A NOTE ON UNIVERSALLY ZERO-DIVISOR RINGS

S. Visweswaran

In this note we consider commutative rings with identity over which every unitary module is a zero-divisor module. We call such rings Universally Zero-divisor (UZD) rings. We show (1) a Noetherian ring R is a UZD if and only if R is semilocal and the Krull dimension of R is at most one, (2) a Prüfer domain R is a UZD if and only if R has only a finite number of maximal ideals, and (3) if a ring R has Noetherian spectrum and descending chain condition on prime ideals then R is a UZD if and only if Spec (R) is a finite set. The question of ascent and descent of the property of a ring being a UZD with respect to integral extension of rings has also been answered.

INTRODUCTION

Let R be a commutative ring with identity. Let M be a unitary R-module. Recall that M is said to be a Zero-divisor R-module if for every submodule N of M, $N \neq M$, the set of zero divisors of M/N (that is, $\{x \in R : zm \in N$ for some $m \in M \setminus N\}$) denoted by $Z_R(M/N)$ is the union of a finite number of prime ideals of R. R is said to be a Zero-divisor ring (Z.D. ring) if R is a Z.D. R-module [4]. In this note we study the properties of those commutative rings R with identity for which every R-module is a Z.D. R-module.

All rings considered here are assumed to be commutative and with identity. If $A \subseteq B$ are rings we assume that A and B have the same identity element. By dimension of a ring we mean the Krull dimension. Modules are assumed to be unitary. Whenever a set A is a subset of a set B and $A \neq B$ we denote this symbolically as $A \subset B$.

We begin with the following definition.

We say a ring R is a Universally Zero-divisor (UZD) ring if every R-module is a Z.D. R-module.

Received 5 April 1990
I am deeply indebted to Professor R. Raghavendran for his help, guidance and encouragement and I am also deeply indebted to Professor K.R. Nagarajan for his help and encouragement.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 $A2.00+0.00.

233
PROPOSITION 1. Let R be a ring. Then R is a UZD if and only if the union of any family of prime ideals of R is the union of a finite number of prime ideals of R (not necessarily belonging to the same family).

PROOF: Assume that R is a UZD. Let $\{P_\alpha\}_{\alpha \in A}$ be any family of prime ideals of R. Let $M = \bigoplus_{\alpha \in A} R/P_\alpha$ (that is, direct sum of the R-modules R/P_α). It is easy to see that $Z_R(M) = \bigcup_{\alpha \in A} P_\alpha$. Since R is a UZD, M is a Z.D. R-module and so $Z_R(M) = \bigcup_{i=1}^t Q_i$ for some finite number of prime ideals Q_1, \ldots, Q_t of R. Thus $Z_R(M) = \bigcup_{\alpha \in A} P_\alpha = \bigcup_{i=1}^t Q_i$.

Conversely assume that the union of any family of prime ideals of R is the union of a finite number of prime ideals of R. Let M be any R-module. Let N be a submodule of M, $N \neq M$. Notice that $R \setminus Z_R(M/N)$ is a saturated multiplicatively closed subset of R. Hence by [1, Exercise 7 (i), p.44] $Z_R(M/N)$ is a union of prime ideals of R. By assumption it follows that $Z_R(M/N)$ is the union of a finite number of prime ideals of R. Thus M is a Z.D. R-module. Hence we obtain that R is a UZD. \(\square\)

REMARK 2. Using the above Proposition we see that R is a UZD implies that any homomorphic image of R is a UZD and $S^{-1}R$ is a UZD for every multiplicatively closed subset S of R, $S \subseteq R \setminus \{0\}$.

PROPOSITION 3. Let R be an integral domain with quotient field K. Then R is a UZD if and only if K is a Z.D. R-module.

PROOF: The “only if” part is clear. The “if” part follows from [13, Remark 2.1] and Proposition 1. \(\square\)

PROPOSITION 4.

(i) Let R be a Noetherian ring. Then R is a UZD if and only if R is semilocal and the dimension of R is at most 1.

(ii) A Prüfer domain R is a UZD if and only if R has only a finite number of maximal ideals.

The proof of Proposition 4 makes use of the following results.

LEMMA 5. If a ring R is a UZD then R has only a finite number of maximal ideals.

PROOF: Let $\{M_\alpha\}_{\alpha \in A}$ be the family of all maximal ideals of R. By Proposition 1, $\bigcup_{\alpha \in A} M_\alpha = \bigcup_{i=1}^s Q_i$ for some finite number of prime ideals Q_1, \ldots, Q_s of R. Let M_i $(i = 1, \ldots, s)$ be maximal ideals of R such that $Q_i \subseteq M_i$ (for $i = 1, \ldots, s$). Then it is clear that $\bigcup_{\alpha \in A} M_\alpha = \bigcup_{i=1}^s Q_i = \bigcup_{i=1}^s M_i$. It is now evident that distinct elements among M_1, \ldots, M_s are all the maximal ideals of R. \(\square\)
RESULT 6. In a Noetherian ring every prime ideal has finite height [1, Corollary 11.12].

