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Abstract

Data assimilation of flow measurements is an essential tool for extracting information in fluid dynamics problems.
Recent works have shown that the physics-informed neural networks (PINNs) enable the reconstruction of unsteady
fluid flows, governed by the Navier–Stokes equations, if the network is given enough flow measurements that are
appropriately distributed in time and space. In many practical applications, however, experimental measurements
involve only time-averaged quantities or their higher order statistics which are governed by the under-determined
Reynolds-averaged Navier–Stokes (RANS) equations. In this study, we perform PINN-based reconstruction of time-
averaged quantities of an unsteady flow from sparse velocity data. The applied technique leverages the time-averaged
velocity data to infer unknown closure quantities (curl of unsteady RANS forcing), as well as to interpolate the fields
from sparse measurements. Furthermore, the method’s capabilities are extended further to the assimilation of
Reynolds stresses where PINNs successfully interpolate the data to complete the velocity as well as the stresses
fields and gain insight into the pressure field of the investigated flow.

Impact Statement

In fluid dynamics, efficient data assimilation can significantly reduce the costs of running wind tunnel
experiments and performing numerical simulations. In this study, we have used physics-informed neural
networks (PINNs) to leverage synthetic mean velocity measurements in order to reconstruct the time-averaged
statistics of the unsteady flow past a circular cylinder. Due to the closure problem, such flows are inherently
difficult and expensive to simulate. The network was able to infer missing flow information, interpolate the flow
from sparse measurements, as well as denoise artificially corrupted velocity data.

1. Introduction

Data assimilation methods in fluid dynamics leverage available measurement data, in combination with a
partially or fully knownmodel, to extractmore information about the flows fromwhich the data originated
(Foures et al., 2014; Symon et al., 2017; Fukami et al., 2019; Franceschini et al., 2020;Mons andMarquet,
2021). The growth of machine learning techniques over the last decade has brought numerous new
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methods for analysis and assimilation of flow data (Brunton et al., 2020). Fukami et al. (2019) used
convolutional neural networks to super-resolve unsteady laminar and turbulent flows from low resolution
images. In other studies (Ling et al., 2016; Beck et al., 2019), the authors employed neural networks to
learn closures for turbulence models based on unsteady flow data.

Most recently, PINNs (Raissi et al., 2019; Cai et al., 2021), have brought forth a new paradigm in
solving fluid dynamics problems with machine learning. By including the governing partial differential
equation (PDE) residuals within the training loss, it is possible to incorporate domain knowledge, that is,
the physical constraints of a system, directly into the neural network architecture. Jin et al. (2021) used
PINNs as a forward solver for both steady and unsteady flow problems. Constrained by the governing
Navier–Stokes equations and well-defined boundary conditions (BCs) describing the flow dynamics, the
network was able to infer the flow solution in the computational domain, thus fully substituting for
conventional finite-difference or finite-volume numerical methods.

PINNs have had a particularly strong impact on data assimilation problems since the output field
reconstructions are explicitly constrained to be physically realizable solutions. Raissi et al. (2019) used
PINNs for data-driven PDE discovery, identifying the equation variables and constants based on data
generated by an unknown governing system. Raissi et al. (2020) showed that PINNs can leverage space-
and time-resolved dye concentrationmeasurements to accurately infer velocity and pressure fieldswith no
prior information about those flow fields. In the study by Fathi et al. (2020), the authors used PINNs to
super-resolve and denoise sparse four-dimensional (in space and time)magnetic resonance imaging blood
flow measurements.

Both Raissi et al. (2020) and Fathi et al. (2020) performed unsteady flow data assimilation using
instantaneous data, that is, each velocity/dye concentrationmeasurement corresponded to a specific time t
at which it was taken. However, in many practical applications, we are interested in time-averaged
quantities, which are consequently a function of the mean flow field. For example, using Particle Image
Velocimetry (PIV), we can obtain time-averaged velocity fields or higher order velocity statistics by
averaging randomly sampled or under-resolved in time flow snapshots. The main difficulty associated
with the assimilation of mean flow data is that the underlying physical system is governed by the
Reynolds-averaged Navier–Stokes (RANS) equations, an under-determined set of equations. While in
comparison to standard neural networks, PINNs are more robust to a small amount of input data, they are
still subject to mathematical limitations of the governing setup. Thus, care has to be taken to ensure that
enough system information and data are available to the networks. Eivazi et al. (2021) have applied PINNs
to RANSmodeling of turbulent two-dimensional boundary layers. Tomake the data assimilation problem
determinate, in addition tomean velocitymeasurements on the domain boundaries, the networks are given
the second-order velocity statistic—the in-plane component of the Reynolds’ stress tensor.

Foures et al. (2014) tackled the problem of the data assimilation of synthetic PIV measurements of an
unsteady, averaged 2D cylinder flow using adjoint variable optimization. To overcome the closure
problem, the authors used a variant of RANS equations by replacing the unknown Reynolds stress tensor
with an unknown forcing vector. Using the synthetic, sparse data, base-flow RANS solution and BCs, the
authors were able to recover the solenoidal (divergence free) part of the averaged unsteady forcing and
also super-resolve the flow in scenarios where the velocity data was sparse. Symon et al. (2017) applied
the adjoint variable optimization approach to assimilate experimental data for a 2D flow past an idealized
airfoil with Re ¼ 13,500, showing that the method is also applicable to realistic applications at high
Reynolds numbers.

The PINN method and the adjoint-based data assimilation method presented in Foures et al. (2014),
while applied to the same problem, are fundamentally different. In Foures et al. (2014), the authors used
the variational formulation to solve a RANS constrained optimization problem for assimilating partially
known velocity information. The RANS equations form a hard constraint to the optimization problem,
such that the dynamic equations are satisfied in the entire domain. In the case of PINNs, the RANS
equations are weakly enforced through the loss function. Another difference between the PINN approach
and the adjoint-based method presented in Foures et al. (2014) is the numerical aspect of implementation.
Adjoint variable optimization requires a numerical discretization of the continuous equations on a
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computational mesh and the optimization steps are performed in a deterministic manner using gradient
descent. In contrast, PINNmethod is a neural network optimization with randomly distributed collocation
points (mesh-free) and stochastic gradient descent (SGD) for updating the network weights. While the
absence of mesh simplifies the optimization, the PINN approach requires more computational resources.

In this study, we apply PINNs to the reconstruction of averaged quantities of unsteady flows using
sparse velocity data. Thanks to the versatility of neural networks, the proposed method will be able to
leverage the RANS formulation from Foures et al. (2014) and extend to more variations of the problem.
The article is organized as follows: Section 2 presents the methodology of the PINN flow reconstruction
including the governing equations. Section 3 describes the implementation of PINNs, as well as the
simulations that were performed to generate data. Section 4 presents the results of the study. Specifically,
Section 4.1 covers the problem of inferring the average unsteady RANS forcing and Section 4.2 describes
the application of PINNoptimization to the interpolation of flows using sparse data. Section 5 summarizes
the findings and suggests directions for future work.

