocks involved in a merger;
thus, the exchangeability property inherent in Kingman’s coalescent is preserved. Bolthausen
and Sznitman [15] studied a remarkable process of this kind in the context of spin glasses.
A-coalescents and more general exchangeable coalescents with simultaneous multiple mergers
[52] appear as limiting forms of genealogy models for populations with large offspring sizes
[34, 46, 54].
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The family exhibits a rich variety of behaviours, especially when seen from the perspective
of infinite populations. At one extreme are the coalescents, like Kingman’s, in which an infinite
myriad of massless dust particles coagulate almost instantaneously into finitely many massive
blocks, although a typical merger takes just a few parts. At another edge of the spectrum are the
processes where the primary dust persists forever while the mergers, regularly spaced in time,
take a good chunk of the dust together with some other massive blocks. Intermediate regimes
add colour to the picture, which is further refined by phase transitions at the level of fluctuation
theory.

We refer the reader to lecture notes [10, 11] for a graduate-plus level introduction to the
theory of A-coalescents, their connections to other stochastic models, and many pointers to
the literature. The present survey gives a snapshot of results on large-sample asymptotics
for functionals that characterize in some way the speed of coalescence. Inevitably, the focus
is biased towards the authors’ interests in renewal approximations, random recursions, and
regenerative combinatorial structures.

2. Fundamentals
2.1. Poisson construction and exchangeability

A Pitman-Sagitov process derives its name, A-coalescent, from the infinite-dimensional
parameter A, which is a positive finite measure on [0, 1]. For Kingman’s coalescent, A is the
Dirac mass at 0, and, for the Bolthausen—Sznitman coalescent, A is the Lebesgue measure.
The dynamics of A-coalescents follow the rule: if at some time the process is restricted to a
partition with m separate blocks then a transition that involves k particular blocks merging into
one block occurs at the rate

1
Ak = f K72 (1 = x)"F Adx), 2<k<m. (1)
0

The total merging rate on m blocks is therefore

mn 1
Am = Z (m))hm,k = / [1 — (1 — )C)m — mx(l — )C)mil]xi2 A(d_x)
0

k=2 k

Note that a mass at 0 contributes (";)A({O}) to the cumulative rate of binary mergers.
That these formulae involve a mixture of binomial probabilities is not accidental. Suppose
in the first instance that A has no mass at 0, and consider the measure

p(dx) = x2A(dx), x € (0, 1],

which is easier to interpret and in some respects more convenient than A. Think of a coin
with probability of heads x randomly chosen from v. For every block, toss the coin and if the
outcome is heads, include the block in the merger. This naive picture of transition is made
rigorous by considering a random Poisson scatter of points in the strip [0, 1] x [0, co) with
intensity measure v(dx) x df. The coalescent emerges as the points are scanned in the order of
their time coordinates. Given a point at the generic location (x, ), each block of the partition,
as defined immediately before time ¢, joins the merger with probability x, independently of
other coexisting blocks. If the measure v is infinite, the set of times of the Poisson scatter
will be dense. However, the coalescence will not occur instantaneously, because only times ¢
when at least two coin tosses land up heads yield a transition, and these appear at a finite rate
whenever the number of blocks is finite. If A has mass at 0, this Poisson construction needs to
be modified to superimpose a binary merging rate.
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FIGURE 1: A sample path of I17 with four mergers.

Any mass at 1 forces a total collapse into one block at a random exponential time. We
exclude this possibility throughout the paper.

Up to this point we have intentionally avoided the ritual words ‘the process takes values
in ...’, because the rule is the same for various choices of the state space for A-coalescents.
The A-coalescent on n particles is formally defined as a continuous-time Markov chain I1, =
(IT,(#), t > 0) that takes values in the finite space of partitions of the set [n] = {1, 2, ..., n},
where by ‘partition of a set” we mean a representation of the whole as the union of disjoint
nonempty subsets (blocks). The process starts with the finest partition of [n] in singleton
blocks {1}, {2}, ..., {n}, to be thought of as primary particles, and moves to coarser partitions
until eventually terminating at the trivial partition with one block [n]. The process IT, is
exchangeable, i.e. permutations of [n] do not alter the distribution of IT,. Associated with
I1,, is the arithmetic coalescent defined on the integer partitions of n and moving from the
partition 1 + - - - 4 1 to n; this less informative process uniquely determines the law of IT, by
exchangeability.

It is customary to graph a sample path of I1,, as a tree with vertical edge lengths representing
time elapsed between mergers (see Figure 1). In the genealogical interpretation, the leaves
correspond to n individuals from the current generation, and a block of IT, (¢) includes the
individuals with a common ancestor living at time ¢ backward from the present time. With this
in mind, IT, (¢) is called the ancestral partition.

Given a partition of a set into blocks, we obtain a partition of a subset by removing some
elements from the blocks and deleting any blocks that have become empty. It is implicit in the
rule of a A-coalescent, and obvious from the Poisson construction, that IT,, restricted from [n]
to any subset with m < n elements has the same distribution as IT,,, up to relabelling elements
of the subset by [m]. That a Markov chain projects to a Markov chain is, in fact, a highly
nontrivial property which in algebraic terms amounts to the backward-in-n recursion

An—1,k = Anjk + An ksl )

This recursion is a form of Hausdorff’s moment problem, which ensures that every nonnegative
solution has a unique integral representation (1) with some finite measure A on [0, 1].

