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Assouad Spectrum Thresholds for Some
Random Constructions

Sascha Troscheit

Abstract. he Assouad dimension of a metric space determines its extremal scaling properties. he
derived notion of the Assouad spectrum ûxes relative scales by a scaling function to obtain inter-
polation behaviour between the quasi-Assouad and the box-counting dimensions. While the quasi-
Assouad and Assouad dimensions o�en coincide, they generally diòer in random constructions. In
this paper we consider a generalised Assouad spectrum that interpolates between the quasi-Assouad
and the Assouad dimension. For commonmodels of random fractal sets,we obtain a dichotomy of its
behaviour by ûnding a threshold function where the quasi-Assouad behaviour transitions to the As-
souad dimension. his threshold can be considered a phase transition, and we compute the threshold
for theGromov boundary ofGalton–Watson trees and one-variable random self-similar and self-aõne
constructions. We describe how the stochastically self-similar model can be derived from theGalton–
Watson tree result.

1 Introduction

he Assouad dimension is an important notion in embedding theory due to the fa-
mousAssouad embedding theorem [As77,As79] and its invarianceunder bi-Lipschitz
maps. he latter implies that ametric space X cannot be embedded by a bi-Lipschitz
map into Rd for any d less than the Assouad dimension of X. he Assouad embed-
ding theoremprovides a partial converse. he Assouad dimension is therefore a good
indicator of thickness in a metric space and is an upper bound to most notions of
dimension in use today [Fr14,Ro11]. In particular, it is an upper bound to the Haus-
dorò, box-counting, and packing dimensions. Heuristically, the Assouad dimension
“searches” for the thickest part of a space relative to two scales 0 < r < R by ûnding
theminimal exponent s such that the every R-ball can be covered by at most (R/r)s

balls of diameter r.
Over the last few years much progress has been made towards our understanding

of this dimension, and it is now a crucial part of fractal geometry; see e.g., [Ch19,Fr14,
FMT18,GHM16,KR16,Tr19] and references therein. Several other notions of dimen-
sionwere derived from its deûnition, and this family of Assouad-type dimensions has
attractedmuch interest. An important notion is the θ-Assouad spectrum introduced
by Fraser and Yu [FY18], which aims to interpolate between the upper box-counting
and the Assouad dimension to give ûne information on the structure ofmetric spaces;
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see [Fr19] for a recent survey. It analyses sets by ûxing the relation r = R1/θ in the def-
inition of the Assouad dimension for parameters θ ∈ (0, 1).

It turns out that the Assouad spectrum interpolates between the upper box-
counting dimension and the quasi-Assouad dimension introduced by Lü and Xi
[LX16]. hat is, for θ → 0, the θ-Assouad spectrum tends to the upper box-counting
dimension, whereas for θ → 1, it approaches the quasi-Assouad dimension; see
[FHH+19]. In fact, the quasi-Assouad dimension could be deûned in terms of the
Assouad spectrum.

Inmany cases the quasi-Assouad dimension andAssouad dimension coincide, and
the Assouad spectrum gives best relative scaling information. However, in many sto-
chastic settings they diòer. his can be explained by the Assouad dimension picking
up very extreme behaviour that is almost surely lost over all geometric scales [FMT18].

In their landmark paper [FY18], Fraser and Yu discuss the possibility of extending
the deûnition of the Assouad spectrum to analyse the case when quasi-Assouad and
Assouad dimensions diòer. hese general spectra, which we shall also refer to as gen-
eralisedAssouad spectra,would then shed some light on the behaviour of “in-between”
scales. his is done by changing the relation r = R1/θ to a general dimension function
r = φ(R). García, Hare, and Mendivil studied this notion of spectrum (including
their natural dual, the lower Assouad dimension spectrum) and obtain interpolation
results similar to those for theAssouad spectra; see [GHM19]. Acommonobservation
is that the intermediate spectrum is constant and equal to either the quasi-Assouad
or Assouad dimension around a threshold function. hat is, there exists a function
ϕ(x) such that dim φ

A F = dim qA F for φ(x) = ω(ϕ(x)) and dim φ
A F = dimA F for

φ(x) = o(ϕ(x)), where we have used the standard little omega- and o-notations.1
he standard examples where quasi-Assouad and Assouad dimensions diòer are ran-
dom constructions, and this threshold can be considered a phase transition in the
underlying stochastic process. In this paper we will explore this threshold function
for various random models.

García et al. [GHM19a] considered the following random construction. Let (l i) be
a non-increasing sequence such that∑ l i = 1. For each i, let U i be an i.i.d. copy of U ,
the random variable that is uniformly distributed in [0, 1]. Note that, almost surely,
U i ≠ U j for all i ≠ j. herefore, almost surely, there is a total ordering of the (U i).
he complementary set of the random arrangement E is deûned as the complement
of arranging open intervals of length l i in the order induced by (U i). hat is,

E = ⋃

y∈[0,1]
{x =∑

Vy

l i ∶ Vy = {i ∶ U i < y}} .

Almost surely, this set is uncountable and has a Cantor-like structure. García et al.
previously determined the (quasi-)Assouad dimensions of deterministic realisations
[GHM16], where the order is taken as U i < U i+1 as well as the Cantor arrangement,
when U i is equal to the right-hand end point of the canonical construction inter-
vals of the Cantor middle-third set (ignoring repeats). hey conûrmed in [GHM19a]
that the quasi-Assouad dimension of E is almost surely equal to the quasi-Assouad

1A function satisûes f (x) = o(g(x)) if f /g → 0 as x → 0. Similarly, f (x) = ω(g(x)) if g(x) =
o( f (x)).
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dimension of the Cantor arrangement C, whereas the Assouad dimension takes the
value 1. hey further gave the threshold function, which they computed as ϕ(x) =

log ∣ log x∣/∣ log x∣.

heorem 1.1 (García et al. [GHM19a]) Let ϕ(x) = log ∣ log x∣/∣ log x∣ and let l i be a
decreasing sequence such that∑ l i = 1. Assume further that there exists ε > 0 such that

ε <
∑ j≥2n+1 l j
∑ j≥2n l j

< 1 − ε

for all n ∈ N. hen, almost surely, dim φ
A E = dim φ

A C for φ = ω(ϕ(x)) and dim φ
A E = 1

for φ = o(ϕ(x)).