2. Methodology

Typical experimental flow measurements of unsteady flows involve time-averaged and spatially sparse
(coarse-grained and/or partially observed) quantities. Without loss of generality, the method will be
demonstrated for a two-dimensional incompressible flow. In this case, the data points contain time-
averaged velocities u xð Þ¼ u xð Þ, v xð Þ½ �T (first-order statistics) with x¼ x, y½ �T , and optionally time-
averaged Reynolds stresses (second-order statistics)

u0u0 xð Þ¼ u0u0 xð Þ u0v0 xð Þ
v0u0 xð Þ v0v0 xð Þ

" #
: (1)

These constitute typical first- and second-order statistics that can be directly obtained from PIV or hotwire
anemometry methods in flow experiments. In the above, the unsteady flow field has been decomposed
using a standard Reynolds decomposition as

u x, tð Þ¼ u xð Þþu0 x, tð Þ (2)

where ðÞ denotes time-averaged quantities and ðÞ0 fluctuating ones, and a similar decomposition holding
for the pressure field p x, tð Þ.

The mean-flow dynamics of an unsteady flow are governed by the RANS equations

0¼∇ �u,
0¼ u �∇uþ∇p� Re�1∇2 uð Þþ∇ �u0u0, (3)

with appropriate BCs dictated by the geometry and inflow and far-field conditions. The above set of
equations is under-determined (three equations and six unknowns in 2D). The last term in the momentum
equation, ∇ �u0u0 � f , is the divergence of the symmetric Reynolds stress tensor and its modeling
constitutes the closure problem for solving for the mean flow quantities in unsteady laminar and turbulent
regimes.

2.1. Problem setup

The data-assimilation framework seeks amodel function g xð Þ¼ g1 xð Þ, g2 xð Þ, ::, gR xð Þ½ �T whichmaps the
domain coordinates x and y to values of R flow variables g1,g2,::,gR (e.g., u, v velocities). The model
function is expressed as a neural network and can be obtained by minimization of the objective function
L:

L gð Þ¼LD gð ÞþLB gð ÞþLP gð Þ, (4)

where LD is the data loss, LB is the BCs loss, and LP is the physics loss by enforcing the governing
equations, in this case the RANS equations. The data loss is defined as mean squared error computed

Data-Centric Engineering e4-3

https://doi.org/10.1017/dce.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.37


over all points at which values (data) of any of the flow variables are given. DenotingND,i as the number of

data points for the i-th flow variable and denoting a j-th data point for the i-th flow variable as xDi,j ¼

xDi,j, y
D
i,j

h iT
with the corresponding value as gDi,j, we can write as

LD gð Þ¼
XR
i¼1

1
ND,i

XND,i

j¼1

gi xDi,j

� �
�gDi,j

h i2" #
, (5)

where the outer summation is over the flow variables and the inner summation is over the data points. In
the later sections, gi is replaced with symbols of the flow variables. SuperscriptD indicates values at data
points. Otherwise, flow variables symbols indicate quantities computed within the neural network. The
physics loss is defined using the residual operator P—a function which takes the model function g and
returns a function which evaluates residuals of the governing PDEs at an input point. The operator not
only depends on the governing equations (RANS), but also on the choice of the flow variables expressed
by the model function g and therefore it will be defined in more detail in the following sections. For the
physics loss computation, the residuals are evaluated at “collocation” points which are not data points.

Denoting the number of collocation points as NP and an j-th collocation point as xPj ¼ xPj , y
P
j

h iT
, the

physics loss can be written in compact form as

LP gð Þ¼ 1
NP

XNP

j¼1

kP gð ÞjxPj jj
2
2, (6)

with the summation performed over the collocation (evaluation) points. Notation �jxPj expresses evaluation
of the residual at point xPj and �k k2 denotes l2 norm. The boundary loss is a mixture of data loss and
physical type loss, depending if the boundary is specified using data or a BC (e.g., no slip condition on
walls).

The above definitions highlight the difference between data points and collocation points. Data points
are given by the experiment and they correspond to measurements. Their purpose is to enforce the
agreement between the predicted fields and the data points—at these points, during training, the algorithm
will compare the PINN predicted values with the data values and use the corresponding loss to constrain
the model function g xð Þ to the data. The collocation points are set during the flow reconstruction
procedure and they can be set irregardless of the data points. The aim of the collocation points is to
enforce physical constraints—at these points, during training, the algorithm will evaluate the residuals
and use the corresponding loss to constrain the model function g xð Þ to be a valid solution to the governing
equations.

2.1.1. RANS-assimilation with explicit Reynolds stresses
To solve the RANS system using the PINN, the RANS equations are transformed into a system of
residuals, defined over a set of domain points. As mentioned in the previous section, we denote the
residuals with an operator P and we can write as

P1 gð Þ¼ uxþ vy,

P2 gð Þ¼ uuxþ vuyþpx� Re�1 uxxþuyy
� �þ u0u0

� �
xþ u0v0

� �
y,

P3 gð Þ¼ uvxþ vvyþpy� Re�1 vxxþvyy
� �þ u0v0

� �
xþ v0v0

� �
y,

(7)

where ðÞx and ðÞy denote partial derivatives with respect to x and y directions. The neural-network
parametrized vector g, which is also the output of the network is

g¼ u, v, p, u0u0, u0v0, v0v0
� �T

: (8)
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In the setup above, the output vector g has a dimension of 6 but there are only three equations. Thus, the
system is under-determined. If the true mean velocity field is fully known on a fine/resolved grid, the
continuity equation is automatically satisfied, leaving the systemwith four unknown fields for two equations.
The system is still under-determined. Therefore, in the flow reconstruction framework, where velocity data is
provided at sparse data points only, the PINN is not guaranteed to converge to a unique solution.

If, in addition to the mean velocity field, the Reynolds stresses are fully known on a fine/resolved grid,
the system is determinate and can be solved for the unknown pressure p (with an arbitrary offset). In the
flow reconstruction framework, where mean velocities and Reynolds stresses are provided at sparse data
points, the system is not fully determined. However, because the idealized system with fully known
velocity and Reynolds’ stresses fields is determinate, we hypothesize that PINN may be able to converge
to a solution that is an accurate representation of the true flow. The assimilation with first- and second-
order statistics is utilized in Section 4.2.2. A similar formulation was applied in Eivazi et al. (2021) using
time-averaged first- and second-order velocity data at the boundaries of the domain. The top path in
Figure 1 presents the PINN formulation corresponding to this approach.