By consistency, there is an exchangeable process IT = (I1(¢), t+ > 0), called the infinite
A-coalescent, whose restriction for each integer n to [n] is I1,. The state space for II is the
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set of partitions of N, and the initial state is the partition into singleton blocks {1}, {2}, ...
corresponding to an infinite set of primary particles labelled by N.

For fixed ¢, we can view {I1,,(¢#): n € N} as a growth process, with I'1(¢) emerging as a limit.
One move amounts to either inserting n + 1 into one of the blocks of I1,,(¢) or appending {n + 1}
to the set of blocks as a singleton. For instance, given that IT, (¢) is the singleton partition of
[n], IT,1(¢) is the singleton partition of [n 4 1] with probability e ~»+1=*»)*  Unfortunately,
there are no simple formulae for more general transition probabilities, nor for the distribution
of IT,(t) (see [49, Section 3.8] for the algebra involved). The only known exception is the
Bolthausen—Sznitman coalescent, where IT,,(¢) is a partition from the Ewens—Pitman family
with parameters (e, 0) and the growth rule is known under the fancy name Chinese restaurant
process [50]. There is also a simple formula for the partition resulting from the kth merger in
Kingman’s coalescent (see [9] for a generalization).

2.2. Basic classification

The Poisson construction suggests that every block of the ancestral partition I1(¢) is either
a singleton primary particle or infinite with positive frequency, equal to the limit proportion
of representatives of the block in [n] as n — oo. The dichotomy is a general consequence
of exchangeability and de Finetti’s theorem. Similarly, the collection of particles in singleton
blocks of T1(z) is either empty or has positive cumulative frequency. We shall say that a block
with positive frequency is massive, and call the collection of singleton blocks of T1(¢) the dust.
For the general exchangeable partition of N, there are four types of realizations which may
occur with nonzero probability:

(D finitely many massive blocks and dust;
(II) infinitely many massive blocks and dust;
(IID) infinitely many (massive) blocks and no dust;
(IV) finitely many (massive) blocks.

As follows from [49], the type of the ancestral partition I1(#) depends neither on chance nor on
t > 0. This gives the most basic structural classification of A-coalescents.

The type is determined by the concentration of the measure A near 0. Note that multiplying
A by a positive constant amounts to a linear time change in the coalescent process, and, thus,
does not affect the type. The first two types are easy to identify in terms of the moments

1
m, :=/ x" A(dx),
0

which may be finite or infinite for negative r.

Case (I) appears if and only if m _» < oo. In this case v is a finite measure, the transitions
of IT occur at discrete times of a Poisson process with rate m _, and a merger takes each block
with probability x, with x chosen from the distribution v(dx)/m _;.

Case (II) appears if and only if m_p = co and m_; < oo. The transitions in IT occur at
a dense set of jump times of a subordinator (increasing Lévy process) with an infinite Lévy
measure.

If m_; = oo, there is no dust, but a finer condition is required to distinguish between (III)
and (IV). In case (IV) the coalescent is said to come down from infinity, meaning that the initial
singleton partition needs arbitrarily small time to coalesce into a partition of finitely many
blocks. Equivalently, IT has finite absorption time t = inf{r: I1(z) = {N}}. It turns out that
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T < oo almost surely if and only if E[t] < oo, which underlies a criterion for (IV) discovered
by Schweinsberg [53], namely,

Zi<oo, (3)

where

m 1
Vi = Z(k — 1)(7:))»,”,;{ = / [(A=x)" =14 mx]x~? A(dx). (4)
k=2 0

The intuitive link between (3) and E[t] < oo is evident on interpreting y,, as a rate at which
the number of blocks decreases down from m, hence viewing the reciprocal 1/y,, as a kind of
mean holding time at m blocks.

We note in passing that in other areas involving the application of exchangeable partitions
of N, notably in species sampling problems and Bayesian nonparametrics, partitions with dust
or finitely many blocks are considered to be a nuisance and the main focus of researchers is on
partitions of type (III). In contrast to that, for A-coalescents, a nice ancestral partition of type
(III) is more of an exception.

2.3. Coalescents on mass partitions

There is a parallel view of an infinite A-coalescent as a process in the space of mass partitions
A={s=1(s1,82,...):81=85>--->0, Zj sj < 1}. The process appears as a scaled limit
form of the arithmetic coalescent. To obtain this, the decreasing sequence of frequencies of
massive blocks of I1(z) is viewed as a random element of A, with the conventions thats; = 0 if
there are fewer than j massive blocks, and that 1 — > S is the cumulative frequency of dust.
When a transition in IT occurs, a subset of the frequencies is removed and replaced by their
sum plus a fraction of the dust frequency, and then the resulting terms are notated in decreasing
order.

