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CONVEX SETS, CANTOR SETS AND 
A MIDPOINT PROPERTY 

BY 

HAROLD REITER1 

1. Introduction. It is well known that every point of the closed unit interval 
I can be expressed as the midpoint of two points of the Cantor ternary set D. 
See [2, p. 549] and [3, p. 105]. Regarding J as a one dimensional compact 
convex set, it seems natural to try to generalize the above result to higher 
dimensional convex sets. We prove in section 3 that every convex polytope K 
in Euclidean space Rd contains a topological copy C of D such that each point 
of K is expressible as a midpoint of two points of C. Also, we give necessary 
and sufficient conditions on a planar compact convex set for it to contain a copy 
of D with the midpoint property above. In the final section we prove a result 
on minimal midpoint sets. 

2. Notation and definitions. In the sequel, the term Cantor set will mean 
any non-empty compact totally disconnected metric space with no isolated 
points; that is, any homeomorph of the Cantor ternary set. If A and B are 
subsets of Rd (or any Banach space), and a is a real number, then, as usual, 
A + B={a + b\aeA and beB} and aA={aa\aeA}. If K is a compact 
subset of metric space, the collection 2K of closed subsets of K can be metrized 
by the Hausdorff metric. For the most part, the definitions and notation 
correspond to that of Grunbaum [1]. 

DEFINITION. Let Y be a subset of a linear space L. We call a subset X of Y a 
pole set for Y provided each point of Y is a midpoint of a pair of (not 
necessarily distinct) points of X. If X is a pole set for Y and X is a Cantor set, 
then Y is said to contain a Cantor pole set (for itself). Thus X is pole set for Y 
if \X + \X => Y Of course, if Y is convex \X + \Xa Y. We use conv S and int S 
to denote the convex hull of S and the interior of S respectively. 

3. Our strategy for proving that every convex polytope has a Cantor pole set 
begins by showing that for every d, the d -simplex has this property. We then 
express each convex polytope as a finite union of simplices, and from this fact 
the desired conclusion easily follows. First, let us record a few remarks, the 
proofs of which are left to the reader. The cube Cd = {(xu . . . , xd) | 0 < xt < 1 
for i = 1, 2 , . . . , d] contains a Cantor pole set. The property of having a Cantor 
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pole set is an affine invariant; that is, if Y has a pole set homeomorphic with D 
and <f) is a non-singular affine mapping, then 4>(D) is Cantor pole set for (f)(Y). 

LEMMA 1. Let d be a positive integer. For each point P of the d-simplex Td, 
there is a non-singular affine mapping </> of the d-cube Cd into Td such that 
<\>(Cd) is a neighborhood of P. 

Proof. We may take Td to be the convex hull, conv{0, el9 e2,..., ed}, where 
0 is the zero vector and {^}f=i is the standard basis for Rd. Because of the 
homogeneity of the /-faces of Td under non-singular affine maps, we may 
assume that (1) each face containing P has 0 as a vertex and that (2) if 
P = (*i, x2,.. •, xd), then xt = 0 implies xj+1 = 0. Now, if P = 0, the (unique) 
linear map satisfying <j>(0) = 0 and <\>(e^ — eJ2 fulfills the requirements. We 
proceed by induction on the number of non-zero coordinates of P. If P has one 
non-zero coordinate, then by (2), it must be xxe\ and by (1), we have 0 < xx < 1. 
Then the mapping defined by i^(Q) = ( f - f* i )0(Q) + (f*i~i)ei is a non-
singular affine map of Cd into T* of the desired type since (/> is such a map. Now 
assume that for every point having n non-zero coordinates (n<d), there is a 
non-singular affine mapping (/> of Cd into Td such that <\>{Cd) is a neighbor
hood of the point in Td. Let P = (xu . .., xn, xn+u . . . , xd) have n + 1 non-zero 
coordinates. Apply the induction hypothesis to the point P'= 
( * i , . . . , xn, 0, 0 , . . . ) to obtain a mapping cj). Note that the directed segment L 
from P' through P intersects the boundary of Td in a point JR different from P, 
since R = P would violate assumption (1). Select a point S in 4>(Cd)r\L-{P'} 
so that S e relint[^(Cd) H Fn] where Fn is the face {(xi, JC2, . . . , xd) \ xt = 0 when 
i>n + l}. Now suppose P = aS + (l-a)R. Then the mapping i/> defined by 
i/>(Q) = a<f)(Q) + (l-a)R has the desired properties. This completes the proof 
of the lemma. 