2.1.2. RANS-assimilation with forcing
To alleviate the problem of having an under-determined system, a different form of the RANS equation
will also be investigated, as proposed by Foures et al. (2014), where the unknown stress tensor is replaced
by an unknown forcing vector in the optimization. This is done by setting ∇ �u0u0 � f in the governing
RANS equations. The forcing f is decomposed into potential and solenoidal components:

f ¼∇ϕþ f s, (9)

where
∇ � f s ¼ 0: (10)

Figure 1. Schematics of PINNs for flow reconstruction based on two different approaches. Green box:
network inputs (collocation or data point coordinates). Blue box: flow variables modeled by the function
g xð Þ, expressed by a neural network. Red box: spatial derivatives of the flow variables obtained using
automatic differentiation. Purple box: residuals operator which takes the flow variables and their

derivatives to evaluate the physical residuals. The top version of the network utilizes the RANS equations
with Reynolds stresses. The bottom version uses RANS with solenoidal forcing f s. When data points are
used as network inputs, the network computation stops at the output layer and the residuals of the

governing equations are not computed.
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Then, denoting f s ¼ f us, f vsð ÞT , we obtain a new residuals operator P:

P1 gð Þ¼ uxþ vy,

P2 gð Þ¼ uuxþ vuyþ p�ϕð Þx� Re�1 uxxþuyy
� �� f us,

P3 gð Þ¼ uvxþ vvyþ p�ϕð Þy� Re�1 vxxþ vyy
� �� f vs,

P4 gð Þ¼ f usð Þxþ f vsð Þy:

(11)

Now, defining PINN outputs g to be

g¼ u, v, p�ϕ, f us, f vs½ �T , (12)

we get four equations for five unknowns.
This is still an under-determined system. If themean velocity fields are fully known on a fine grid, then,

excluding the automatically verified mass conservation equation, we obtain a system of three equations
with three unknowns, to which a solution can be obtained. In the flow reconstruction framework, for
which the mean velocities are provided at sparse data points only, the system is not fully determined.
Nonetheless, because the idealized system with fully known velocity fields is determinate, we hypothe-
size that PINNmay be able to converge to a solution that is an accurate representation of the true flow. The
bottom path in Figure 1 presents the PINN formulation corresponding to this approach with appropriately
set network outputs in the blue box and the physical residuals in the purple box.

The reorganization of the Reynolds stresses into the forcing term and the subsequent decomposition into
potential and solenoidal components together with fully known velocity fields makes the idealized system
determinate. It was possible to add one equation and decrease the number of unknowns by 1. This does not
mean that some new information was introduced to the problem—rather, it was possible to lump the
unknown potential variables p and ϕ together. The problem of recovering pressure p from the compound
p�ϕð Þ field is under-determined and this remains true for the solution to the data assimilation problem.

3. PINNs Implementation and Problem Setup

The methodology for the assimilation of mean-flow data using PINNs will be demonstrated for the
two-dimensional unsteady flow around a circular cylinder at diameter-based Reynolds number equal
to 150.

3.1. Mean flow database

Mean flow data were obtained from direct numerical simulations using Nektarþþ (Cantwell et al., 2015),
a spectral/hp element framework. The simulation domain for the 2D cylinder flow was a rectangle
spanning from �5 to 15 in the stream-wise direction and from �5 to 5 in the vertical direction. The
cylinder with diameter 1 was placed so that its center coincided with the origin.

The unsteady Navier–Stokes equations were solved using a velocity correction scheme with convect-
ive advection, Galerkin spatial projection and IMEX second order time integration. The following BCs
were imposed. A uniform free stream at the inlet, no-slip conditions at the cylinder surface and outflow
conditions as described in Dong et al. (2014), at the outflow boundary. At the top and bottom boundaries,
Dirichlet condition was used for the v-velocity component and Neumann condition for the stream-wise
velocity component u. For more information about the scheme and BCs, readers are referred to
Section 11.1 of Nektarþþ user guide (available at www.nektar.info) andDong et al. (2014). Additionally,
the Nektarþþ simulation files with the simulation setup are available online on the Github repository (see
the Section “Data Availability Statement”).

The simulation was run for 100 dimensionless time units and, after the initial transient, statistics were
computed based on three full vortex shedding cycles. The maximum CFL number was 1.2. Plots in
Figure 2 show the first (mean velocity and pressure fields) and second order (Reynolds stresses) time-
averaged quantities.
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3.2. PINN architecture

The PINNs were implemented using DeepXDE Python library (Lu et al., 2021) which provides a level of
abstraction for constructing the PINNs, setting up the numerical domain with appropriate BCs and
training of the neural network.

All of the results presented in thisworkwere obtained using the same PINN architecture. It was amulti-
layer perceptronwith two input variables, x and y, followed by seven fully connected layers with 100 units
each terminating to an output layer. The number of units in the output layer was set to be equal to the
number of field functions modeled by the network, thus dependent on the formulation used. For all hidden
layers, a tanh activation function was applied. Additionally, the weights were initialized with the Glorot
uniform algorithm. This setup was found to perform well for all PINN optimization runs. Furthermore,
this architecture is consistent with PINNs presented in Raissi et al. (2020) as well as with the networks
from the article about the Navier–Stokes flow nets (Jin et al., 2021).

3.3. PINN training

The PINN optimization requires data points, as well as collocations points for both the BCs and the PDE
loss. The data points are the input of the PINN optimization and therefore their spatial distribution is not
the hyperparameter of the flow reconstruction. In contrast, the number and distribution of the collocation
points for the BCs and for the physics loss can be adjusted to aid optimization. Themain requirement is the
adequacy of points so as to enforce that the output model functions are smooth and that they obey the
governing equations in the entire domain. Consequently, the number and distribution of collocation points
depend on the flow structure, the domain size and the Reynolds number. In this study, the number of
collocation points was determined based on multiple runs and inspection of the results—the number of

Figure 2. Direct numerical simulation (ground truth) of the 2D cylinder flow at Re ¼ 150 using
Nektarþþ. Top: time-averaged stream-wise, cross-stream-wise velocities and pressure. Bottom: time-

averaged Reynolds stresses.
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collocation points was increased until the point where adding collocation points did not change the output
of the PINN optimization. For the BCs, the number of points was chosen so that at each of the boundaries
the distance between neighboring points was around 0.01 which translated to a relatively fine resolution.
For example, at the cylinder surface, there was around 750 points for enforcing the no-slip wall condition.
For the physics loss, the points were clustered near the cylinder surface and the centerline of the flow, as
these are the regions with the highest variation of the field functions. Furthermore, the numerical
experiments indicated that approximately 25,000 collocation points in the optimization domain
(described in the next section) suffice to enforce physical solutions. Therefore, in all PINN optimizations
presented in this article, the number of collocation points was approximately 25,000. Figure 3 provides a
visual indication of the number of the collocation points and their distribution.