In this article, we give elementary proofs of the threshold dimension functions for
several canonical random sets. Under separation conditions we obtain the threshold
for one-variable random iterated function systems with self-similar maps and self-
aõne maps of Bedford–McMullen type. We also determine the threshold for the
Gromov boundary of Galton–Watson trees. While we do not state it explicitly, us-
ing themethods found in [Tr19], our result for Galton–Watson trees directly applies
to stochastically self-similar and self-conformal sets aswell as fractal percolation sets.

Our proofs rely on the theory of large deviations as well as a dynamical version of
the Borel–Cantelli lemmas.

2 Definitions and Results

Let ϕ ∶ R+
→ R+. We say that ϕ is a dimension function if ϕ(x) and ϕ(x)∣ log x∣ are

monotone. Let Nr(X) be the minimal number of sets of diameter at most r needed
to cover X. he generalised Assouad spectrum (or intermediate Assouad spectrum)
with respect to ϕ is given by

dimϕ
A F = inf {s ∶ (∃C > 0)(∀0 < r = R1+ϕ(R)

< R < 1)

sup
x∈F

Nr(F ∩ B(x , R)) ≤ C(
R
r
)

s
= R−ϕ(R)s

} .

We will also refer to this quantity as the ϕ-Assouad dimension of F. Many other vari-
ants of the Assouad dimension can now be obtained by restricting ϕ in some way.
he Assouad spectrum dim θ

A considered by Fraser and Yu can be obtained by set-
ting ϕ(R) = 1/θ − 1. he quasi-Assouad dimension dim qA F is given by the limit
dim qA F = limθ→1 dim

θ
A F, whereas the Assouad dimension is obtained by letting

ϕ(R) = 0 and allowing r ≤ R. We note that we deûne the generalised Assouad spec-
trum slightly diòerently than in [FY18]. Instead of requiring r = φ(R), we consider
the dimension function ϕ setting r = R1+ϕ(R). Hence, φ(R)/R = Rϕ(R). We use this
notation as it is slightly more convenient to use.

In fractal geometry, two canonical models are used to obtain random fractal sets:
stochastically self-similar sets and one-variable random sets. We ûrst compute the
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generalised Assouad spectrum forGalton–Watson processes fromwhich the stochas-
tically self-similar casewill follow. Wewill thenmove on to one-variable random con-
structions and analyse random self-similar constructions as well as a randomisation
of Bedford–McMullen carpets.

2.1 Galton–Watson Trees and Stochastically Self-similar Sets

Let X be a random variable that takes values in {0, 1, . . .} andwrite θ j = P{X = j} for
the probability that X takes value j. he Galton–Watson process Z i is deûned induc-
tively by letting Z0 = 1 and Zk+1 = ∑

Zk
j=1 X j , where each summand X j is an i.i.d. copy

of X. he Galton–Watson tree is obtained by considering a tree with single root and
determining ancestors for every nodewith law X, independent of all other nodes. he
number of nodes at level k is then given by Zk and, conditioned on non-extinction,
this process generates a (random) inûnite tree. We endow the set of inûnite descend-
ing paths starting at the root with the standardmetric d(x , y) = 2−∣x∧y∣, where ∣x ∧ y∣
is the level of the least common ancestor. his gives rise to the Gromov boundary of
the random tree that we refer to as Fτ .

hroughout, we assume that we are in the supercritical case, i.e.,

m = E(X) =

N

∑

k=1
θkk > 1.

Wewill also assume that theGalton–Watson process has bounded oòspring distribu-
tion,meaning that there exists N such that θk = 0 for all k > N .

he normalised Galton–Watson process is deûned by Wk = Zk/mk . It is a stan-
dard application of the martingale convergence theorem to show that Wk → W al-
most surely. Conditioned on non-extinction,we additionally haveW ∈ (0,∞) almost
surely. We refer the reader to [Li00,LPP95] for some other fundamental dimension
theoretic results of Galton–Watson processes.

Itwas established in [FMT18] that theGromov boundary, using the standardmet-
ric, has Assouad dimension logN/ log 2 almost surely. In [Tr19], the quasi-Assouad
dimension was computed as

dim qA Fτ =
logE(X)

log 2
= dimB Fτ = dimH Fτ

almost surely. his means, in particular, that the θ-Assouad spectrum is constant
and equal to the Hausdorò dimension.2 his is in fact the typical behaviour for all
dimension functions ϕ(x) ≤ C(log ∣ log x∣/∣ log x∣), where C > 0 is some constant.
Conversely, for ϕ(x) = ω(log ∣ log x∣)/∣ log x∣) we recover the Assouad dimension; cf.
heorem 1.1.

heorem 2.1 Let Fτ be the Gromov boundary of a supercritical Galton–Watson tree
with bounded oòspring distribution. Let

ϕ(x) >
log ∣ log x∣
∣ log x∣

(ε logm)
−1

2In all models considered in this paper (except the self-aõne construction), the Hausdorò and box-
counting dimensions coincide almost surely, and all instances of dimB can be replaced by dimH .
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be a dimension function. hen

dimϕ
A Fτ ≤ (1 + ε)dimB Fτ

almost surely.

Note that we trivially have dimϕ
A F ≥ dimB F, and so we have the following

corollary.

Corollary 2.2 Let ϕ(x) = ω(log ∣ log x∣/∣ log x∣) be a dimension function. hen
dimϕ

A Fτ = dimB Fτ = dimH Fτ almost surely.

For the reverse direction, we obtain the following bound.

heorem 2.3 Let Fτ be the Gromov boundary of a supercritical Galton–Watson tree
with bounded oòspring distribution. Let N be themaximal integer s.t. θN > 0. Further,
let

(2.1) ϕ(x) <
log ∣ log x∣
∣ log x∣

log(N/m)

ε logm logN

be a dimension function. hen,

dimϕ
A Fτ ≥ min{(1 + ε)dimB Fτ , dimA Fτ}

almost surely.

Assume thatm < N and so dimB Fτ < dimA Fτ almost surely. Under the hypothesis
of heorem 2.3, for ε satisfying (1 + ε) = dimA Fτ/dimB Fτ = logN/m, we obtain
dimϕ

A Fτ ≥ dimA Fτ almost surely. It follows that for

ϕ(x) <
log ∣ log x∣
log(1/x)

log(N/m)

(N/m) logm logN
=

m
N

(

1
logm

−

1
logN

)

log ∣ log x∣
∣ log x∣

,

we get dimϕ
A Fτ = dimA Fτ .