RESULT 7. In a Noetherian ring any prime ideal of height 2 contains an infinite number of height 1 prime ideals [11, Theorem 144].

RESULT 8. Let \(I \) be any ideal of a Noetherian ring \(R \), \(I \neq R \). Then the set of prime ideals of \(R \) which are minimal over \(I \) is finite.

Result 8 follows by applying [1, Exercise 9, p.79] to the Noetherian ring \(R/I \).

PROOF OF PROPOSITION 4: (i) Assume that \(R \) is a Noetherian ring and \(R \) is a UZD. By Lemma 5, \(R \) is semilocal. We prove that the dimension of \(R \) is at most 1. Suppose that the dimension of \(R \) is at least 2. Then by Result 6 it follows that there exists a prime ideal \(p \) of \(R \) such that height \(p = 2 \).

Let \(\{Q_\alpha\}_{\alpha \in A} \) be the set of all height one prime ideals of \(R_p \). Note that \(\{Q_\alpha\}_{\alpha \in A} = \{P_\alpha R_p\}_{\alpha \in A} \) where \(\{P_\alpha\}_{\alpha \in A} \) are prime ideals of \(R \) such that height \(P_\alpha = 1 \) and \(P_\alpha \subset p \) for each \(\alpha \in A \). By Result 7 it follows that \(A \) is an infinite set. Result 8 and [2, Exercise 2, p.121] imply that there exists an element \(y \in pR_p \) which is not in any of the minimal prime ideals of \(R_p \). Let them be \(\{P_{\alpha_i}R_p\}_{i=1}^t \). Let \(\Lambda = A \setminus \{\alpha_1, \ldots, \alpha_t\} \). Then it is easy to see that \(\bigcup_{\alpha \in \Lambda} P_\alpha R_p \) cannot be equal to the union of any finite number of prime ideals of \(R_p \). This is in contradiction to the fact that \(R_p \) is a UZD. Thus \(R \) is semilocal and the dimension of \(R \) is at most 1.

Conversely if \(R \) is semilocal and the dimension of \(R \) is at most 1 then any prime ideal of \(R \) is either a maximal ideal of \(R \) or a minimal prime ideal of \(R \). Since the set of minimal prime ideals of a Noetherian ring is finite we obtain that \(R \) has only a finite number of prime ideals. It is then clear that \(R \) is a UZD.

(ii) In view of Lemma 5, we need only prove the “if part” of (ii). Assume that \(R \) is a Prüfer domain with only a finite number of maximal ideals \(M_1, \ldots, M_t \). Let \(\{P_\alpha\}_{\alpha \in A} \) be any family of prime ideals of \(R \). Let \(C_i \) be the union of those \(P_\alpha \)'s which are contained in \(M_i \) (for \(i = 1, \ldots, t \)). Now \(R_{M_i} \) is a valuation ring and so in the case \(C_i \neq 0 \), \(C_i \) is the union of some pairwaise comparable prime ideals of \(R \) and hence \(C_i \in \text{Spec}(R) \). This is true for \(i = 1, \ldots, t \). Further it is clear that \(\bigcup_{\alpha \in A} P_\alpha = \bigcup_{i=1}^t C_i \). Hence by Proposition 1, \(R \) is a UZD.

REMARK 9. We have noted in Proposition 3 that an integral domain \(R \) is a UZD if and only if the quotient field of \(R \) is a Z.D. \(R \)-module. We now mention an example which shows (for an arbitrary ring \(R \)) that “the total quotient ring of \(R \) is a Z.D. \(R \)-module” need not imply that \(R \) is a UZD. Consider \(T = \mathbb{Q}(\sqrt{2}) [[X, Y, Z]] \), the power series ring in three indeterminates \(X, Y, Z \) over \(\mathbb{Q}(\sqrt{2}) \) where \(\mathbb{Q} \) denotes the field of rationals. Let \(M \) denote the unique maximal ideal of \(T \). Let \(S = \mathbb{Q} + M \). Notice that
the dimension of T is 3 and T is a finite integral extension of S. Hence by [6, 11.8, p.106] and [3, Theorem 2] it follows that the dimension of S is 3 and S is Noetherian. Consider the chain of prime ideals $(0) \subset P_1 \subset P_2 \subset M$ of S where $P_1 = XT$ and $P_2 = XT + YT$. Let $R = S/(XS)$. We now show that the unique maximal ideal $M/(XS)$ of R is full of zero divisors. For an element $m \in M$, let $m + XS \in M/(XS)$. Note that $(m + XS)(\sqrt{2}X + XS) = \sqrt{2}(mX) + XS = X(\sqrt{2}m) + XS = XS$ since $\sqrt{2}m \in M \subset S$. But $\sqrt{2}X \notin XS$. For if $\sqrt{2}X \in XS$ then we obtain $\sqrt{2} \in S$ which in turn implies that $\sqrt{2} = q + y$ for some $q \in Q$, $y \in M$. This implies that $\sqrt{2} - q = y \in Q(\sqrt{2}) \cap M = (0)$ and so $\sqrt{2} = q \in Q$ which is not true. Thus $\sqrt{2}X \notin XS$. This proves that $M/(XS)$ is full of zero divisors. Hence R equals the total quotient ring of R. Since R is a Noetherian ring, R is a Z.D. R-module. Since the dimension of R is 2, it follows from Proposition 4 (i) that R is not a UZD.