The PINN setup used in this study also employed dynamic loss weighting. This was implemented in
order to combat gradient problems which impact PINN optimizations (Wang et al., 2020). The loss
weighting scheme is described in Appendix A of the Supplementary Material.

The minimization of the cost function was split into two segments. First, the network was trained for
20,000 epochs with SGD using Adam optimizer. Afterward, the PINNs were optimized using L-BFGS-B
scheme until one of the stopping criteria was reached. In all the cases run, the optimizations terminated due
to the relative improvement falling below the threshold value which was set to be equal to the machine
precision (1e�7). Figure 3 shows a training loss history plotted for one of the cases. It provides a
qualitative representation of all the training runs performed. Up until 20,000 epochs, when SGD is used,
the loss decreases but the curve is ragged and there are multiple loss increases. Afterward, L-BFGS-B
algorithm slowly reduces the total loss until the stopping criterion is reached and the network weights are
considered to have converged. The PINN optimization was performed using high-performance GPUs
(2 � NVIDIA RTX6000) and each computation took about 4 hrs.

4. Results

4.1. PINNs with RANS forcing as outputs

The performance of PINNs is evaluated by inferring the potential-free part of the unsteady RANS forcing
using mean velocity data distributed on a square grid (PIV data format) around the cylinder. This is the
same problem that Foures et al. (2014) tackled with adjoint variable optimization (see Section 4.1 in
Foures et al., 2014).

Figure 3. Left: scatter plot of collocation points around the circular cylinder for minimizing the PDE
physics loss. Right: representative loss during the PINN training. One epoch denotes one transit of the
training data (data points and collocation points) through the training algorithm. The training history
and the collocation points shown correspond to one of the optimization runs for a PINN formulation
described in Section 4.1. The qualitative description is representative of all optimizations run in this study.
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The numerical domain for the optimization was a cut out of the simulation domain—a rectangle
spanning �1, 3ð Þ in x and �1:5,1:5ð Þ in y directions. The cylinder with diameter 1 was centered at the
origin. The resolution of the data grid was 0:02�0:02 which means that the data points were spaced by
0.02 in both x and y directions. Furthermore, the data grid spanned the entire numerical domain and was
positioned so that the coordinates of the bottom left corner and upper right corner were x, yð Þ¼
�1, �1:5ð Þ and x, yð Þ¼ 3,1:5ð Þ, respectively. Thus, in total there were 201 points in x direction and
151 points in y direction.

The network outputs were set to be

u,v,p�ϕ,f us,f vs,

following the PINNoutput description in Section 2.1.2. The formulation of PINN to output the above flow
variables and the corresponding form of the physics residuals will be referred to as the forcing
formulation. The data loss LD, following the definition (5), was:

LD ¼ 1
ND

XND

j¼1

u xDj

� �
�uDj

h i2
þ v xDj

� �
� vDj

h i2� 	
: (13)

The physics loss LP , following definition (6), was:

LP ¼ 1
NP

XNP

j¼1

uxþ vy
� �� jxPj �

2

þ uuxþ vuyþ p�ϕð Þx� Re�1 uxxþuyy
� �� f us

� �� jxPj �
2

þ uvxþ vvyþ p�ϕð Þy� Re�1 vxxþ vyy
� �� f vs

� �h
jxPj �

2

þ f usð Þxþ f vsð Þy
� �h

jxPj �
2

2
66666664

3
77777775
: (14)

In the above formula, each row denotes squared residual evaluated at the collocation point xPj .
Initially, the only BCs given to the network were the wall BCs at the cylinder surface:

uwall ¼ vwall ¼ f us,wall ¼ f vs,wall ¼ 0 (15)

and thus the BCs loss was defined as

LB ¼ 1
NB,w

XNB,w

j¼1

u xB,wj

� �2
þ v xB,wj

� �2
þ f us xB,wj

� �2
þ f vs xB,wj

� �2
� 	

, (16)

where NB,w denotes the number of collocation points at the cylinder surface and xB,wj denotes j-th wall
collocation point.

Using only these BCs and mean flow velocity data, the network was able to regress to the true curl of
forcing, as shown in Figure 4 (first row). Comparing it with the exact field from the DNS, it can be
deduced that the structure and the magnitude of the field are well inferred in the bulk of the domain.
However, there are high magnitudes of∇� f near the cylinder surface with the maximum value of about
3.2—this can be clearly seen from the error plot. The ∇� f contour from the PINN can be qualitatively
compared against the analogous result of the adjoint variable optimization (see Figure 4g,h in Foures et al.,
2014). The ∇� f field presented in Foures et al. (2014) is in good agreement with the true field but also
shows discrepancies near the cylinder surface.

It is worth noting that in the region of a highest discrepancy—the front of the cylinder, the exact curl
of forcing as well as forcing itself is trivially zero. Thus, it should not be a problem for the network to
accurately represent both f s and ∇� f in this region. However, the velocity field features high spatial
gradients and the PINN may not be able to accurately represent those high variations. Consequently,
errors in the prediction of the velocity may cause discrepancies in the predicted curl of forcing. One
could presume that this could be the issue of insufficient network capacity (the ability of the network to
represent complex functions, which is influenced by the number and size of the network’s layers).
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Consequently, if the number of network parameters was increased, the predicted ∇� f field might be
more accurate. This approach was tested but failed to provide any improvements. Furthermore, since
similar errors appeared in the results of adjoint variable optimization, the issue does not appear to be
specific to PINNs.

Figure 4.∇� f predictions for the 2D cylinder flow obtained with PINNs. Left: regressed fields obtained
with forcing formulation without inlet boundary conditions (first row), forcing formulation with inlet
steady boundary conditions (second row), as well as the true field (third row). Right: absolute error

between regressed and true field. For the left plot in the first row (∇� f with forcing formulation, no inlet
BC), the color range was clipped to the true field range to aid comparison.
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In order to quantitatively evaluate the PINN accuracy, we introduce the error measures E2 and E∞:

E2 ¼ h�htruek k2
htruek k2

�100% and E∞ ¼ hh�htruek k∞
htruek k∞

�100%, (17)

where �k k2 and �k k∞ denote the l2 and l∞ norms respectively, and h denotes the analyzed field, in this case
∇� f , and subscript “true” denotes DNS output (ground truth). For this and for all subsequent error
calculations, unless stated otherwise, the predicted fields were evaluated on a rectangular grid spanning
the whole numerical domain and with spacing between points Δx¼Δy¼ 0:002. As shown in Table 1, the
E2 error for the reconstruction of∇� f is 27:7%. The plots indicate that this high valuemight be caused by
the region of high discrepancy at the cylinder surface. This is confirmed by recomputing the error only for
the wake region of the flow—rectangular area restricted to (0.75,3) in x and �1:5,1:5ð Þ in y directions.
These values are denoted in Table 1 as “wake,” in contrast to “full” region which includes the entire
optimization domain. The magnitudes of E2 and E∞ for the wake region are considerably smaller, 7 and
9%, respectively, confirming that most of the error is confined to the region of high velocity variation
close to the cylinder surface.

