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CONVEX SETS, CANTOR SETS AND
A MIDPOINT PROPERTY

BY
HAROLD REITER'

1. Introduction. It is well known that every point of the closed unit interval
I can be expressed as the midpoint of two points of the Cantor ternary set D.
See [2, p. 549] and [3, p. 105]. Regarding I as a one dimensional compact
convex set, it seems natural to try to generalize the above result to higher
dimensional convex sets. We prove in section 3 that every convex polytope K
in Euclidean space R contains a topological copy C of D such that each point
of K is expressible as a midpoint of two points of C. Also, we give necessary
and sufficient conditions on a planar compact convex set for it to contain a copy
of D with the midpoint property above. In the final section we prove a result
on minimal midpoint sets.

2. Notation and definitions. In the sequel, the term Cantor set will mean
any non-empty compact totally disconnected metric space with no isolated
points; that is, any homeomorph of the Cantor ternary set. If A and B are
subsets of R* (or any Banach space), and « is a real number, then, as usual,
A+B={a+b|acA and beB} and aA={aa|acA}. If K is a compact
subset of metric space, the collection 2% of closed subsets of K can be metrized
by the Hausdorff metric. For the most part, the definitions and notation
correspond to that of Grunbaum [1].

DEerINITION. Let Y be a subset of a linear space L. We call a subset X of Y a
pole set for Y provided each point of Y is a midpoint of a pair of (not
necessarily distinct) points of X. If X is a pole set for Y and X is a Cantor set,
then Y is said to contain a Cantor pole set (for itself). Thus X is pole set for Y
if 32X +3X > Y. Of course, if Y is convex 35X +3X < Y. We use conv S and int S
to denote the convex hull of S and the interior of S respectively.

3. Our strategy for proving that every convex polytope has a Cantor pole set
begins by showing that for every d, the d-simplex has this property. We then
express each convex polytope as a finite union of simplices, and from this fact
the desired conclusion easily follows. First, let us record a few remarks, the
proofs of which are left to the reader. The cube C'={(x1,...,%q) | O=x;=1
fori=1,2,...,d} contains a Cantor pole set. The property of having a Cantor
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pole set is an affine invariant; that is, if Y has a pole set homeomorphic with D
and ¢ is a non-singular affine mapping, then ¢(D) is Cantor pole set for ¢(Y).

LEMMA 1. Let d be a positive integer. For each point P of the d-simplex T,
there is a non-singular affine mapping ¢ of the d-cube C? into T* such that
¢ (C?) is a neighborhood of P.

Proof. We may take T? to be the convex hull, conv{0, ey, e,, . . . , e4}, where
0 is the zero vector and {e;}{_; is the standard basis for R“. Because of the
homogeneity of the j-faces of T¢ under non-singular affine maps, we may
assume that (1) each face containing P has 0 as a vertex and that (2) if
P=(xy, Xs,...,%4), then x;=0 implies x;.;=0. Now, if P=0, the (unique)
linear map satisfying ¢(0)=0 and ¢(e;)=e/2 fulfills the requirements. We
proceed by induction on the number of non-zero coordinates of P. If P has one
non-zero coordinate, then by (2), it must be x;e; and by (1), we have 0 <x; <1.
Then the mapping defined by ¢(Q)=G-3x))d(Q)+(Gx,—3)e, is a non-
singular affine map of C? into T® of the desired type since ¢ is such a map. Now
assume that for every point having n non-zero coordinates (n <d), there is a
non-singular affine mapping ¢ of C? into T such that ¢(C?) is a neighbor-
hood of the point in T Let P= (X1, ..., Xn, Xnt1, - - - , X4) have n+1 non-zero
coordinates. Apply the induction hypothesis to the point P'=
(X1,...,%,0,0,...) to obtain a mapping ¢. Note that the directed segment L
from P’ through P intersects the boundary of T in a point R different from P,
since R = P would violate assumption (1). Select a point S in ¢(C*)NL —{P’}
so that S erelint{¢(C?) N F,] where F, is the face {(x1, X2, . . . , Xq) | x; = 0 when
i>n+1}. Now suppose P=aS+(1—a)R. Then the mapping ¢ defined by
Y(Q)=a¢(Q)+(1—a)R has the desired properties. This completes the proof
of the lemma.

Tueorem 1. Let T¢ be a d-simplex. Then T contains a Cantor set D of
measure zero which is a pole set for T

Proof. The following proof was suggested to the author by V. Klee. For each
P in T let C*(P) be the non-singular affine image of C* containing P in its
interior (relative to T“) guaranteed by Lemma 1. Since T is compact, a finite
subcollection C%(P;), C*(P»), ..., C*(P,) can be selected which covers T By
the remarks at the beginning of this section, each of the C%(P) contains a
Cantor pole set, D;. Then D =J_; D; is a Cantor set and D is clearly a pole set
for T Also, since each D; can be chosen to have measure zero, D can be so
chosen.

THEOREM 2. Let K be a convex d-polytope in R?, d=1. Then K contains a
Cantor pole set C. Moreover, C can be chosen to have measure zero.

https://doi.org/10.4153/CMB-1976-070-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1976-070-9

1976] CONVEX SETS 469

Proof. We prove, by induction on d, that each convex d-polytope K can be
expressed as a finite union of d-simplices. For d =1, the result follows from
Theorem 1 because a 1-polytope is a 1-simplex. Now assume that each
d-1-polytope admits a decomposition into d-1-simplices and let K be a
d-polytope. Then each facet (maximal proper face) F; of K, being a d-1-
polytope, can be expressed as the union of a finite number f; of d-1-simplices
Si1, Si2y - - -, Siy. Then

F={S..|n=1,2,...,8}, for i=1,2,...,N.
If P is a point of the interior of K, then
K;,=conv({P}US;,)

is a d-simplex and we have

N ti
K=U U Kin

i=1 n=1
By Theorem 1, each K;, contains a Cantor pole set of measure zero. The
desired pole set is formed by taking the union of the pole sets for the Kj,.