Proposition 10. Let R be a ring with Noetherian spectrum and descending chain condition on prime ideals. Then R is a UZD if and only if $\text{Spec}(R)$ is a finite set.

Proof: Assume that R has Noetherian spectrum and has descending chain condition on prime ideals and R is a UZD. The argument that we shall give below to show that $\text{Spec}(R)$ is a finite set closely follows an argument of Heinzer and Lantz [10, Proposition 3.7]. By Lemma 5, R has only a finite number of maximal ideals say M_1, \ldots, M_t. Let, if possible, $\text{Spec}(R)$ be an infinite set. Then $\text{Spec}(R_{M_i})$ is an infinite set for some $i \in \{1, \ldots, t\}$. Now R_{M_i} has Noetherian spectrum and so $M_i R_{M_i} = (y_1, \ldots, y_h) R_{M_i}$ for some $y_j \in M_i R_{M_i}$ ($j = 1, \ldots, h$) [12, Corollary 2.4]. It is then clear that $\text{Spec}(R_{M_i}[1/y_j])$ is an infinite set for some $j \in \{1, \ldots, h\}$. Since $R_{M_i}[1/(y_j)]$ is a UZD, it has only a finite number of maximal ideals say N_1, \ldots, N_s. Note that each N_g ($g = 1, \ldots, s$) is of the form $Q_g R_{M_i}[1/y_j]$ for some prime ideal $Q_g R_{M_i}$ of R_{M_i} such that $Q_g R_{M_i} \subset M_i R_{M_i}$. Notice that $\text{Spec}(R_{M_i}[1/y_j])$ is an infinite set for some $g \in \{1, \ldots, s\}$. Further observe that $M_i \supset Q_g$. Now $R_{M_i}[1/y_j]$ $N_g \cong R_{Q_g}$ by [2, Proposition 11 (iii), p.70] and thus $\text{Spec}(R_{Q_g})$ is an infinite set and R_{Q_g} has Noetherian spectrum and is a UZD. Hence applying the above argument to the ring R_{Q_g} yields $H \in \text{Spec}(R)$ such that $Q_g \supset H$ and $\text{Spec}(R_H)$ is infinite. So by repeating the above procedure we obtain a strictly descending sequence of prime ideals of R. This is in contradiction to the assumption that R has descending chain condition on prime ideals. Therefore $\text{Spec}(R)$ is a finite set.

The converse is obvious.

Remark 11. (i) We mention an example to show that the hypothesis in Proposition 10 that R has Noetherian spectrum cannot be dropped. There exists a valuation ring V such that the set of prime ideals of V forms an infinite ascending chain $(0) \subset P_1 \subset$
$P_2 \subset \cdots \subset M = \bigcup_{i=1}^{\infty} P_i$ [5, Example 5, p.578]. Thus $\text{Spec}(V)$ is an infinite set but by Proposition 4 (ii), V is a UZD. Further, note that V has descending chain condition on prime ideals.

(ii) We now mention an example to show that the hypothesis in Proposition 10 that R has descending chain condition on prime ideals cannot be dropped.

Let F be a field and $\{X_i\}_{i=1}^{\infty}$ be a set of elements algebraically independent over F. Let $K = F(\{X_i\}_{i=1}^{\infty})$. Let G be the direct sum of countably many copies of \mathbb{Z}, the additive group of integers. We order G with reverse lexicographic ordering. Then there exists a valuation ring W on K with value group G by [7, Example 2.6]. It is easy to verify that the set of all prime ideals of W forms an infinite descending chain $M \supset P_1 \supset P_2 \supset \ldots$. But W is a UZD and W has Noetherian spectrum.

Next we consider the ascent and descent of UZD with respect to integral extension of rings.

PROPOSITION 12. (i) Let $R \subset T$ be rings. Let T be integral over R. If T is a UZD then R is a UZD.