In addition to the error measures above, it is worth analyzing the smoothness of the reconstructed
velocity fields by introducing the H1 semi-norm:

hk kH1
¼ ∇hk k2, (18)

where h denotes the analyzed field function.
Figure 5 presents the predictions of the velocity fields with the associated absolute error plots. Table 1

shows the E2, E∞ and H1 values for the reconstructed velocity field. In addition, the table shows the H1

semi-norm for the true field (DNS solution) and the relative change of the semi-norm between the true
field and the prediction. In terms of E2 and E∞ errors, the reconstructed fields are in very good agreement
with the true fields, which was expected as the density of velocity data was high. Furthermore, the
reconstructed fields have almost the same value ofH1 semi-norm as the true fields which means that both
fields have almost identical smoothness.

In order to avoid high magnitude values of the forcing near the cylinder surface, more information
about the flow can be supplied to the network. At the inlet of the domain, the flow is steady which implies
that Reynolds stresses, as well as their derivatives, are zero and consequently that both potential and
solenoidal forcings are zero. Thus, new BCs can be added:

f us,inlet ¼ f vs,inlet ¼ ∇� f sð Þinlet ¼ 0: (19)

Table 1. Error measures E2 and E∞ for ∇� f prediction using forcing formulation without inlet
boundary conditions or with steady inlet boundary condition.

Case Region Field E2 E∞ H1 H1 true Δ%H1

Forcing form., no inlet BC Full ∇� f 27.7% 77.7% – – –
Forcing form., inlet steady BC Full ∇� f 19.7% 63.4% – – –
Forcing form., no inlet BC Wake ∇� f 7.03% 8.87% – – –
Forcing form., inlet steady BC Wake ∇� f 6.15% 7.87% – – –
Forcing form., no inlet BC Full u 0.03% 7.91% 1.7405 1.7409 �0.02%
Forcing form., no inlet BC Full v 0.20% 3.43% 0.9356 0.9363 �0.07%
Forcing form., inlet steady BC Full u 0.03% 7.90% 1.7409 1.7509 �0.002%
Forcing form., inlet steady BC Full v 0.18% 3.43% 0.9363 0.9363 0.009%

Note. In addition, the errors are presented for both the “full” and “wake” regions of the optimization. The lower part of the table shows the error
measures E2 and E∞ for the predicted velocity fields, as well theirH1 semi-norms, together withH1 semi-norm of the true fields and the corresponding
percentage difference.
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And thus an additional term was added to the BCs loss. Denoting NB,i as the number of inlet collocation
points and the corresponding points as xB,ij :

LB ¼ 1
NB,w

XNB,w

j¼1

u xB,wj

� �h i2
þ v xB,wj

� �h i2
þ f us xB,wj

� �h i2
þ f vs xB,wj

� �h i2� 	

þ 1
NB,i

XNB,i

j¼1

f us xB,ij

� �h i2
þ f vs xB,ij

� �h i2
þ ∇� f usðð½ , f vsÞTÞjxB,ij

�2
� 	

:

(20)

Gradients for the curl were obtained within PINN, using automatic differentiation—the same method as
for the physics residuals.

The regression results with the above BCs are shown in Figure 4 (second row). The inferred forcing
curl field,∇� f , is similar to the onewithout inlet BCs, but themagnitude near the front cylinder surface is
diminished. This conclusion is reinforced by a comparison of the error plots. The error value comparison
in Table 1, with the new results marked as “forcing form., inlet steady BC,” also confirms the
improvement of accuracy. In the “full” region, the E2 decreases from 27.7 to 19.7%, whereas E∞
decreases from 77.7 to 63.4%. The improvement also extends to the “wake” region, where E2 decreases
from 7.03 to 6.15% andE∞ decreases from 8.87 to 7.87%.Again, the relative difference of errors between
the “full” and the “wake” region indicates that most of the error is caused by the high discrepancy region
near the cylinder surface. The addition of the inlet BC condition also provides accuracy improvements for
the reconstruction of the velocity fields—this is evident from E2 and E∞ values presented in the lower
portion of Table 1.

For the specific cylinder flow, the assumption of steady inlet BCs is valid and thus the second
formulation is more advantageous. This demonstrates how the PINN approach can be augmented with
extra information to enhance the reconstruction quality.

Figure 5. Reconstructed mean velocity fields and corresponding error plots obtained using forcing
formulation PINNwithout imposing steady inlet boundary condition. The resolution of the input data grid

with velocity measurements was 0:02�0:02.
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Nevertheless, for the no inlet BCs case, while there is a local error in∇� f near the cylinder surface, the
prediction in the wake is still satisfactory. Due to its generality (imposing outer BCs is not always valid),
the forcing formulation without inlet BC is chosen for further analysis.

In conclusion, PINN networks can successfully leverage the available mean flow velocity data to
find the correct representation of the curl of the RANS forcing for the unsteady 2D cylinder flow. In
the wake, the regressed field is in good agreement with the true field. Near the cylinder walls, PINN’s
prediction shows discrepancies with ∇� f reaching relatively high magnitudes. Adding inlet bound-
ary information can alleviate this discrepancy and improve the prediction in the entire domain. The
results obtained with the adjoint variable optimization in Foures et al. (2014) also show considerable
discrepancies at the cylinder surface, indicating that the error is not specific to the PINN approach.

4.1.1. Predicting forces on the cylinder
The total force distribution exerted on the cylinder is due to pressure forces and frictional shear stresses
on the surface. Using the forcing formulation, the network infers p�ϕ, which is the difference between
the pressure and the potential component of the forcing fields. Without additional information or
assumptions, it is not possible to separate the two fields (see Foures et al., 2014) and thus obtain an
accurate estimate of the pressure distribution. However, the skin friction can be extracted since it
depends only on the inferred velocity field. Figure 6 presents the friction coefficient over the top surface
of the cylinder as a function of the angle θ with 0° at the front of the cylinder and 180° at the rear of the
cylinder.

The results are compared with the results from the Nektarþþ simulations as well as the experiments
from Dimopoulos and Hanratty (1968). The friction coefficient is defined as

Cf ¼
μ ∂u∗t
∂n∗

1
2ρU

2
∞
¼ 2

Re

∂ut
∂n

, (21)

where ∂ut
∂n is the derivative of the non-dimensional tangential velocity normal to the surface (∗ corresponds

to dimensional values). The prediction of the friction coefficient is in excellent agreement with the
Nektarþþ result (ground truth). The good level of accuracy for the Cf distribution was expected as the
density of the velocity data points is relatively high.