Let K be a compact convex subset of R®, and let S be a subset of K whose

set of midpoints is K. Then every extreme point of K must belong to S. Thus, if
a compact convex set is to have a Cantor pole set, its set of extreme points
must be zero dimensional. For planar compact convex sets, that condition is
also sufficient.

THEOREM 3. Let K be a compact convex subset of R*>. Then K contains a
Cantor pole set if and only if the set ext K is zero dimensional.

Proof. The proof of the necessity is implicit in the remarks above. To prove
the sufficiency, let #={F,:a € A} be the family of proper faces of K. Each F,
is a segment or single point. If P, is a point of int K, then each set K, =
conv({P,} UF,) is a segment or a triangular region. We construct in each K, a
Cantor pole set for K, as follows. Let D be any Cantor pole set for the
triangular region T>.

Let ¢4, ¢2,...,ds be the 6 affine mappings of R onto R? leaving T>
invariant. Let D'=J{-; ¢:(D). If K, is a triangular region and ¢ is an affine
map of T? onto K, let C, = ¢(D"). If K, is a segment let C, = ¢(D' N0, e,]),
where [0, e;]={te;:0=t=<1}. Now let C=J{C,:a € A}. We must show that C
is a Cantor set and that C is a pole set for K. The latter statement is clear since
K={K,:a€ A}.

To prove the former, note first that the subspace {C,:ae A} of 2 is
homeomorphic with the subspace ¥ of 2X. But & is compact. In fact, if {F} is a
convergent sequence of faces, then the sequence {8(F;)} has limit zero, and the
sequence {ext(F;)} of extreme points of the F; converges to a singleton which
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must also be a face. This is due to the fact that the set of extreme points of K is
closed and ext K =|J{ext F,:a € A}. Thus, the set C=J{C,:a € A} is a union
of a compact family of compact sets. Such a union is known to be compact.

Since none of the C, has isolated isolated points, C also does not. It remains
to show that C is zero-dimensional. We do this by showing that C is zero
dimensional at each of its points. There is no problem if the point P of C
belongs to the relative interior of a triangular K,. If P does not belong to the
relative interior of some triangular region K, and P# P,, then there is some
singleton face Fz ={Qo} such that P=APy+(1—1)Q, for A €[0, 1).

Let U be an open ball in K centered at P. We must find an open subset V of
K contained in U, containing P and having empty boundary. Since Cg is
zero-dimensional, there exists points R and S of Kg\Cs N U such that P is
between R and S. We will handle only the case where P# Q,, since the other
case follows similarly. Let Ur and Us be open balls about R and S respec-
tively whose intersection with C is empty. It can be shown that there exist four
points Ry, R,, S;, S, satisfying the following properties:

1. {Ry, Sy} crelint K,, N Uand{R,, S;} < relint K,,N U, for triangular regions

K,, and K,,.

2. {Ry, Ry} = Uk and {S,, S;} < Us.

3. P belongs to the convex hull of {R;, S, R,, S,}.

Now let A; be an arc in U N K,,,\ C with endpoints R; and S, let A, be an arc
in UNK,\C with endpoints R, and S,, let A; be an arc in Ug N U with
endpoints R; and R, and finally let A, be an arc in Us N U with endpoints S,
and S,. Then A;UA,U A3;U A, contains a simple closed curve y with P in its
interior. The interior of vy is the desired neighborhood of P. This proves that
C\{Po} is zero-dimensional. The addition of P, does not change the dimension,
hence C, is a Cantor set. Since each C is a pole set for K,, UC, is a pole set
for K =|J K,. This completes the proof of the theorem.

In this section we turn out attention to the notion of minimal pole sets. A
closed pole set S for K shall be ,called minimal (for K) provided no proper
closed subset of S is a pole set for K. We prove the existence of minimal pole
sets for any compact convex subset of a Banach space. We end the paper with
two examples of minimal pole sets and a question.

THEOREM 4. Let X be a pole set for a compact convex subset K of a Banach
space. Then X contains a minimal pole set for K.

Proof. The proof is by Zorn’s lemma. Let X, be a chain of pole sets for
K each contained in X. The mapping ¢:2% — 2% defined by ¢(Y)=3Y+3Y
is continuous in the topology of 2%. Also ¢(X,)=K for all t. Regarding
X, as a net in 2% we have lim, X, = (N X.. Hence ¢(lim, X,)=1lim, K =K.
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It is tempting to conjecture that if K is a compact convex set with a Cantor
pole set, then each midpoint set for K contains a Cantor pole set. This is seen
to be false by the following two examples.

The set [0,1/n]U{2/n, 3/n, 4/n,...,n—2/n}U[n—1/n,1] is seen to be a
minimal pole set for [0, 1]. Also, the boundary C of a circular disc D is a pole
set for D. The proof of this uses the intermediate value theorem. The details
are left to the reader. In fact, C is a minimal pole set for the D. Now for the
question. Let K be a planar compact convex set with non-empty interior and
boundary B. Then B is a pole set for K. Is B necessarily a minimal pole set? It
can be seen that if K is a polygon, then B minimal.
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