In the other direction the connection relies on a version of Kingman’s correspondence
between random mass partitions and exchangeable partitions of N (see, e.g. [10, 11, 50]);
this entails the following law of large numbers. For fixed s € A, let ug be a probability
measure on the reals (say) with positive masses s; at some locations and a diffuse component
of total mass 1 — ) iSi- Let &1, &, ... be independent random variables sampled from the
distribution pg. Define a partition of N via the classes of the equivalence relation k ~ ¢ if and
only if & = &;; this partition has frequencies s.

For the Bolthausen—Sznitman coalescent, the frequencies of I1(¢) have the Poisson—Dirichlet
distribution, notated PD(e™’, 0), over the facet of the simplex with > isi= 1 (see [49, 50)).
This is the only example of a A-coalescent for which the law of frequencies is known explicitly.

2.4. Subfamilies

Like every good infinite-dimensional theory, the theory of A-coalescents has a numerical
parameter a. We prefer this notation, but use it in parallel with the more widely accepted o
that is related to a via a + « = 2. The parameter controls the smoothness of A near 0 and is
reflected in asymptotic power laws.

A beta coalescent is a A-coalescent with beta density on [0, 1], namely,

Aldx) = Ax71(1 = x)Pdx,

where A, a,b > 0. The transition rates in this case are computable in terms of Euler’s beta
function as Ak = AB(a +k —2,b + m — k). Usually, the normalization A = 1/B(a, b)
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is taken to make A a probability measure. The beta coalescents belong to type (I) for a > 2,
type (Il) for 1 < a < 2, type (III) for a = 1, and type (IV) for 0 < a < 1. This confirms
the view of type (III) as a bridge between coalescents with dust and coalescents coming down
from infinity. The Bolthausen—Sznitman coalescent is beta with @ = b = 1, and Kingman’s
coalescent arises as the limiting case a — 0.

To some authors, a beta coalescent is understood to be a member of the one-parameter family
(2 — o, ), for which we reserve the term symmetric beta. For | < a <2 (so0 < a < 1), this
beta coalescent has a tractable time reversal (see the paper [14] resulting from a merger of three
groups of authors). In this range the beta coalescent is also important as a large-sample limit
of the genealogy of those supercritical branching processes for which the offspring distribution
has a power law decay ck~“ (see [54]).

A step away from beta coalescents are A-coalescents with A satisfying some version of the
regularity condition

A0, x]) ~Ax* asx — 0, (5)

where A > 0 and the principal range for the shape parameter is 0 < a < 2. Variations found
in the literature may involve adding an estimated error term, or a counterpart condition on the
density, or the counterpart regularity condition on the tail

v([x, 1) ~ A; x472 asx — 0. (6)

Further modifications may also involve a slowly varying factor, which becomes crucial in the
critical cases a = 0, 1,2. For a > 2, the measure v is finite and (5) has a minor effect on
properties of the coalescent.

3. Related processes and their jump chains
3.1. The block counting process

The counting process N, = (N, (t), t > 0), where N,,(¢) is the number of blocks in IT,, (¢), is
itself a Markov process with transition rate (Z))»n,  for jumping fromnton —k+1, 2 <k <n.
The coalescent I1, can be recovered (in distribution) from the path of N, by iterative use of
sampling without replacement. If at time ¢ the process N, decrements by k — 1, a merge
is constructed by sampling uniformly without replacement k blocks out of N, (#—) blocks of
[T, (¢—) and merging them into one block to create IT,(¢).

The jump chain has transition probability

n\ An.k
7k = _’1 szf ) 7
q(n, k) <k> . n (7)

for the move n — n — k + 1. A counterpart of (2) is a nonlinear recursion which allows one
to calculate g(n’, -) from g(n, -) for n’ < n. Moreover, each of the three objects uniquely
determines the other two: the stochastic matrix g (-, -), the sequence of rates (A,, n > 1)
normalised by 1> = 1, and the probability measure A on [0, 1].

3.2. Freezing and the allelic partition

Suppose that in addition to coalescence there is another kind of transition which takes an
active block and transforms it into a frozen block at a given rate p > 0. The state of the process
with this additional feature is a partition into disjoint blocks each of which is in either the active
or frozen condition. Frozen blocks neither turn into active nor engage in mergers with other
active or frozen blocks. Assuming that at time O all primary particles are active, the process
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FIGURE 2: A path of coalescent with mutations.

starting with n particles will eventually terminate with only frozen blocks which make up a
so-called allelic partition of [n]. The allelic partitions are exchangeable and consistent under
restrictions, and, hence, define a partition of N.

The name ‘allelic partition’ comes from a biological interpretation. In applications of
coalescent theory to genetics, mutations are modelled as sites of a Poisson point process with
rate p along the coalescent tree. Under the paradigm of the infinite alleles model, every
mutation yields a different allelic type; hence, two individuals in the present generation belong
to the same allelic type if there is no mutation along their family lines before the individuals
coalesce. This is illustrated in Figure 2 where the allelic partition is comprised of blocks
{1, 2}, {3}, {4}, {5, 6}, {7}.