(ii) Let B be a finite integral extension ring of a ring A. If B has finitely many minimal prime ideals and if A is a UZD then B is a UZD.

Proof: (i) Let $\{P_\alpha\}_{\alpha \in A}$ be any family of prime ideals of R. Now for each P_α, there exists $Q_\alpha \in \text{Spec}(T)$ such that $Q_\alpha \cap R = P_\alpha$ by [1, Theorem 5.10]. Since T is UZD, by Proposition 1, $\bigcup_{\alpha \in A} Q_\alpha = \bigcup_{i=1}^{s} H_i$ for some $H_i \in \text{Spec}(T)$ ($i = 1, \ldots, s$). Now it follows that $\bigcup_{\alpha \in A} P_\alpha = \bigcup_{\alpha \in A} (Q_\alpha \cap R) = \bigcup_{i=1}^{s} (H_i \cap R)$. Hence R is a UZD.

(ii) By hypothesis B has only a finite number of minimal prime ideals, say Q_1, \ldots, Q_t. Notice that each B/Q_i ($i = 1, \ldots, t$) is a finite integral extension of $A/(Q_i \cap A)$ and $A/(Q_i \cap A)$ is a UZD (for $i = 1, \ldots, t$). We prove that B/Q_i is a UZD for each $i \in \{1, \ldots, t\}$. Then it will follow that B is a UZD. Hence it suffices to prove (ii) in the case in which B is an integral domain. Let K denote the quotient field of B. Let X be an indeterminate over K. Consider $V = K[[X]] = K + M$ where $M = XK[[X]]$. Let $B_1 = B + M$; $A_1 = A + M$. Since B is a finite integral extension of A, it follows that B_1 is a finite integral extension of A_1. As A is a UZD, A_1 is a Z.D. ring by [13, Remark 2.1]. Hence B_1 is a Z.D. ring by [9, Theorem 2.9]. Again by [13, Remark 2.1], B is a UZD. This completes the proof of (ii).

REMARK 13. We mention an example to show that Proposition 12 (ii) does not extend to infinite integral extensions. Gilmer and Huckaba in [8, Example p.211] have constructed for a fixed prime p an infinite algebraic extension L of the field of rationals \mathbb{Q} such that the integral closure \overline{Z}_p of Z_p in L has an infinite number of maximal ideals.
Since Z_p is a 1-dimensional quasilocal domain it is clear that Z_p is a UZD. As $\overline{Z_p}$ has an infinite number of maximal ideals, $\overline{Z_p}$ is not a UZD.

We conclude this note with the following Proposition which determines when every overring of an integral domain is a UZD.

Proposition 14. Let R be an integral domain with quotient field K. Then each overring of R is a UZD if and only if the integral closure of R in K is a Prüfer domain with only finitely many maximal ideals.

Proof: (\Rightarrow) Let \overline{R} denote the integral closure of R in K. Let $Q \in \text{Spec}(\overline{R})$. Let $\alpha \in K$, $\alpha \neq 0$. Let X be an indeterminate over \overline{R}_Q. Let g denote the \overline{R}_Q homomorphism from $\overline{R}_Q[X]$ to $\overline{R}_Q[\alpha]$ determined by $g(X) = \alpha$. Now $\overline{R}_Q[\alpha]$ is a UZD and hence it has only a finite number of maximal ideals. We assert that $\ker g \subseteq Q\overline{R}_Q[X]$. For if $\ker g \subsetneq Q\overline{R}_Q[X]$ then $(\overline{R}_Q[X])/(Q\overline{R}_Q[X]) \cong (\overline{R}_Q)/(Q\overline{R}_Q)[X]$ becomes a homomorphic image of $\overline{R}_Q[\alpha]$ which would force $(\overline{R}_Q)/(Q\overline{R}_Q)[X]$ to have only a finite number of maximal ideals, a contradiction. Hence $\ker g \subseteq Q\overline{R}_Q[X]$. So by [6, Lemma 19.14] either α or α^{-1} is in \overline{R}_Q. Thus \overline{R}_Q is a valuation ring for each $Q \in \text{Spec}(\overline{R})$. Hence \overline{R} is a Prüfer domain. Since \overline{R} is a UZD, \overline{R} has only a finite number of maximal ideals.

(\Leftarrow) Let A be any overring of R. Let \overline{A} denote the integral closure of A in K. Then \overline{A} is a Prüfer domain with only a finite number of maximal ideals by [6, Theorem 26.1 (a) and Exercise 14, p. 331]. So \overline{A} is a UZD by Proposition 4(ii). Now Proposition 12 (i) implies that A is a UZD.

References

Department of Mathematics
Saurashtra University
Rajkot
India 360 005