THEOREM 1. Let Td be a d-simplex. Then Td contains a Cantor set D of 
measure zero which is a pole set for Td. 

Proof. The following proof was suggested to the author by V. Klee. For each 
P in Td, let Cd(P) be the non-singular affine image of Cd containing P in its 
interior (relative to Td) guaranteed by Lemma 1. Since Td is compact, a finite 
subcollection C*^), Cd{P2),..., Cd(Pn) can be selected which covers Td. By 
the remarks at the beginning of this section, each of the Cd(Pi) contains a 
Cantor pole set, Dt. Then D = UT=i Dt is a Cantor set and D is clearly a pole set 
for Td. Also, since each Dt can be chosen to have measure zero, D can be so 
chosen. 

THEOREM 2. Let K be a convex d-polytope in Rd, d^l. Then K contains a 
Cantor pole set C. Moreover, C can be chosen to have measure zero. 
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Proof. We prove, by induction on d, that each convex d-polytope K can be 
expressed as a finite union of d-simplices. For d = 1, the result follows from 
Theorem 1 because a 1-polytope is a 1-simplex. Now assume that each 
d-1 -polytope admits a decomposition into d-1-simplices and let K be a 
d-polytope. Then each facet (maximal proper face) Ft of K, being a d-1-
polytope, can be expressed as the union of a finite number tt of d-1-simplices 
St,i, Si , 2 , . . . , SUi. Then 

F - { S U | n = 1 ,2 , . . . , fj, for i = 1, 2 , . . . , N. 

If P is a point of the interior of K, then 

KUn = conw({P}USUn) 

is a d-simplex and we have 

K=(J Û X^. 
i = l n = l 

By Theorem 1, each KUn contains a Cantor pole set of measure zero. The 
desired pole set is formed by taking the union of the pole sets for the KKn. 

Let K be a compact convex subset of Rd, and let S be a subset of K whose 
set of midpoints is K. Then every extreme point of K must belong to S. Thus, if 
a compact convex set is to have a Cantor pole set, its set of extreme points 
must be zero dimensional. For planar compact convex sets, that condition is 
also sufficient. 

THEOREM 3. Let K be a compact convex subset of R2. Then K contains a 
Cantor pole set if and only if the set ext K is zero dimensional. 

Proof. The proof of the necessity is implicit in the remarks above. To prove 
the sufficiency, let 3F = {Fa :a e A} be the family of proper faces of K. Each Fa 

is a segment or single point. If P0 is a point of int K, then each set Ka = 
conv({P0}UFa) is a segment or a triangular region. We construct in each Ka a 
Cantor pole set for Ka as follows. Let D be any Cantor pole set for the 
triangular region T2. 

Let <£i, 0 2 , . . -, 06 be the 6 affine mappings of R2 onto R2 leaving T2 

invariant. Let D'= |Jf=i 0i(£>)- If Ka is a triangular region and 0 is an affine 
map of T2 onto Ka, let Ca = 0(D'). If Ka is a segment let Ca = 0 (D ' n [0, e j ) , 
where [0, e j = {tex : 0 < t < 1}. Now let G = \J{Ca : a e A}. We must show that C 
is a Cantor set and that C is a pole set for K. The latter statement is clear since 
K = [J{Ka:aeA}. 

To prove the former, note first that the subspace {Ca:aeA} of 2K is 
homeomorphic with the subspace 3* of 2K. But 2F is compact. In fact, if {FJ is a 
convergent sequence of faces, then the sequence {ô(Fj)} has limit zero, and the 
sequence {ext(Fi)} of extreme points of the Ft converges to a singleton which 
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must also be a face. This is due to the fact that the set of extreme points of K is 
closed and ext K = \J {ext Fa:ae A}. Thus, the set C = (J {Ca : a e A} is a union 
of a compact family of compact sets. Such a union is known to be compact. 