Corollary 2.4 here exists C > 0 such that, almost surely, dimϕ
A Fτ = dimA Fτ for all

dimension functions ϕ(x) ≤ C log ∣ log x∣/∣ log x∣).

We will prove both theorems in Section 3. hese two bounds are not optimal in
the sense that there is a slight gap between the upper and the lower bound. his gap,
a�er rearranging, is of order 1− logm/ logN = 1− dimB Fτ/dimA Fτ . Let ϕε be equal
to the right-hand side of (2.1). We can combineheorems 2.1 and 2.3 to give

(1 + ε)dimB Fτ ≤ dim
ϕε
A Fτ ≤ (1 + ε)

dimA Fτ

dimA Fτ − dimB Fτ
dimB Fτ

for an appropriate range of ε > 0.
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2.1.1 Stochastically Self-similar Sets

heorems 2.1 and 2.3 can also be applied in the setting of stochastically self-similar sets
that were ûrst studied by Falconer [Fal86] and Graf [Gr87]. Since we do not exclude
the case where there is no descendant, the analysis also applies to fractal percolation
in the sense of Falconer and Jin [FJ15]. In the case ofMandelbrot percolation, where
a d-dimensional cube is split into nd equal subcubes of sidelength 1/n and is kept
with probability p > 0, the number of subcubes is a Galton–Watson process, and
the surviving subcubes at level k can be modelled by a Galton–Watson tree. Since
subcubes at the same level have the same diameters, the limit set is almost surely
bi-Lipschitz to the Gromov boundary of an appropriately set up Galton–Watson tree
with the small caveat that the graphmetric needs to be changed from d(x , y) = 2−∣x∧y∣

to d′(x , y) = n−∣x∧y∣. his change, however, just aòects the results above by a constant
and not their asymptotic behaviour. For non-homogeneous self-similar sets, where
the sizemay vary at a given generation, one needs to set up aGalton–Watson tree that
models the set. his is described in full detail in [Tr19], and we omit its derivation
here. Using thosemethods,heorems 2.1 and 2.3 become the following corollary.

Corollary 2.5 Let Fτ be a stochastically self-similar set arising from ûnitelymany self-
similar IFS that satisfy the uniform open set condition. hen if ϕ(x) = ω(log ∣ log x∣/
∣ log x∣), we obtain dimϕ

A Fτ = dimB Fτ almost surely. Conversely, if ϕ(x) = o(log ∣
log x∣/∣ log x∣), then dimϕ

A Fτ = dimA Fτ almost surely.

2.2 One-variable Random Sets

A diòerent popular model for random fractal sets is the one-variable model. It is
sometimes also referred to as a homogeneously random construction. We will avoid
the latter term to avoid ambiguity with homogeneous iterated function systems. Let
Λ ⊂ Rn be a compact set. With each λ ∈ Λ, we associate an iterated function system
Iλ = { f λ1 , . . . , f λNλ

}, where each f λi is a strictly contracting diòeomorphism on some
non-empty open set V . hroughout this section we make the standing assumption
that supλ Nλ <∞, that 0 < inf λ , i ,x ∣( f λi )

′
(x)∣ ≤ supλ , i ,x ∣( f

λ
i )

′
(x)∣ < 1, and that there

exists a non-empty compact set ∆ ⊂ V such that f λi (∆) ⊆ ∆ for all λ ∈ Λ and 1 ≤ i ≤
Nλ . With each ω ∈ Ω = ΛN, we associate the set Fω given by

Fω =

∞
⋂

k=1
⋃

1≤i j≤Nλ j
1≤ j≤k

f λk
ik ○ ⋅ ⋅ ⋅ ○ f λ1i1 (∆).

Let µ be a Borel probabilitymeasure supported on Λ and let P = µ(N) be the product
measure on Ω = ΛN. We write

E(X(ω)) = ∫
Ω
X(ω)d P(ω) and Eg

(X(ω)) = exp∫
Ω
logX(ω)d P(ω).

he one-variable random attractor Fω is then obtained by choosing ω ∈ Ω according
to the law P.
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2.2.1 One-variable Random Self-similar Sets

To make useful dimension estimates, we have to restrict the class of functions. he
simplest model is that of self-similar sets, where we restrict f λi to similarities. hat is,
∣ f λi (x) − f

λ
i (y)∣ = c

λ
i ∣x − y∣ for all x , y ∈ V and some cλi > 0. It is well known that

for self-similar maps and our standing assumptions, theHausdorò and box-counting
dimensions are bounded above by the unique s satisfying

(2.2) Eg
( ∑

1≤i≤Nω1

(cω1
i )

s
) = 1.

If one further assumes that there exists a non-empty open set U such that the union
⋃

Nλ
i=1 f

λ
i (U) is disjoint for all λ and f λi (U) ⊆ U ,we say that the uniformopen set con-

dition holds. Under this assumption the unique s in (2.2) coincides with the Haus-
dorò, box-counting, and quasi-Assouad dimension of Fω for P-almost all ω; see e.g.,
[Tr17] and references therein. Since we refer to the sum above quite frequently, we
writeSt

λ = ∑(cλi )
t . To avoid the trivial case when the Assouad dimension coincides

with the Hausdorò dimension, and there is nothing to prove as the generalised As-
souad dimension coincides with this common value, we make the assumption that
the system is not almost deterministic. hat is, P(Ss

ω1
= 1) ≠ 1, where s is the almost

sure Hausdorò dimension. In particular, this implies that the Assouad dimension is
strictly larger than the Hausdorò (and upper box-counting) dimension. In fact, the
Assouad dimension of Fω is, almost surely, given by

dimA Fω = sup{s ∶ µ({λ ∈ Λ ∶Ss
λ ≥ 1}) > 0};

see [FMT18,Tr17]. To not obscure the result with needless technicality, we only anal-
yse the case when the iterated function systems are homogeneous, i.e., cλi = c

λ
j for all

λ. We write c(λ) for the common value; then Ss
λ = Nλc(λ)s .

heorem 2.6 Let Fω be a one-variable random self-similar set generated by homo-
geneous iterated functions systems satisfying the uniform open set condition. hen the
following dichotomy holds: Let ϕ(x) be a dimension function such that

∞
∑

k=1
e−ϕ(e−k)k

<∞.

hen dim φ
A Fω = dimB Fω for dimension functions φ(x) = ω(ϕ(x)), almost surely.