The distribution of the allelic partition on [n] is known explicitly only for Kingman’s coales-
cent, where the partition follows the Ewens sampling formula with parameter 2p. In general,
the distribution of the allelic partition satisfies a recursion due to Mohle [44]. Unfortunately, the
recursion is complicated for direct analysis, but can be implemented as the following Markovian
algorithm on partitions of [n]. Let A, = A, + np, and define the transition matrix

A
VK ie0 <k <,
k)

np
A

q'(n, k) =
ifk=1,

for the chain counting the number of active blocks. For k > 1, ¢’ (n, k) is the probability that
the number of active blocks decreases from n to n — k + 1 as the result of a k-merger, while
q'(n, 1) is the probability that the number of active blocks decreases from n to n — 1 as the result
of a freeze. For instance, for Kingman’s coalescent, g(n, 1) = 1 —qn,2) =2p/(n —1+2p).
Given a partition of [n], draw k from the distribution g (n, -). If k = 1, remove an element
picked uniformly from [n] from its block and append it as a singleton block to the partition.
If k£ > 1, choose k elements one-by-one without replacement uniformly from [n], remove the
first k — 1 of them from their blocks, and add them to the block containing the kth element.
This defines a recurrent Markov chain on partitions of [n], such that the limit distribution is the
allelic partition for the coalescent with freeze (see [17]).
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3.3. The dust decay subprocess

For coalescents with dust, it is possible to extend definition (1) to the case k = 1. It is the
condition m_j < oo that makes A,, 1 < oo. Then A, ; is the rate at which a particular block
in a system of m blocks merges with some of the infinitely many blocks outside the system. It
is convenient to treat such a merger as a unary collision in the context of a subprocess which
traces the decay of the dust component. The state of this process at time ¢ > 0 is the collection
of primary particles of I1(¢). Whenever the process is restricted to m primary particles, any
k-tuple of them is taken by a merger in IT atrate A, x, 1 <k < m.

The jump chain counting the number of primary particles moves from n to n — k with

probability
q"(n. k) = (n)/\"—k l<k<n,
k) Al
where 1) = >}, ()Ank. For k > 1, this is the probability that the number of primary
particles decreases as a result of a merger in IT, taking k primary particles, whereas ¢” (n, 1)
is the probability of a unary merger which eliminates a primary particle.

The sequence of decrements of the jump chain counting the number of primary particles
among [n] is arandom composition (ordered partition) of n. For instance, on [rn] withn = 7, this
sequence may realise as 3, 1, 2, 2, where the second term results from a collision (see Section 4.1
below) which cannot be derived from the path of I1; alone. These random compositions for
n =1,2,... are consistent and constitute a regenerative composition structure, as introduced
in [22].

4. Functionals and recursions
4.1. Functionals of the coalescent

Intuitively, collision events are spaced over an extended period of time for coalescents with
big mergers and accumulate near 0 for coalescents with small mergers. To capture this apparent
paradox, it is helpful to consider various functionals associated with the full path of the block
counting process N, such as

e X, the number of collisions (merging events) equal to the number of jumps in N,, until
termination;

e 7, = min{¢: N,(¢) = 1}, the absorption time of IT,; and

o L, = Ot” N, (¢) dz, the total branch length of the coalescent tree, equal to the cumulative
lifetime of all blocks until absorption;

together with analogues of these functionals for the partial coalescent up to a given time .
Further related quantities include

e F,, the number of blocks in the allelic partition for the coalescent with mutation;

e M,, the number of segregating sites, equal to the number of mutations on the coalescent
tree; and

e the external branch length, equal to the cumulative lifetime of primary particles.

More delicate analysis involves the partition I, (¢) itself, in particular the number of blocks
N, (1), the size of the block containing 1 (a size-biased pick from I, (¢)), the partition I1, (7, —)
before the last collision, etc.
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Random recursions belong to the toolbox for the analysis of coalescents. One obvious source
of them involves decompositions at the time of the first transition. For example, the number of
collisions X, in IT,, satisfies

X1=0, XoZ1+X,_;.,. n=2

where J, has the distribution at (7) and, for every fixed k, X,’( is independent of J,, and is an
independent copy of Xk.

4.2. Cutting random trees

Representations of coalescents via random tree cutting have been another source of recur-
sions in the symmetric beta case.

A generalized recursive tree [43] has nodes labelled by blocks of a partition of [n], with
minimal elements of the blocks increasing along every path from the root to a leaf. In the
cutting process an edge of the tree is chosen at unit rate and cut at the node closer to the root,
the disconnected subtree is removed and its labels joined to the block at the node. If the process
starts with the uniformly random recursive tree with n nodes labelled by [#], the resulting
partition-valued process is the Bolthausen—Sznitman coalescent [31]. The representation was
used in [31] to study the time reversal of the coalescent, in particular to show that the blocks of
I1, (7, —), i.e. the members of the last collision, constitute one giant block and many small blocks
with altogether about nY elements, where U is uniform on [0, 1]. The number of collisions
X, of the Bolthausen—Sznitman coalescent has the same law as the number of cuts needed to
isolate the root of the random recursive tree. This observation was exploited in [19, 36] to
derive a limit distribution for X,,.