Since none of the Ca has isolated isolated points, C also does not. It remains 
to show that C is zero-dimensional. We do this by showing that C is zero 
dimensional at each of its points. There is no problem if the point P of C 
belongs to the relative interior of a triangular Ka. If P does not belong to the 
relative interior of some triangular region Ka and P^Po, then there is some 
singleton face F(i={Q0} such that P = AP0 + ( 1 - A)Q0 for A €[0, 1). 

Let U be an open ball in K centered at P. We must find an open subset V of 
K contained in U, containing P and having empty boundary. Since Q is 
zero-dimensional, there exists points R and S of Kp\CpnU such that P is 
between R and S. We will handle only the case where P ^ Q0, since the other 
case follows similarly. Let UR and Us be open balls about R and S respec
tively whose intersection with C is empty. It can be shown that there exist four 
points Ru JR2, Si, S2 satisfying the following properties: 

1. {JRi, S i } c r e l i n t K a i n Uand{R2, S2} <= rel int Ka2 H U,for triangular regions 
Kai and Ka2. 

2. {Rl9 R2}a UR and {Si, S2}<= Us. 
3. P belongs to the convex hull of {Ru Si, R2, S2}. 

Now let Ai be an arc in Ufl Kttl\ C with endpoints i^i and Si, let A2 be an arc 
in UnKa2\C with endpoints R2 and S2, let A3 be an arc in URnU with 
endpoints i?i and R2 and finally let A4 be an arc in UsnU with endpoints Si 
and S2. Then Ai U A2 U A3 U A4 contains a simple closed curve y with P in its 
interior. The interior of y is the desired neighborhood of P. This proves that 
C\{P0} is zero-dimensional. The addition of P0 does not change the dimension, 
hence Ca is a Cantor set. Since each C is a pole set for Ka, U Ca is a pole set 
for K = U^«- This completes the proof of the theorem. 

In this section we turn out attention to the notion of minimal pole sets. A 
closed pole set S for K shall be .called minimal (for K) provided no proper 
closed subset of S is a pole set for K. We prove the existence of minimal pole 
sets for any compact convex subset of a Banach space. We end the paper with 
two examples of minimal pole sets and a question. 

THEOREM 4. Let X be a pole set for a compact convex subset K of a Banach 
space. Then X contains a minimal pole set for K. 

Proof. The proof is by Zorn's lemma. Let Xt be a chain of pole sets for 
K each contained in X. The mapping <\>\2K->2K defined by <\)(Y)=\Y+\Y 
is continuous in the topology of 2K. Also <f)(Xt) = K for all t. Regarding 
Xt as a net in 2K we have limrXf = n X - Hence </>(HmfX,) = lim, K = K 
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It is tempting to conjecture that if K is a compact convex set with a Cantor 
pole set, then each midpoint set for K contains a Cantor pole set. This is seen 
to be false by the following two examples. 

The set [0, l/n]U{2/n, 3/n, 4/n, . . . , n-2/n}U[n-l/n, 1] is seen to be a 
minimal pole set for [0,1]. Also, the boundary C of a circular disc D is a pole 
set for D. The proof of this uses the intermediate value theorem. The details 
are left to the reader. In fact, C is a minimal pole set for the D. Now for the 
question. Let K be a planar compact convex set with non-empty interior and 
boundary B. Then B is a pole set for K. Is B necessarily a minimal pole set? It 
can be seen that if K is a polygon, then B minimal. 

R E F E R E N C E S 

L B . Griinbaum, Convex Poly topes, Wiley-Interscience (London-New York-Sidney), 1967. 
2. J. F. Randolph, Distances between points of the Cantor set, American Mathematical Monthly, 

47 (1940). 
3. H. Steinhaus, Now a vlasnosc mnogosci, G. Cantora, Wektor, 1917. 

DEPT. OF MATH. 

UNIVERSITY OF NORTH CAROLINA 

UNCC STATION, CHARLOTTE, N.C. 

28223 U.S.A. 

https://doi.org/10.4153/CMB-1976-070-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1976-070-9