Figure 6.Friction coefficient over the cylinder surface obtained using output from the PINN optimization
performed using forcing formulation without inlet boundary condition (line). Additionally, the plot
presents DNS results obtained with Nektarþþ (red circles) and experimental measurements (orange

circles).
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4.1.2. Influence of noise
Here, we investigate how the noise in the velocity data affects the accuracy of the prediction of∇� f and
of the velocity fields. The analysis was performed on the same numerical domain and data grid as in
Section 4.1. Zero-mean Gaussian noise was added at all data points, to both velocity components. The
PINN optimization, utilizing forcing formulation without inlet BC, was run for three levels of noise with
variance 0.02, 0.05, and 0.1. The resolution of the input data was unchanged—0:02�0:02.

Table 2 presents the errors of the predicted ∇� f field for the different noise levels. The division
between the “full” and “wake” region (same as in the previous section) shows that in the “wake,” the level
of errors is again significantly lower and in this region the error is an increasing function of the noise level.
Interestingly, this is not the case for the “full” region and thus the region closer to the cylinder surface.
There, increasing the amount of noise decreases the errors of the predicted ∇� f .

Table 3 presents the errors for the reconstruction of the velocity fields. For these calculations, the errors
were evaluated on the same grid as in the previous section (with point spacing Δx¼ 0:002 and
Δy¼ 0:002). Column “E2 before denoising” presents the E2 error measure between ground truth
(DNS) velocity fields with and without noise. For example,

“ufield E2before denosining”¼ utrueþnoiseð Þ�utruek k2
utruek k2

�100%¼ noisek k2
utruek k2

�100%, (22)

where “noise” denotes a noise field. Thus, the “E2 before denoising” value directly corresponds to the
level of noise and indicates the amount of noise present in the data before PINN optimization was
performed. Column “E2 after denoising” presents the E2 error measure between ground truth and the
reconstructed field obtained using PINN applied to the noisy input data. In all cases, E2 error of PINN
prediction is an order of magnitude lower than the E2 value before denoising which implies that the
application of PINN has effectively decreased the amount of noise present in the velocity data.

4.2. Flow interpolation

Another application of PINNs is the interpolation of fluid flows. If the density of the velocity data is low,
instead of trying to find the unknown forcing, PINNs can be applied to complete the partial information
about the velocity fields. Given a set of data points in the domain xi1, hi1

� �
, xi2, hi2
� �

, …,



xiNin
, hiNin

� �
g, PINNs can assimilate that data to find an accurate representation of the true field by

providing a synthetic set of field points located in-between the original set of points

xo1, ho1
� �

, xo2, ho2
� �

, …, xoNout
, hoNout

� �n o
which can be significantly larger than the input data set

(N in <<Nout). In the case of PINNs, instead of a set of output points, the result of the interpolation
comes in the form of a converged neural network capable of evaluating the velocity at any point within the
optimization domain. The interpolation of velocity fields on sparse data from 2D cylinder flow was also
performed using adjoint variable optimization in the article by Foures et al. (2014) (Section 4.2.1 in their
article) and again their study will provide a means of performance assessment.

Table 2. Error measures E2 and E∞ for ∇� f field obtained using PINN optimization on velocity data
with added noise.

Case Region Field Noise level E2 E∞

Forcing form., no inlet BC Full ∇� f 0.02 64.6% 209%
Forcing form., no inlet BC Full ∇� f 0.05 60.8% 158%
Forcing form., no inlet BC Full ∇� f 0.1 45.7% 56.9%
Forcing form., no inlet BC Wake ∇� f 0.02 20.3% 25.2%
Forcing form., no inlet BC Wake ∇� f 0.05 22.1% 22.9%
Forcing form., no inlet BC Wake ∇� f 0.1 24.9% 25.7%
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4.2.1. Flow interpolation with first-order velocity statistics
Here, a coarse distribution of first-order velocity statistics (u and v) is known and used as data points. The
PINN configurationwas identical to the one presented in Section 2.1.2, using the forcing formulation. The
data was distributed on a coarse rectangular grid, with spacing equal to 0.5 in both x and y directions
(resolution 0:5�0:5). This is the same data resolution that was used for interpolation in Foures et al.
(2014). The bottom left and the upper right corners of the data grid were located at x, yð Þ¼ �1, �1:25ð Þ
and x, yð Þ¼ 3, 1:25ð Þ, respectively.

The results of the interpolation, along with the distribution of the training points are presented in
Figure 7. Table 4 presents the quantitative measures E2 and E∞, as well as the H1 semi-norm for the
reconstructed velocity fields. As in Section 4.1, the accuracy of interpolated fields was evaluated on a
rectangular grid spanning the entire numerical domain and with the spacing between points
Δx¼Δy¼ 0:002. The interpolation obtained with PINN is satisfactory—for both velocity components

Table 3. E2 error measure of the velocity fields before and after application of PINN to the velocity
data with added noise.

Case Region Field Noise level E2 before denoising E2 after denoising

Forcing form., no inlet BC Full u 0.02 2.11% 0.16%
Forcing form., no inlet BC Full v 0.02 11.3% 0.66%
Forcing form., no inlet BC Full u 0.05 5.27% 0.30%
Forcing form., no inlet BC Full v 0.05 28.1% 1.34%
Forcing form., no inlet BC Full u 0.1 10.5% 0.55%
Forcing form., no inlet BC Full v 0.1 56.3% 2.42%

Figure 7. Flow interpolation using PINN forcing formulation without inlet BC on a coarse data grid of
resolution 0:5�0:5. At each data point, first-order velocity statistics were provided (u and v). The plots
show the predicted velocity fields (left column) and the corresponding absolute error fields (right column)
for the stream-wise (top) and the cross-stream-wise (bottom) velocities. The red dots indicate the locations

of the data points.
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E∞ is well below 10% and E2 is below 1.6%. In terms ofH1 semi-norm, the reconstructed velocity fields
are in good agreement with the true fields. This data resolution used here is the same as in Foures et al.
(2014) and the PINNs approach exhibits similar errors as the adjoint optimization (see Figure 6 in
Section 4.2.1 of Foures et al., 2014).

The accuracy of the interpolation is further evaluated by calculating the friction coefficient over the
cylinder surface, which is shown in Figure 8. The PINN predicted friction distribution is still in very good
agreement with the Nektarþþ results with minor deviations in the regions where the friction is maximum
or minimum.Most importantly, the level of accuracy is retained despite the optimization being performed
on a significantly coarser data grid.