Conversely, let ϕ(x) be a dimension function such that
∞
∑

k=1
e−ϕ(e−k)k

=∞.

hen dim φ
A Fω = dimA Fω for dimension functions φ(x) = o(ϕ(x)), almost surely.

Additionally, assume there exists Λ′
⊂ Λ such that SsA

λ = 1 for all λ ∈ Λ′, where sA is
the almost sure Assouad dimension of Fω , and µ(Λ′

) > 0. hen the above result holds
for all φ(x) ≤ C(ϕ(x)), where C > 0 is some constant.

We prove this in Section 4. hemethods we have used rely on the individual iter-
ated function systems being homogeneous, butwe need not havemade this argument.
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Figure 1: Two Bedford–McMullen carpets with their generating aõne maps. he le� example
F1 has m1 = 3, n1 = 5, C1 = 3, B1 = 3, and N1 = 5. he right example F2 has m2 = 2, n2 = 4,
C2 = 3, B2 = 2, and N2 = 4.

One can construct random graph-directed attractors that approximate the random
set to arbitrary precision; see [Tr17, §2]. A similar argument to that of heorem 2.6
should give an analogous result. Since this is somewhat more technical, we leave this
case open.

2.2.2 One-variable Random Bedford–McMullen Carpets

Bedford–McMullen carpets were ûrst studied in [Be84,Mc84] and are simple self-
aõne iterated function systems that are o�en the easiest to give as counterexamples
to the self-similar theory. hey consist of non-overlapping images of the unit square
with ûxed horizontal and vertical contraction of 1/m and 1/n, respectively, that align
in an m × n grid of the unit square. See Figure 1 for two examples.

We randomise the construction in the sameone-variable random fashionby choos-
ing diòerent sub rectangles at every step from the ûnite collection of possible arrange-
ments. We denote these in the same way and write 2 ≤ mλ < nλ ≤ N < ∞ for the
subdivisions. hen, f λi (x) are of the form

f λi (x) = (
1/mλ 0
0 1/nλ

) x + (
aλ
i
bλ
i
) ,

where aλ
i ∈ {0, . . . ,mλ − 1} and bλ

i ∈ {0, . . . , nλ − 1}. he boundedness of nλ implies
that there are only ûnitely many IFSs with ûnitely many maps. Hence, Λ is ûnite and
µ is ûnitely supported. We write pλ = µ(λ).

We rely heavily on results in [FT18], where the θ-Assouad spectrum of these at-
tractors are found. In fact, this part can be considered an extension of [FT18], in the
sense that the previous work gave a complete characterisation of the spectrum be-
tween the upper box-counting and the quasi-Assouad dimension, whereaswe extend
this to the Assouad dimension. Let Cλ be the maximal number of maps that align
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in a column and let Bλ be the maximal number of non-empty columns. Further, let
Nλ be the number ofmaps in the IFS indexed by λ; see also Figure 1 for an example.
Write n = Eg

(nλ) andm = Eg
(mλ). Similarly, let B,C, and N denote their respective

geometricmeans. he almost sure Assouad spectrum was found in [FT18] to be

dim θ
A Fω =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
1−θ (

log(B Cθ N−θ)
log m +

log(N B−1C−θ)
∑λ pλ log nλ

) , 0 < θ ≤
log m
log n ,

log B
log m +

log C
log n ,

log m
log n < θ < 1.

From this we can further deduce that, almost surely,

dimB Fω =

logB
logm

+

logN B
−1

log n
and dim qA Fω =

logB
logm

+

logC
log n

.

However, the almost sure Assouad dimension is generally distinct from the quasi-
Assouad dimension and given by

dimA Fω = max
λ∈Λ

logBλ

logmλ
+max

λ∈Λ

logCλ

log nλ
;

see [FMT18]. Note, in particular, that the dimension does not depend on the exact
form of µ, provided it is supported on Λ. Our main result in this section is bridging
this gap with a similar dichotomy as for self-similar sets.

heorem 2.7 Let Fω be a one-variable random Bedford-McMullen carpet. hen the
following dichotomy holds. Let ϕ(x) ≤ log n/ logm − 1 be a dimension function such
that

∞
∑

k=1
e−ϕ(e−k)k

<∞.

hen dim φ
A Fω = dim qA Fω for dimension functions φ(x) = ω(ϕ(x)), almost surely.

Conversely, let ϕ(x) be a dimension function such that
∞
∑

k=1
e−ϕ(e−k)k

=∞.

here exists C > 0 such that dim φ
A Fω = dimA Fω for all dimension functions φ(x) ≤

Cϕ(x), almost surely.

Remark 2.8 he dichotomies, or phase transitions, observed in heorems 2.1, 2.3,
2.6, and 2.7 can be seen as a formof randommass transference principle, as described
in [AT19, §5]. In the theorems described there, no assumptions are beingmade on the
overlaps, and itwould be interesting to know if any separation condition assumptions
are needed in our results at all.

3 Proofs for Galton–Watson Trees

In this section we proveheorems 2.1 and 2.3. We rely on the following lemma.
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Lemma 3.1 Let Zk be a Galton–Watson process with ûnitely supported oòspring dis-
tribution. hen there exists τ > 0 and K > 0 such that for all ε > 0,

P(Zk ≥ m(1+ε)k
) ≤ K exp(−τmεk

)

for all k ∈ N.

he lemma follows easily from a standard Chernoò bound combined with a sim-
pliûed probability generating functiondue to the ûnitely supported oòspringdistribu-
tion. For amore general resultwith unbounded support, see Athreya [At94,heorem
4] and [Tr19, §3].

Proof of Lemma 3.1 Note that

P(Zk ≥ m(1+ε)k
) = P(Wk ≥ mε k

) = P(exp(τWk) ≥ exp(τmε k
))

≤ exp(−τmε k
)E(exp(τWk))

by Markov’s inequality.
It remains to bound supk E(exp(τWk)) for some τ > 0. Let FX(s) = E(sX) be the

probability generating function of the random variable X. hen

FZk(s) = E (s∑
Zk−1
i=1 X

) = E (E(s∑
Zk−1
i=1 X

∣ Zk−1 = z))

= E (E(sX)Zk−1
) = FZk−1 ○ FX(s),

and so
FZk(s) = FX ○ ⋅ ⋅ ⋅ ○ FX

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

(s) =∶ F(k)
X (s).