In [1] the starting configuration is a Galton—Watson tree conditioned on having n leaves. The
leaves are labelled by [#]. In one move the tree is cut at a random node, with all labels in the
isolated subtree moving to the node which becomes a leaf in the truncated tree. For a suitable
choice of the offspring distribution, the dynamics reproduce the symmetric beta coalescent with
% <a < 1. Thecase ¢ = % was represented by random binary tree cutting in [2].

The last collision in the symmetric beta case was studied in [33].

5. Coalescents coming down from infinity
5.1. Small-time asymptotics

For IT coming down from infinity, the number of blocks N (¢) is finite for all + > 0. With
improper initial state N (0) = oo, the block counting process N = (N (t), t > 0) is regarded
as an entrance law appearing as a monotonic limit of the N, as n — oo.

For Kingman’s coalescent, the jump chain associated with N simply goes down by unit
jumps, in which the holding time at k blocks is exponential with parameter (S) The holding
times at k = ..., 3, 2 blocks are mutually independent and also independent of the sequence
of states passed by I1. For the absorption time of I, we have a representation

with independent and identically distributed (i.i.d.) standard exponential ; and so E[t] = 2.
Ast | 0, the classical limit theorems can be applied to show that N(r) satisfies the strong law
N(t) ~ 2t~ " and is approximately normal (see [3, 48]). The function 27 ~! measures the decay
of the number of blocks at small times, and is called the speed of coming down from infinity.
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The analogous speed function exists for all A-coalescents of type (IV), as has been shown
in different degrees of generality in [6, 9, 13]. Introduce

1
w(z)zf [e™* — 1 4 zx]x 2 A(dx).
0

The behaviour of ¥ at infinity is similar to that of (4), but ¥ is more natural in the related context
of a continuous-state branching process [13, 14]. In particular, Schweinsberg’s condition (3) is
. o0 — 1
equivalent to [, (¥ (z))~'dz < oo.
The speed function v = v () is identified as a solution to fvo(?) (¥ (z))~'dz = t, which is well
defined and unique for small enough ¢. Then (see [6]), as ¢ | O,

N(t) ~v(t)

almost surely and in the pth mean for p > 1.
When A([0, 1]) = 1 and the regularity condition (5) holds with 0 < a < 1, the speed of
coming down from infinity becomes

N(@) ~ct V=9 a5t 0,

where ¢ = [(2 —a)/(A F(a))]l/ (1-a) " Similar small-time asymptotics hold for the number
of blocks with frequency at most x t1/@=1 [13]. In [42] fluctuations have been studied, in
particular, VD[N (1) /v(t) — 1]1is shown to converge in distribution to a (2 — a)-stable law.
The general bound liminf,; .o N(#)t > 2 almost surely (see [6]) shows that Kingman’s
coalescent achieves the highest possible speed. This implies that the total tree length for the
infinite coalescent is infinite and, since N, 1 N (n — 00), also that L,, — oo for any A.

5.2. Large-sample asymptotics

Fluctuations in the large-n regime have been studied under variants of the regularity condition
(5) with 0 < a < 1. A key observation is the weak convergence of the merger size J, with
distribution (7) to a random variable J with distribution

(@)k—2
k!

P{J=k}=Q2—a) , k>2,
where (x)r = I'(x + k)/ ' (x) denotes the Pochhammer factorial. The limit variable has finite
mean E[J — 1] = (1 — a)~! but the variance is infinite.

The convergence of the step distribution suggests that the jump chain for N,, can be approx-
imated by a renewal sequence n = Ry > R; > --- > 0 with the generic decrement J — 1.
Whenever the approximation works, a standard result of renewal theory can be applied to show
that the number of collisions X, satisfies

X,— ({0 —a)n
(ln_a)m 3) 52751 asn — oQ, (8)

where $8,_, is a (2 — a)-stable random variable maximally skewed to the left and with location
parameter 0. The weak convergence of J,, is, of course, far from being sufficient to justify the
renewal approximation, since rare big mergers could easily affect the asymptotics of X,.

The heuristic argument leading to (8) was made rigorous by three then (c. 2007) disjoint
clusters of authors [16, 24, 35]. In [24], under the assumption that the error in (5) is O (x4Fs),
where ¢ < 1 but is not too small, tight stochastic bounds on J,, were constructed to squeeze N,
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between two renewal processes with the same limit distribution. In [16] a similar assumption on
v was adopted. The setting in [35] concerns decreasing Markov chains with certain transition
probabilities and this covers the beta(a, 1) case. This work suggests that the fluctuations might
be sensitive to the second term of the asymptotic expansion of A near 0.