4.2.2. Flow interpolation with first- and second-order velocity statistics
Here, sparse second-order velocity statistics, that is, Reynolds stresses u0u0, u0v0, and v0v0 are provided
along with first-order statistics u and v. The PINN, constrained by the explicit RANS equations described
in Section 2.1.1, was employed to interpolate the mean velocity fields and the mean Reynolds stresses
fields, as well as to extract the unknown pressure field. This formulation will be referred to as explicit
Reynolds stress formulation. The network outputs were set to

u,v,p,u0u0,u0v0,v0v0:

Consequently, the physics loss LP, following definition (6), became

Table 4. Error measures and H1 semi-norm comparison for the interpolated velocity fields shown in
Figure 7 and for the predicted ∇� f field.

Region Field E2 E∞ H1 H1 true Δ% H1

Full u 1.13% 8.10% 1.7362 1.7401 �0.27%
Full v 1.58% 3.75% 0.9306 0.9363 �0.61%
Full ∇� f 56.3% 161% – – –
Wake ∇� f 25.7% 31.2% – – –

Figure 8. Prediction of the friction coefficient over the cylinder surface for the interpolated velocity fields
shown in Figure 7.
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LP ¼ 1
NP

XNP

j¼1

uxþ vy
� �� jxPj �

2

þ uuxþ vuyþpx� Re�1 uxxþuyy
� �þ u0u0

� �
xþ u0v0

� �
y

� �h
jxPj �

2

þ uvxþ vvyþpy� Re�1 vxxþ vyy
� �þ u0v0

� �
xþþ v0v0

� �
y

� �h
jxPj �

2

2
66664

3
77775: (23)

Additionally, the BCs at the cylinder surface were expanded to include wall constraints on Reynolds’
stresses:

uwall ¼ vwall ¼ u0u0wall ¼ u0v0wall ¼ v0v0wall ¼ 0 (24)

and the boundary loss LB was updated accordingly to include no-slip condition on the Reynolds stress
terms:

LB ¼ 1
NB,w

XNB,w

j¼1

u xB,wj

� �2
þ v xB,wj

� �2
þu0u0 xB,wj

� �2

þu0v0 xB,wj

� �2
þ v0v0 xB,wj

� �2

2
64

3
75: (25)

Lastly, the addition of new data requires modification of the data lossLD. For this case, where Reynolds
stresses are explicitly given, the pressure gradient is uniquely defined. In contrast to the forcing
formulation, there is no potential field ϕ absorbed in the pressure gradient. To make the pressure
prediction unique and remove any arbitrary constant pressure offset, two pressure data points located
at the top and bottom of the cylinder were added to the PINN training by augmenting the data loss with the
pressure data error term. Thus, the new data loss was

.

LD ¼ 1
ND

XND

j¼1

u xDj

� �
�uDj

h i2
þ v xDj

� �
�vDj

h i2
þ u0u0 xDj

� �
�u0u0Dj

h i2
þ u0v0 xDj

� �
�u0v0

D
j

h i2
þ v0v0 xDj

� �
� v0v0

D
j

h i2
2
664

3
775

þ p xDbottom
� ��pDbottom

� �2þ p xDtop

� �
�pDtop

h i2
(26)

The distribution of data points was the same as for interpolation using first-order velocity statistics in
Section 4.2.1. The inferred fields are shown in Figure 9. The upper section of Table 5 presents the error
measures, as well as H1 semi-norm comparison for the predicted fields.

The PINN is able to infer the time-averaged velocity fields u and v, however, with higher errors than in
the previous case when only first-order statistics were provided and the forcing formulation was used.
This is despite having more information about the flow—in the previous case, the network did not have
access to the values of the Reynolds stresses at the data points. This drop in accuracy is caused by the fact
that in the regions between the data points, the RANS equations with Reynolds stresses have more
unknowns and fewer constraints than in the case of forcing formulation. If RANS forcing is used instead
of stresses, the system has five unknowns for four equations. Using Reynolds stresses in the RANS
equations, the system has six unknown flow variables for three equations and thus it is easier for PINN to
converge to an incorrect solution in regions where no data is provided.

Inspection of the values in Table 5 indicates the levels of E2 and E∞ errors are quite high for all
Reynolds stresses, as well as for the pressure field. Inspecting the plots of these fields and the
corresponding error plots, it can be seen that in all cases there is a significant discrepancy in front of
the cylinder, whereas the prediction in the wake looks relatively better. As the region in front of the
cylinder is free from unsteadiness, the Reynolds stresses are zero and PINN should have no problem
representing that field in this region. Thus, it can be concurred that the error is caused by low data density.
In order to improve the accuracy of the reconstruction, more data points have to be supplied.
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predictions

truth

error

Figure 9. Flow interpolation results with second-order velocity statistics of resolution 0:5�0:5. Plots in
the first and second rows show predicted velocity fields (left column) and the corresponding error (right
column) for the stream-wise and the cross-stream-wise velocities, respectively. Beneath, in four columns,
plots of regressed (top), true (middle), and error (bottom) fields are shown for Reynolds stresses: u0u0, u0v0,

v0v0 and pressure p (respectively, going from left to right).
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4.2.3. Flow interpolation with first- and second-order velocity and pressure statistics
For the formulation with Reynolds stresses as outputs, the PINN infers pressure which does not include
the potential part of the forcing ϕ. Thus, in the event of having pressure tappings on the cylinder surface,
those time-averaged measurements can be supplied to the network to aid the interpolation. This is
implemented by adding the error from the pressure data to the data loss in (26):

LD ¼ 1
ND

XND

j¼1

u xDj

� �
�uDj

h i2
þ v xDj

� �
� vDj

h i2
þ u0u0 xDj

� �
�u0u0Dj

h i2
þ u0v0 xDj

� �
�u0v0

D
j

h i2
þ v0v0 xDj

� �
� v0v0

D
j

h i2
2
664

3
775

þ 1
ND,p

XND,p

j¼1

p xD,pj

� �
�pD,pj

h i2
,

(27)

where ND,p denotes the number of pressure data points and pD,pj denotes the value of pressure at j-th data
point located at xD,pj . To simulate having dense pressure measurements over the cylinder surface,
100 pressure data points were specified. Results from an optimization with added pressure data can be
seen in Figure 10. The bottom part of Table 5 presents the error measures for the new interpolation. The
addition of pressure data improves the reconstruction accuracy, especially for Reynolds stresses u0v0,v0v0
and pressure field p. Nonetheless, the errors are still considerable and present for the Reynolds stresses in
the region in front of the cylinder. Thus, it can be again argued that the data density should be increased in
order to obtain satisfactory interpolation accuracy.