We also obtain FWk(s) = F(k)
X (s1/m

k
), and bounding supk E(exp(τWk)) is equiv-

alent to ûnding s > 1 such that supk FWk(s) < ∞. Since X is ûnitely supported,
FX(s) = ∑

N
i=0 θ i s i is a polynomial of degree N . It is easy to check that FX(1) = 1

and F′X(1) = ∑
N
i=1 θ i i = E(X) = m. herefore, FX(s) is a C2 diòeomorphism with

derivative bounded away from 1 and ∞ in B(1, δ1) for some δ1 > 0. Its inverse
F(−1)
X (s), therefore, is a strict contraction with derivative 1/m at s = 1 with ûxed point
F(−1)
X (1) = 1.
Let G(s) = s1/m . Note that G′

(1) = 1/m and G(1) = 1. Further, there exists δ2 > 0
such that G(s) is a C2 diòeomorphism with derivative bounded away from 0 and 1.
Note that FWk(s) = F(k)

X ○ G(k)
(s), and, using the chain rule and smoothness, it is

easy to check that

d
ds
F(−k)
X (s) ≤ C1

d
ds
F(−k)
X (t) (∀s, t ∈ B(1, δ1), ∀k ∈ N ) ,

d
ds

G(k)
(s) ≤ C2

d
ds

G(k)
(t) (∀s, t ∈ B(1, δ2), ∀k ∈ N ) ,

and
d
ds
F(−k)
X (1) =

d
ds

G(k)
(1) = m−k .
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Observe that B(1, δ1/(C1mk
)) ⊂ F(−k)

X (B(1, δ1)), and set 0 < ε ≤

min{δ2 , δ1/(C1C2)}. It follows that diam(G(k)
(B(x , ε)) ≤ 2C2 ε /mk

≤ δ1/(C1mk
),

and so
G(k)

(B(1, ε)) ⊆ B( 1, δ1/(C1mk
)) ⊆ F(−k)

X (B(1, δ1)) .

herefore, FWk(1 + ε) = F(k)
X ○ G(k)

(1 + ε) ≤ 1 + δ1. Letting K = 1 + δ1, our claim
holds. ∎

Note that a ball of size r in themetric on Fτ with centre x ∈ Fτ is simply the unique
subtree containing x that starts at level k satisfying 2−k

≤ r < 2−(k−1). Hence, for
two scales r < R the quantity Nr(B(x , R)) is equal to the number of nodes at level l
satisfying 2−l

≤ r < 2−(l−1) that share a common ancestor with x at level k satisfying
2−k

≤ R < 2−(k−1). Using independence, this is an independent copy of Z l−k+1 and so
Nr(B(x , R)) ∼ Zlog2(1/r)−log2(1/R).

Proof of Theorem 2.1 Fix ε > 0. By Lemma 3.1, we have

P{Zk ≥ m(1+ε)k for some k ≥ l} ≤ K
∞
∑

j=l
exp(−τmεk

) ≲ exp(−τmε l
).

For large enough k, there exists A (depending on the realisation) such that Zk ≤ Amk ,
almost surely. hus, the probability Pk that there is a node at generation k that exceeds
the average from generation (1 + ϕ(e−k

))k onwards satisûes

Pk ≲ mk exp(−τmεϕ(e−k)k
) = exp ( k logm − τmεϕ(e−k)k

)

≤ exp ( k logm − τm(1+δ) log k/ log m
)

for some δ > 0 by assumption on ϕ. Finally, as k logm − τk(1+δ) < −k1+δ/2 for large
enough k, we have

∞
∑

k=1
Pk ≲

∞
∑

k=1
exp(k logm − τk1+δ

) ≲

∞
∑

k=1
exp(−τk1+δ/2

) <∞.

An application of the Borel–Cantelli lemma shows that, almost surely, there exists a
level k0 fromwhich no node at level k ≥ k0 in theGalton–Watson treewill havemore
than m(1+ε)l many descendants for l ≥ ϕ(e−k

)k. Geometrically, this means that for
all r ∼ 2−l

< R(1+ϕ(e−k))k
∼ 2−(1+ϕ(e−k)k small enough, we obtain

Nr(B(x , R)) ∼ Z l−k ≲ m(1+ε)(log2(1/r)−log2(1/R)) = (

R
r
)

(1+ε) log m/ log 2
,

which gives the required result. ∎

Proof of Theorem 2.3 Let N = max{i ∶ θ i > 0} and assume that N > m, as other-
wise there is nothing to prove. here exists q > 0 and k0 ≥ 1 such that P(Zk > mk

) ≥ q
for all k ≥ k0 by themartingale convergence theorem. Write p = θN . Fix k such that
k − lk > k0, where lk = εk logm/ log(N/m). Consider the probability that themaxi-
mal branching is chosen in the ûrst lk levels a�er the root. hen, at level lk , there are
N lk descendants. his occurs with probability p pN pN2

⋅ ⋅ ⋅ pN lk−1 . Each descendant
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has mk−lk descendants at level k with probability at least q and therefore the proba-
bility that Zk ≥ m(1+ε)k is bounded below by

(3.1) p ⋅ ⋅ ⋅ pN lk−1qN lk
≥ ρN lk+1

= exp(N εk log m/ log(N/m)+1
⋅ log ρ)

for some ρ > 0. Let (k i) be a sequence such that (1 + ϕ(e−k i
))k i < k i+1. hen

(3.2) P̃i = P (∃ node at level k i s.t. Zn i ≥ m(1+ε)n i

for n i = ϕ(e−k i
)k i ≥ ( 1 − (1 − ρN lk i

)
Amk

)

by independence and the fact that there are at least Amk nodes at level k. Note that
by combining (2.1) with (3.1), one obtains

ρN lk+1
≥ exp(Nk1−δ log ρ)

for some δ > 0. Since further Amk
= Aexp(k logm), we obtain

exp log(1 − ρN lk i
)
Amk

≤ exp(−AmkρN lk i
)

≤ exp (−Aexp(k logm − Nk1−δ log(1/ρ))) Ð→ 0.