While X, depends only on the jump chain, other sources of randomness may cause disconti-
nuities in the limit laws for more complex functionals. Consider the tree length L,. Replacing
the jump chain by the stationary renewal process, L, should be approximated by the sum

ZM~

7R

Given the R}, the sum of exponentials has bounded variance, so it may be reasonable to further
simplify by replacing the exponentials by their common mean E[¢;] = 1. Now A, ~ cin?¢
which suggests the further approximation by a constant multiple of ¥, = ) j R?_l. At this

stage renewal theory is applicable, showing the convergence of (Y, —c n>~%)/n® to a stable law,
where § = (2 —a)~! +a — 1 may be positive or negative. If § > 0, the stable approximation to
L, can indeed be pursued. But, if § < 0, the fluctuation of Y}, is dominated by the randomness
coming from the ¢; hence, fluctuations of L, about the mean remain bounded as n — 0o. For
positive 8, i.e. for a in the range 2 — ¢ < a < 1, where ¢ = (1 + +/5)/2 is the golden ratio,
this line of argument was used in [16] to derive a stable limit distribution for the length of a
partial tree spanned on the first (X, A |ns]) collisions with 0 < s < 1 — a, so bounded away
from the root. Kersting [38] justified the stable limit for L, in the symmetric beta case with
2 —¢ < a < 1, and showed the weak convergence of centered L, for therange 0 < a < 2—¢.
This result was extended in [39] to a functional limit theorem for the length of a coalescent tree
evolving with time.

The number M,, of segregating sites involves a third randomness factor associated with the
Poisson sampling, which makes an approximately Gaussian contribution given a path of N,,.
For the symmetric beta case, Kersting [38] showed that the limit distribution of M,, is stable for
2—-2<ac< 1, normal for0 < a < 2 — ﬁ, and a mixture of a stable and normal laws in
the boundary case a = 2 — +/2. The analogous phase transition for the number of segregating
sites on a partial tree was proved in [16] and independently conjectured at about the same time
for F,, [23].

The discontinuities in the limit laws should be regarded as second-order phase transitions,
as there is no break in the mean asymptotics.

5.3. The allelic partition

Consider F;,, the number of blocks in the allelic partition for the coalescent with freeze rate p.
In [7, 8] the small-time asymptotics were translated into the large-n asymptotic behaviour

F,~p / ’ ﬁ in probability.
0o V@)
Under a regularity condition with 0 < a < 1, a stronger result
F, ~ cpon® almost surely 9)
was shown. By Tauberian theory for exchangeable partitions [25], the number of blocks of

size k is asymptotic to cxp n® for every k = 1,2, ... (in Pitman’s terminology [50], call this
property the ‘constant a-diversity of allelic partitions’).
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For exchangeable partitions with nonrandom frequencies, the asymptotic behaviour around
(9) implies a multivariate normal limit for the small-block counts. In view of the available
results on L, and M, one can expect that the normal limit is still valid fora < 2 — /2 but
changes to stable fora > 2 — v/2.

6. Coalescents with dust
6.1. Construction from subordinator

The dynamics of a A-coalescent with dust component are not centered around a single big
crunch event as for a coalescent of type (IV). This feature makes types (I) and (II) more appro-
priate for modelling systems in which clusters emerge from dispersed matter in a discontinuous
fashion over an extended time interval. On the analytical side, many features of a coalescent
can be understood by following the simpler dust decay subprocess.

Recall the Poisson construction. Every time a merger is driven by (x, f) the cumulative
frequency of singletons in IT(#—) is diminished by the factor 1 — x. Hence, the frequency at
time ¢ is a product over Poisson atoms in [0, 1] x [0, ¢]. Passing to logarithms this implies that
the frequency can be represented as e 50 where S = (S(7), r > 0) is an increasing process
with independent increments (subordinator), with the Laplace transform

E[e—zs(l‘)] — e—t(b(z)’

where .
DP(z) = / [1—(1—=x)*]v(dx). (10)
0

Equation (10) is not a standard way of representing the Laplace exponent, but it has a
transparent meaning, namely, ® (n) is the rate at which at least one of n blocks gets marked
by heads, and this is finite by virtue of m _| = fol xv(dx) < oo. If (6) holds for 1 < a < 2,
Karamata’s theorem implies that ®(z) ~ AT (a — 1)z27¢ for z — oo.

It makes sense to observe when a particular primary particle j engages in its first merger in
the infinite coalescent, as this does not occur instantaneously but at an exponential time with
parameter A} := m _;. Call the result of the merger a secondary block. Restricting the infinite
coalescent to [n] (with n > j) it can happen that the first collision of j is unary, i.e. it does not
involve other members of [n], in which case we regard the primary particle as being transformed
into a singleton secondary block.

Furthermore, to deal with S, as opposed to e=S, it is convenient to construct the infinite
coalescent IT directly from the path of S. Let g1, &7, ... be i.i.d. exponential marks assigned
initially to the primary particles 1, 2, .... Secondary blocks evolve and receive exponential
marks labelled by subsets of N as follows. If ¢ is a jump time for S, all labels of exponential
marks of primary particles and secondary blocks within the interval (S(z—), S(¢)] are merged
into one label, which is assigned a new exponential mark located at S(r) + &, where ¢ is another
independent exponential variable. A snapshot of this process at time ¢ is some collection of
marks within [S(7), co) with labels making up a partition IT(z).