4.2.4. Resolution versus velocity reconstruction error
Finally, we investigate the dependence of the reconstruction errors on the data grid resolution. Specif-
ically, PINN regressions were performed for the cases with first-order velocity data only and with both
first- and second-order velocity data (Section 4.2.1 with forcing formulation and Section 4.2.2 with
Reynolds stresses formulation, respectively) for square grid resolutions of cell length 0.02, 0.05, 0.1, 0.2,
0.5, 0.5, 0.6, 0.7, and 1.0. Figure 12 in Appendix B of the SupplementaryMaterial shows the data grids for
the above data grid resolutions, overlaid on utrue velocity field.

Figure 11 shows the u velocity error dependence on the resolution (Δx�Δx) for the two formulations,
with forcing and with explicit Reynolds stresses as outputs. In the same graph, we have plotted the errors

Table 5. Error measures and H1 semi-norm comparison for the interpolated fields obtained using the
Reynolds stresses formulation on the first- and second-order velocity data without or with pressure

data over the cylinder surface.

Case Field E2 E∞ H1 H1 for true field Δ% H1

Re stresses form. u 2.16% 10.9% 1.7351 1.7409 �0.33%
Re stresses form. v 3.48% 9.36% 0.8902 0.9363 �4.92%
Re stresses form. u0u0 19.1% 37.4% 0.1600 0.1775 �9.86%
Re stresses form. u0v0 22.5% 65.7% 0.1457 0.1188 22.6%
Re stresses form. v0v0 36.8% 91.2% 0.5603 0.2140 136%
Re stresses form. p 26.6% 61.5% 0.6239 0.4952 26.0%
Re stresses form. with pressure u 1.01% 8.02% 1.7482 1.7409 0.42%
Re stresses form. with pressure v 2.23% 6.58% 0.9241 0.9363 �1.30%
Re stresses form. with pressure u0u0 18.5% 31.6% 0.1550 0.1775 �12.7%
Re stresses form. with pressure u0v0 14.5% 36.5% 0.1434 0.1188 20.7%
Re stresses form. with pressure v0v0 17.2% 52.6% 0.3201 0.2140 49.6%
Re stresses form. with pressure p 8.31% 26.9% 0.5429 0.4952 9.63%
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obtained using cubic bivariate spline interpolation. For all resolutions and for both formulations of PINNs,
the interpolation with PINNs outperforms the spline interpolation. The relative improvement is the
greatest between the smallest analyzed resolution 0:02�0:02 and 0:6�0:6. In that range, the errors
obtained with PINNs are an order of magnitude smaller than in the case of spline interpolation. It can be
reasoned that in the case of the finest resolution (fine data grid), the spatial variation of the velocity fields is
small and thus spline interpolation is very effective. As the resolution increases, the variation of the
velocity in between data points increases and the spline interpolation is less successful. At the same time,
enforcement of physics constraints allows PINN to produce a better interpolation, as the reconstructed
field has to satisfy the governing RANS equations. Finally, as the resolution decreases even more (coarse

predictions

truth

error

Figure 10. Flow interpolation results with second-order velocity statistics of resolution 0:5�0:5 and
pressure data points over the cylinder surface. The top row shows absolute error fields for the velocity
components with red points indicating the locations of data points. Beneath, in four columns, plots of
regressed (top), true (middle), and error (bottom) fields are shown for Reynolds stresses: u0u0, u0v0, v0v0

and pressure p (from left to right).
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grid), the relative gap between spline and PINN interpolation decreases. The PINN system is under-
determined and thus, if the spacing of data points is large, the PINN might converge to a solution that
satisfies the constraints (under-determined RANS) but different from the ground truth.

The analysis of the effect of resolution on the reconstruction errors shows that the data resolution for
successful interpolation of the velocity fields can be relatively low. However, after reaching a critical
resolution (here equal to 0:6�0:6) the system becomes under-determined and reconstruction becomes
inaccurate.

5. Conclusions and Future Work

In this article, we have introduced a framework for mean flow reconstruction from sparse flow
measurements using PINNs. The method was tested and validated for the unsteady cylinder flow at
Re ¼ 150.

Using the forcing formulation of the RANS governing equations, as in Foures et al. (2014), themethod
deduced the unknown solenoidal part of the RANS forcing.While the prediction in the cylinder wake was
satisfactory, the results showed discrepancies near the cylinder surface. An analysis of the influence of the
noise in the velocity data on the PINN prediction showed that addition of noise deteriorates the accuracy
of the predicted forcing. However, PINN considerably reduced the amount of noise present in the input
velocity data. Furthermore, PINNs were able to interpolate the flow based on a limited number of velocity
measurements, showing their capability to reconstruct flows from sparse experimental data. In both cases,
the accuracy of the predictions was similar to the results obtained using adjoint variable optimization in
Foures et al. (2014), despite the differences of the two approaches.

The PINN was extended to explicitly take into account the Reynolds stresses (instead of implicitly
through the forcing term) which opens a possibility of leveraging data with second-order velocity
statistics as well as pressure measurements. Using sparse measurements of mean velocities and mean
Reynolds stresses, the method was able to interpolate both the velocity and the stresses fields for the
cylinder flow, albeit with some discrepancies. Furthermore, addition of pressure measurements over the
surface of the cylinder significantly improved the interpolation accuracy. Using the interpolated velocity
fields it was possible to accurately predict the distribution of skin friction over the cylinder surface.

Finally, the analysis of the influence of data resolution on the interpolation accuracy revealed that
PINN interpolation performs better than spline interpolation and the relative improvement is the greatest

Figure 11. E2 and E∞ errors of the interpolated u velocity field against data grid resolution. Forcing
formulation using first order data (left) and explicit Reynolds stress formulation using first and second
order data (right). Solid lines indicate PINN errors, whereas dashed lines indicate errors obtained by

performing spline interpolation on the data points.

Data-Centric Engineering e4-21

https://doi.org/10.1017/dce.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.37


when data spacing is moderate—bigger than small flow variations but few times smaller than size of the
cylinder.

A significant advantage of the PINNs to the reconstruction of the mean flow is the ease of numerical
implementation. However, the PINNmethod requiresmore computational resources compared to adjoint-
based gradient optimization methods. That said, the PINNs are a developing area of research. For
example, there exists successful attempts to increase the computational efficiency of PINN optimization.
Jagtap and Karniadakis (2020) improved the speed of regression using numerical domain splitting which
was further enhanced through parallelization by Shukla et al. (2021). Moreover, Linka et al. (2022)
introduced Bayesian PINNs that explicitly consider measurement uncertainty which might provide
further performance improvements for noisy input data.

Future steps will focus on applying the above method to 3D flows at higher Reynolds numbers.
Especially valuable would be a validation on experimental data with PIV measurements. Furthermore,
future applications should employ recent technical advances in PINN architectures and PINN optimiza-
tion.
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