herefore, for large enough k, the quantity in (3.2) is bounded below by 1/2 and

∑

i
P̃i ≳∑

i
1/2 =∞.

he disjointness, combined with the Borel–Cantelli lemma, therefore posits the exis-
tence of inûnitelymany i forwhich such amaximal chain exists. he dimension result
directly follows by taking R i = 2−k i and r i = 2−n i to give a sequence of Nr i (B(x i , R i))

such that

Nr i (B(x i , R i)) ≳ m(1+ε)(n i−k i)
= (

R
r
)

(1+ε) log m/ log 2
. ∎

4 One-variable Proofs

4.1 Cramér’s Theorem for i.i.d. Variables

Cramér’s theorem is a fundamental result in large deviations concerning the error of
sums of i.i.d. random variables. Given a sequence of i.i.d. random variables (X i)i ,
we write Sn = ∑

n
i=1 X i . he rate function of this process is deûned by the Legendre

transform of the moment generating function of the random variable. hat is, the
moment generating function is M(θ) = E(exp(θX1)), and its Legendre transform is
I(x) = supθ∈R θx − logM(θ).

heorem 4.1 Let (X i)i be a sequence of centred i.i.d. random variableswith common
ûnitemoment generating function M(θ) = E(exp(θX1)). hen ifM(θ) iswell-deûned
for all θ, the following hold:
(i) for any closed set F ⊆ R,

lim sup
n→∞

1
n

logP(Sn ∈ F) ≤ − inf
x∈F

I(x);
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(ii) for any open set U ⊆ R,

lim inf
n→∞

1
n

logP(Sn ∈ U) ≥ − inf
x∈U

I(x).

Letting F = [a,∞) and U = (a,∞) for 0 < a < ess supX1, we have I(a) > 0, and
for all δ > 0, there exists Nδ ∈ N such that

− inf
x∈U

I(x) − δ ≤
1
n

logP{Sn ∈ U} ≤

1
n
P{Sn ∈ F} ≤ − inf I(x) + δ,

e−(I(a)+δ)n ≤ P{

n

∑

i=1
X i ≥ an} ≤ e−(I(a)−δ)n

for all n ≥ Nδ , since I is non-decreasing. Note that this holds for any n large enough,
and so in particular, even if n depends on the stochastic process.

4.2 A Dynamical Borel–Cantelli Lemma

To establish the strong dichotomy of the almost sure existence of extreme events, we
will need a theorem slightly stronger than the second Borel–Cantelli lemma.

Let En be a sequence of events such that∑P(En) =∞. If those events were inde-
pendent, the second Borel–Cantelli lemma would assert that almost every ω ∈ Ω is
contained in ω ∈ En for inûnitely many n, i.e.,

P (

∞
⋂

K=1

∞
⋃

k=K
Ek) = 1.

Since we will be dealing with events that are not independent, we will use a stronger
version. Deûne the correlation by

Rn ,m = P(En ∩ Em) − P(En)P(Em).

he following theorem can be derived from the work of Sprindžuk [Sp79]; see also
[CK01,heorem 1.4].

heorem 4.2 Let En be a sequence of events such that ∑P(En) =∞. Assume there
exists C > 0 such that

∑

N≤n ,m≤M
Rn ,m ≤ C

M

∑

i=N
P(E i)

for all 1 ≤ N < M <∞. hen, for P-almost every ω, ω ∈ En for inûnitely many n.

Proof his is a direct application of [Sp79, §7, Lemma 10] with fk(ω) = χEk(ω),
fk = φk = P(Ek), and the conclusion that∑ χEk(ω) diverges. ∎

4.3 Proof of Theorem 2.6: Self-similar Sets

Let X i = logSs
ω i
= logNω i c(ω i)

s . Note that E(X i) = 0 and ess sup∣Xλ ∣ <∞. Hence,
the moment generating function of X i is well deûned for all θ, and we can apply
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Cramér’s theorem. Let r < R1+φ(R)
< R < R0, and set k(R) and k(r) such that

k(R)
∏

i=1
c(ω i) ∼ R and

k(r)
∏

i=1
c(ω i) ∼ r.

Since ϕ(e−x)x is non-increasing we can, without loss of generality, take R0 (depend-
ing on the realisation) small enough such thatCramér’s theoremholds for k(r)−k(R).
hus, for all ε > 0,

P{

k(r)
∑

i=k(R)
X i ≥ ε(k(r) − k(R))} ≤ e−(I(ε)−δ)(k(r)−k(R)) .

herefore, the probability P(R) that there exists r satisfying r < R1+φ(R)
< R < R0 for

a given R is bounded by

P(R) ≤
∞
∑

l=k(R1+φ(R))
P{

l

∑

i=k(R)
X i ≥ ε(l − k(R))}

≤

∞
∑

l=k(R1+φ(R))
e−τ(l−k(R))

≲ e−τ(k(R1+φ(R))−k(R)) ,

where we have written τ = I(ε)− δ to ease notation. Without loss of generality, using
Cramér’s theorem we can assume that R0 is also chosen small enough such that

Eg
(c(λ))(1+δ)(k(R

1+φ(R))−k(R))
≤

k(R1+φ(R))
∏

i=k(R)
c(ω i) ∼

R1+φ(R)

R
= Rφ(R) .

hus,

k(R1+φ(R)
) − k(R) ≥ −τ′ φ (

k(R)
∏

i=1
c(ω i)) ⋅ log (

k(R)
∏

i=1
c(ω i))

for some τ′ > 0. Now, for any given ω, the number of levels such that log(R) = n is
uniformly bounded. Further, the number of products of∏ c(ω i) that are comparable
to e−n is uniformly bounded. herefore, the sum over the probabilities that there
exists a ball B(x , R) at level k(R) such that X i exceeds the mean by more than ε is
bounded by

∞
∑

log R=1
P(R) ≤ C∑

n=1
e−ττ′ φ(R) log 1/R

≤ C′∑
n=1
e−ττ′ φ(e−n)n

< C′′
∞
∑

n=1
e−ϕ(e−n)n

<∞.