6.2. The absorption time

To illustrate the use of coupling of IT, with the subordinator S, consider the absorption time
7, as in [27]. Let ;" be the time of the last (possibly, unary in IT,) merger taking a primary
particle from [n]. Clearly, 7’ < 7, and after 7, some number D, of secondary blocks remain.
It can be shown that the sequence {D,} is tight if ), ®(n)/n?® < oo, and then T, — T is
bounded. The condition is not very restrictive since ®(z) = o(z) for large z always holds,
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and (5) with @ > 1 is sufficient. Letting Ty = inf{¢: S(¢#) > s} be the first passage time over
level s, we have 1,7 = T,y ...vs,, Which is the first passage time over the maximal exponential
mark. The latter is approximated by Tiog,, S0 (T, — a,)/b, converges weakly if and only if
(Tiogn — @n)/bu does for any pair (a,, b,) of scaling and centering constants. For example,
with

1
s? = var(§(1)) = / Ilog(1 — x)|?> v(dx) < o0
0
and

1
m=E[S(D] = / [log(l — x)|v(dx),
0

the standard renewal theorem implies that (7, — a,)/b, is asymptotically normal with the
choice of constants @, = m~! logn and b, = (m’3 s? logn) 172 We stress that for this result the
behaviour of v (or A) at the right endpoint of [0, 1] is also important. Possible limit distributions
and conditions for the weak convergence of T are known, whence we can classify all limit laws
for ;. As another example, the limit is S-stable if the tail of v satisfies v([1 —e™Y, 1]) ~ y_/3
asy — 00.

6.3. Asymptotics of the number of collisions

Let K, be the number of mergers in I1, that take at least one primary particle, and let K, ,
be the number of mergers taking r primary particles. Under (6), with 1 < a < 2, the number
of collisions X, is approximated by K, — K 1. Introduce the random variable

o
0

known as the exponential functional of the subordinator (2 — a)S. The distribution of I,_, is
uniquely determined by the moments

k!
[T, @@ —a)i)

Applying results from [29] on the number of nonunit parts in the regenerative composition
structure yields

E[IF] =

Xl‘l

Wﬂ)l asn — oo.
an

For N, (¢) with this scaling, the limit law is the partial integral of e~ (2=®S See [32] for more
general results on jump counting which apply to both coalescents and regenerative compositions.

6.4. Dust in coalescents with freeze

Analysing a random recursion, Mohle and Freund [20, Theorem 1.2] proved that the number
of blocks in the allelic partition satisfies

D

o0
n'F, > p/ e SO=rt g, (11)
0

Here is another view and a seedling for future research. Superposing the pure-jump dust decay
process derived from the coalescent IT with freezing at rate p yields a process in which the
cumulative frequency of dust decays as exp(—S(¢) — pt). By analogy with the regenerative com-
position structures [22], the terminal partition of N has singletons with cumulative frequency
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given by the exponential functional in (11). It follows that (11) can be improved to almost-sure
convergence and that the allelic partition itself has a giant dust component. Similarly, it is clear
from [22] that, under (6), the number of blocks of size r = 2,3, ... in the allelic partition is
of the order n>~¢. It would be interesting to find explicitly the asymptotics, also for the allelic
partition associated with IT(z).

6.5. The compound Poisson case

Whenever m _p < 00, it is natural to scale v to a probability measure. The coalescent in this
case is sometimes called ‘simple’. The subordinator S is a compound Poisson process; hence,
the dust decay process e 5 passes through a stick-breaking sequence and has independent
exponential holding times.

In contrast to the case of infinite v, most of the variability of K,, now comes from the times
close to absorption. The typical order of growth of K, is logn while, for each fixed r, K, ,
remains tight. The variables (K, — b,,)/a, and (X, — by,) /a, converge to the same distribution
provided the limit exists. From results on K, in [26], the limit distribution follows by counting
renewals on [0, log n] for a random walk.

7. The boundary cases

Much attention has been devoted to the Bolthausen—Sznitman coalescent [5, 12, 15, 18, 31],
which belongs to the critical case a = 1. See [30] for limit laws for X, and L,, in the beta(1, b)
case.

A natural setting for the critical casesa = 0, 1, 2 is the assumption that v([x, 1]) ~ £(x)x
where £ is a function of slow variation as x — 0. Under the condition m _; < 00, results on
regenerative composition structures are still applicable to the dust decay process. If a = 1 and
£(x) — oo (but not too fast to guarantee m_; < o0), the limit law for X,, can be concluded
from [29] in much the same way as for the case 1 < a < 2. If a = 2 and £(x) — oo (hence,
m_p = 00), there are further phase transitions at the level of fluctuations [4, 21]: different
modes of behaviour appear when, for instance, £ is loglogx~!, |logx|?, or exp(y/logx—1).
The case a = 2 and bounded ¢ belongs to the ‘simple’ type (IV).

We are not aware of any other results on fluctuations for a = 0, 1 with £ # constant. The
case a = 1 must be particularly interesting since it is compatible with any of the types (II),
(III), and (IV).

a—2
9

8. Limit distributions for beta coalescents

We summarise in Tables 1-4 known results on the limit laws of X,, t,, L,, and M,,
respectively, for beta(a, b)-coalescents. The subordinator (S(¢), + > 0) has Laplace exponent

. ! 27 pa—3 b1

The characteristic function of an «-stable law is given by

. To
7 exp{—|z|°‘<1 +itan (7>sgn(z)) } t eR.