By the Borel–Cantelli lemma, this happens only ûnitely many times, almost surely.
Finally, we can conclude that almost surely for small enough R (depending on the
realisation) there are no pairs r < R1+φ(R) such that ∑k(r)

i=k(R) X i > ε(k(r) − k(R)).
hen

k(r)
∑

i=k(R)
logNω i c(ω i)

s
≤ ε(k(r) − k(R)).
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Observe that the number of r coverings is comparable to the number of descendants
of the B(x , R) cylinder. herefore,

Nr(B(x , R) ∩ Fω) ∼
k(r)
∏

i=k(R)
Nω i ≲

k(r)
∏

i=k(R)

eε

c(ω i)s ≲ (

R
r
)

s+ε′

for some ε′ such that ε′ → 0 as ε → 0. Since ε was arbitrary, we have the desired
conclusion for the ûrst part.

We now prove the second half of the theorem. Recall that the almost sure Assouad
dimension sA of Fω is given by sA = supλ∈supp µ{− logNλ/ log c(λ)}. Let ε > 0 and
take

Tε = {λ ∈ Λ ∶

− logNλ

log c(λ)
≥ sA − ε } and pε = µ(Tε).

Deûne csup = supλ c(λ) and cinf = inf λ c(λ). Let ψ(n) = φ((csup)n
)γ, where φ is

given as φ(R) = o(ϕ(R)) and γ = log cinf/ log csup. Recall that ψ is non-increasing
and consider the events

En = {ω ∈ Ω ∶ ω i ∈ Tε for n ≤ i < n + ψ(n)n}.

Clearly, P(En) = pψ(n)n
ε . he event En ∩ Em for n ≤ m has probability

P(En ∩ Em) = pψ(m)m+m−n
ε

due to the overlap of [n,ψ(n)n] ∩ [m,ψ(m)m]. he correlation is

Rn ,m = P(En ∩ Em) − P(En)P(Em) = pψ(m)+m−n
ε − pψ(n)n+ψ(m)m

ε .

herefore,

∑

N≤n ,mM
Rn ,m ≤ 2

M

∑

m=N

m

∑

n=N
Rn ,m ≤ 2

M

∑

m=N
pψ(m)m
ε

m

∑

n=N
pm−n
ε

≤ 2
M

∑

m=N
pψ(m)m
ε

∞
∑

i=0
pi
ε ≤ Cε

M

∑

m=N
pψ(m)m
ε ≤ Cε

M

∑

m=N
P(Em)

for all 1 ≤ N < M <∞. To useheorem 4.2, it remains to check divergence the latter
sum. As we are in the diverging case, φ(x) → 0 as x → 0 and φ(x) = o(ϕ(x)) as
x → 0. hen

∞
∑

n=1
P(Em) =

∞
∑

n=1
pψ(n)n
ε =

∞
∑

n=1
e− φ((csup)n)γn log(1/pε)

=

∞
∑

n=1
exp (−φ(e−n log(1/csup)

)n log(1/csup)γ
log(1/pε)
log(1/csup)

)(4.1)

≳

∞
∑

n=1
exp (−ϕ(e−n log(1/csup)

)n log(1/csup))(4.2)

∼

∞
∑

n=1
exp (−ϕ(e−n

)n) =∞,(4.3)

where we have used the integration test and the substitution rule to obtain (4.3). We
have obtained (4.2) by φ(x) = o(ϕ(x)) to combat the ûnal fraction in (4.1). However,
if pε is bounded away from 0 as ε → 0, we can sharpen this to φ(x) ≤ Cϕ(x) by
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taking ε = 0 and using the bound on pε . his can happen when there exists Λ′
⊂ Λ

with µ(Λ′
) > 0 that maximises − logNλ/ log c(λ), i.e., when SsA

λ = 1 for all λ ∈ Λ′.
Application ofheorem4.2 gives us thatω ∈ En for inûnitelymany n, almost surely.

hat is, given a generic ω ∈ Ω, there are inûnitely many n such that ωk ∈ Tε for n ≤

k ≤ ψ(n)n. herefore, considering the ball fω∣n(∆)∩Fω of diameter R ∼∏
n
k=1 c(ωk),

we can use the fact that the interiors are separated and standard arguments (see e.g.,
[Tr19, Lemma 3.2]) to claim that this ball must be covered by at least C∏(1+ψ(n))n

k=n Nωk

many balls of radius r ∼∏(1+ψ(n))n
k=1 c(ωk). herefore, there exist x , r, R such that

Nr(B(x , R) ∩ Fω) ≳
(1+ψ(n))n
∏

k=n
Nωk ≥

(1+ψ(n))n
∏

k=n
c(ωk)

−(s−ε)
∼ (

R
r
)

sA−ε
.

Finally, we check that r ≲ R1+φ(R). his is equivalent to verifying that r/R ≲ Rφ(R),
which we can readily check by the estimates obtained above:

r
R
∼

(1+ψ(n))n
∏

k=n
c(ωk) ≤ (csup)ψ(n)n = exp (φ((csup)n

)nγ log(1/csup))

= (cinf)φ((csup)n)n
≤ Rφ(R) .

herefore, dim φ
A Fω ≥ sA − ε almost surely. Since ε > 0 was arbitrary (or can in cases

be chosen to be 0), we obtain the required result. ∎

4.4 Proof of Theorem 2.7 Bedford–McMullen Carpets

We deûne the random variables kω
1 (R), kω

2 (R) as the levelswhen the rectangles in the
construction have base length R and height R, respectively, that is,

kω
2 (R)
∏

i=1
n−1

ω i
∼ R and

kω
1 (R)
∏

i=1
m−1

ω i
∼ R.

It follows from the estimates in [FT18] that

(4.4) NR1+φ(R)(B(x , R) ∩ Fω) ∼
kω
2 (R

1+φ(R))
∏

l=kω
2 (R)

Cω l

kω
1 (R

1+φ(R))
∏

l=kω
1 (R)

Bω l .

Let X i = logCω i − logC and Yi = logBω i − logB, where C = Eg
(Cλ) and B = Eg

(Cλ).
As in the self-similar case, we have E(X i) = E(Yi) = 0, and due to the ûniteness
of Λ, the moment generating function exists for all θ. Hence we can apply Cramér’s
theorem. Let r < R1+φ(R)

< R < R0, where R0 is chosen small enough such that
Cramér’s theorem holds for kω

i (R) − kω
i (r), (i = 1, 2). hus, for all ε > 0,

P{

kω
2 (r)
∑

i=kω
2 (R)

X i +

kω
1 (r)
∑

i=kω
1 (R)

Yi ≥ ε(kω
2 (r) − kω

2 (R) + kω
1 (r) − kω

1 (R))} ≤

P{

kω
2 (r)
∑

i=kω
2 (R)

X i ≥ ε(kω
2 (r) − kω

2 (R))} + P{

kω
1 (r)
∑

i=kω
1 (R)

Yi ≥ ε(kω
1 (r) − kω

1 (R))} .
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Applying Cramér’s theorem to both probabilities and analogous to the self-similar
case, we obtain

kω
2 (r)
∑

i=kω
2 (R)

X i +

kω
1 (r)
∑

i=kω
1 (R)

Yi < ε ( kω
2 (r) − kω

2 (R) + kω
1 (r) − kω

1 (R)) .

almost surely, for all r < R1+φ(R) with R small enough (and depending on the realisa-
tion). hus, following the same argument as in [FT18], and using (4.4), gives

NR1+φ(R)(B(x , R) ∩ Fω)

≲ C
(1+ε′)(kω

2 (R
1+ϕ(R))−kω

2 (R)) B
(1+ε′)(kω

1 (R
1+ϕ(R))−kω

1 (R))

≲ (

R
r
)

(1+ε′′)sq
,

where sq = essdim qA Fω and ε′′ → 0 as ε → 0. As ε > 0 was arbitrary, we conclude
that dim φ

A Fω = dim qA Fω almost surely. his ûnishes the ûrst part.
For the second part, recall that the almost sureAssouad dimension sA of Fω is given

by

sA = max
λ∈Λ

logBλ

logmλ
+max

λ∈Λ

logCλ

log nλ
.

Without loss of generality, assume the ûrst summand is maximised by 1 ∈ Λ, whereas
the second is maximised by 2 ∈ Λ (where we can identify 1 ∼ 2 if necessary). Deûne
ψ( j) = φ(n j

min) log n2/ log nmax, where φ(x) ≤ γϕ(x) with

γ =
log nmin log nmax

(log(1/p2) + κ log(1/p1)) log n2
and κ = log n2/ logm1 .

Consider the events

E l = {ω ∈ Ω ∶ ω i = 2 for l ≤ i < ψ(l)l and ω i = 1 for l ′ ≤ i < l ′ + κψ(l)l

where l ′ = kω
1 (R) and R is the least value satisfying kω

2 (R) = l} .

Almost surely, kω
1 (R) − kω

2 (R) ≫ ψ(l)l for large enough l . herefore E l consists of
two ûxed strings of letters 2 and 1 of lengths ψ(l)l and κψ(l)l , respectively, that do
not overlap. his further gives P(E l) ∼ pψ(l)l

2 pκψ(l)l
1 . Considering an ω ∈ E l ∩ E j for

j ≤ l there are only two cases that appear (with large probability):
● [ j, j + ψ( j) j] intersects [l , l + ψ(l)l] and [ j′ , j′ + κψ( j) j] intersects
[l ′ , l ′ + κψ(l)l];

● [ j′ , j′ + ψ( j) j] intersects [l , l + ψ(l)l].
In the ûrst case, the probability is given by

(4.5) P(E j ∩ E l) ∼ pψ(l)l+l− j
2 pκψ(l)l+l ′− j′

1 ≤

pψ(l)l+l− j
2 pκψ(l)l+τ(l− j)

1 ∼ P(E l)p
l− j
2 pτ(l− j)

1 .

he estimate that l − j ≲ l ′ − j′ arises from the observation that the R l associated
with l is related to R j by R l /R j ≤ n−(l− j)

min and R l /R j ≥ m−(l ′− j′)
max . his gives τ ≥

log nmin/ logmmax. Note further that the last term in (4.5) implies uniform summa-
bility over 1 ≤ j ≤ l .
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he second case can only occur if the maximal letters are identical, that is, 1 ≡ 2
and p1 = p2. his gives

P(E j ∩ E l) ∼ pκψ(l)l+ψ(l)l+l− j′+ψ( j) j
2 ∼ P(E l)p

l− j′+ψ( j) j
2 ,

which is also uniformly summable over 1 ≤ j ≤ l .
We can conclude that for any 1 ≤ J ≤ l ,

l

∑

j=J
R j , l ≤

l

∑

j=J
P(E j ∩ E l) ≤

l

∑

j=1
P(E j ∩ E l) ≲ P(E l),

and so for 1 ≤ J ≤ L,

∑

J≤ j , l≤L
R j , l ≤ 2

L

∑

l=J

l

∑

j=J
P(E j ∩ E l) ≲

L

∑

l=J
P(E l).

To useheorem 4.2, we need to show that∑P(E j) =∞. his is similar to proving
divergence in heorem 2.6:

∞
∑

j=1
P(E j) ∼

∞
∑

j=1
pψ(l)l
2 pκψ(l)l

1 =

∞
∑

j=1
exp (−(log(1/p2) + κ log(1/p1))ψ(l)l)

=

∞
∑

j=1
exp (−ϕ((nmin)

− j
) j log nmin)

∼

∞
∑

j=1
exp(−ϕ(e− j

) j) =∞.

Hence the conditions ofheorem 4.2 are satisûed and E l happens inûnitely o�en.
As ω ∈ E j for inûnitely many j, almost surely, we have kω

2 (R) = j and kω
1 (R) =

j′ > (1 + ψ( j) j for arbitrarily large j. hen, by the deûnitions of k2 and ψ, we have
R1+φ(R)

≥ Rn−ψ( j) j
2 and Rφ(R)

≥ n−ψ( j) j
2 . Similarly, Rφ(R)

≥ m−κψ( j) j
1 = n−ψ( j) j

2 , and
thus by the estimate (4.4),

NR1+φ(R)(B(x , R) ∩ Fω) ∼
kω
2 (R

1+φ(R))
∏

l=kω
2 (R)

Cω l

kω
1 (R

1+φ(R))
∏

l=kω
1 (R)

Bω l

= Ckω
2 (R

1+φ(R))−kω
2 (R)

2 Bkω
1 (R

1+φ(R))−kω
1 (R)

1

= R− φ(R)(log C2/ log n2+log B1/ log m1)

for inûnitelymany pairs (x i , R i) almost surely. herefore, the almost sure generalised
Assouad spectrumwith respect to φ is equal to the almost sure Assouad dimension.∎
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