The constants m and s? given in Table 2 are defined by

a+b-—1

m= ma —@+b—-2)[W(@+b—1)— V(b))
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TaBLE 1: Limit distributions for (X,, — a,)/b, for beta(a, b)-coalescents. Here « =2 —a,r; = {(2, D),
r» = 2¢(3,b), where ¢(-, -) is the Hurwitz zeta function, m; = V(a — 2 + b) — V(b), and mr =
W' (b) — W' (a — 2 + b), where W(-) is the logarithmic derivative of the gamma function.

a b ay by, Limit law Source
a=0 b>0 n—1 1 8o Obvious
0O<a<1b>0 n(e —1) (¢ — Dnl/e a-stable [16, 24, 30]
a=1 b>0  n(ogn) '+ (1"7)2 l-stable  [19,36] (b = 1), [30]
ogn
n(logn)~2loglogn &
l<a<2 b>0 0 a~ T (a)n® Joo e eS® dr [27,32]
a=2 b>0 @) 'dogn)? G 'rPrlog )/ Normal (27, 37]
a>2 b>0 m7 " logn (my3mylogn)!/? Normal [27, 28]

TaBLE 2: Limit distributions for (z, — ¢,)/d, for beta(a, b)-coalescents. The & are i.i.d. exponential
variables, and ¢; = b(b + 1)¢(2,b) and c» = 2b(b + 1)¢(3,b). The Gumbel distribution function
is x — e*efx, x € R. The constants m and m, are the same as in Table 1, and, fora > 2, y =
(a—1+b)la—2+b)/(a—1)(a —2). The result for a > 1 is a special case of Theorem 4.3 of [27].

a b Cn dy Limit law  Source
a=0 0 1 Se/(5) 1551
O<a<l1l b>0 0 1 Unknown
a=1 b=1 loglogn 1 Gumbel [31]
a=1 b#1 Unknown
l<a<2 b>0 m! logn (m3s2 log n)1/2 Normal [27]
a=2 b>0 cfl logn (c173c2 log n)'/2 Normal [27]

a>?2 b>0 (ymp)~! logn y‘l(ml_3(m2 —i—m%)logn)l/2 Normal [27, 28]

TABLE 3: Limit distributions for (L, — e,)/f, for beta(a, b)-coalescents. The constants are ¢; =
T+ D@—1D/Q—a), 2 = Tla+Da-D r*'2-a),a3=13-v5), « = 2 —a,
and B = 1 +« — o2, and 7 is some nondegenerate absolutely continuous random variable.

a b en fn Limit law Source
a=0 2logn 2 Gumbel [18, 55]
O<a<as b=2-a cin? 1 n [38]
a3=13-V5 b=2-a cin® ca(logn)®” a-stable [38]
ay <a <1 b=2—a cin? cz(ﬂflnﬂ)“fl a-stable [38]
a=1 b>0 n(blogn)~'+ " I-stable [18] (b = 1), [30]
b(logn)?
b~ nloglogn(logn)=2
O<ax<l b#2—a Unknown
a>1 b>0 0 n Jo e St [45]
and
2 a+b—1

—@+b=2[[W@a+b—1)—WDB)+ V() —¥(a+b—1),
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TaBLE 4: Limit distributions for (M,, — g,)/ hy, for beta(a, b)-coalescents. Here p is the rate of a Poisson

process on the coalescent tree, ay = 2 — \/i, the other constants cq, c2, «, and 8 are the same as in

Table 3, and ¢ is the sum of a centered normal random variable with variance 6¢1 and pca (,B)_‘fl times
an independent «-stable random variable.

a b gn hy Limit law Source

a=0 2plogn J2plogn Normal ESF
O<a<ay b=2-—a pcin? \/,Tcln”/z Normal [38]

a=a b=2-a pcint na/? e [38]
a<a<l b=2-a pcint ,062(,13_111"3)"‘71 a-stable [38]

a=1 b>0 n(blogn) '+ b(lfﬁ I-stable [18] (b = 1), [30]

b~'nloglogn(logn)=2

O<a<l b#2—a Unknown

a>1 b>0 0 pn Jo e St [45]

The limit distribution for X, in the Bolthausen—Sznitman coalescent was obtained in [19]
with the aid of the singularity analysis of generating functions, and later probabilistically via
coupling with random walks with barrier in [36] by using a relation to random recursive trees; see
Section 4.2. The latter approach proved useful [35] to study collisions in beta(a, 1)-coalescents
with 0 < a < 2. Asymptotics of moments of X, for beta(a, 1)-coalescents with 0 < a < 1
appear in [35, 47], and for a = 2 and b > 0 in [37]. All entries of Table 1 (except for the case
a = 1) are specializations from more general A-coalescents [24, 27, 28, 32]. The valuea =0
corresponds to Kingman’s coalescent.
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