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Effective rigid analytic trivializations
for Drinfeld modules
Chalinee Khaochim and Matthew A. Papanikolas
Abstract. We develop tools for constructing rigid analytic trivializations for Drinfeld modules as
infinite products of Frobenius twists of matrices, from which we recover the rigid analytic trivializa-
tion given by Pellarin in terms of Anderson generating functions. One advantage is that these infinite
products can be obtained from only a finite amount of initial calculation, and consequently we obtain
new formulas for periods and quasi-periods, similar to the product expansion of the Carlitz period.
We further link to results of Gekeler and Maurischat on the∞-adic field generated by the period
lattice.

1 Introduction

Rigid analytic trivializations were originally defined by Anderson [1, Theorem 4] as
tools for determining whether a t-module is uniformizable, i.e., that its exponential
function is surjective. It was subsequently discovered by Anderson and Pellarin that
specializations of rigid analytic trivializations could be used to recover the periods
and quasi-periods of a Drinfeld module (see [16, Section 2.6], [25, Section 4]). This
specialization phenomenon has led to advances in the transcendence theory of periods
and quasi-periods (see, e.g., [2, 7, 8, 25]). Given their centrality to the arithmetic of
function fields, the focus of the present paper is to investigate new and direct ways of
constructing rigid analytic trivializations for Drinfeld modules.

Our motivating example is that of the Carlitz module. Let Fq be a finite field with
q elements, let A ..= Fq[θ] be the polynomial ring in θ over Fq , and let k ..= Fq(θ) be
its fraction field. We let A ..= Fq[t] be the polynomial ring in a variable t independent
from θ. For any k-algebra R, the Carlitz module C over R is the A-module structure on
R determined by setting Ct(x) ..= θx + xq for x ∈ R. If we let k∞ ..= Fq((1/θ)) be the
completion of k at its infinite place, and take K for the completion of an algebraic
closure of k∞, then the Carlitz exponential expC ∶ K→ K is entire, Fq-linear, and
surjective, and it uniformizes the Carlitz module over K. The kernel of expC is the
discrete A-submodule of K of rank 1 generated by the Carlitz period,

π̃ = −(−θ)q/(q−1)
∞

∏
n=1
(1 − θ1−qn

)
−1
∈ k∞((−θ)1/(q−1)),(1.1)
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where we have fixed a (q − 1)st root of −θ. Throughout the arithmetic of function
fields, π̃ plays the role of 2πi in characteristic 0. This product formula for π̃ was
essentially first derived by Carlitz [6, Theorem 5.1], and for more information on the
Carlitz module and its exponential function, see [17, Chapter 3], [31, Chapter 2].

The rigid analytic trivialization of C is the Anderson–Thakur function

ωC(t) ..= (−θ)1/(q−1)
∞

∏
n=0
(1 − t

θqn )
−1

∈ T,(1.2)

where T is the Tate algebra in K[[t]] consisting of power series that converge on
the closed unit disk in K. In [3, Section 2.5], Anderson and Thakur showed that ωC
satisfies a number of important properties. For n ∈ Z, if we define the Frobenius twist
f ↦ f (n) ∶ K((t)) → K((t)) by∑ c i t i ↦∑ cqn

i t i , then

ω(1)C = (t − θ)ωC .(1.3)

Moreover, ωC extends to a meromorphic function on all of K, and it has a simple pole
at t = θ, where we readily verify from (1.1) that

Rest=θ ωC = −π̃.(1.4)

The Anderson–Thakur function further plays a central role in special values of Pellarin
L-series (see, e.g., [26, 27]).

Letting K[τ] be the ring of twisted polynomials in the qth power Frobenius τ, a
Drinfeld module of rank r is an Fq-algebra homomorphism ϕ ∶ A→ K[τ] determined
by

ϕt = θ + A1τ +⋯+ Ar τr , Ar ≠ 0.(1.5)

Like the Carlitz module, ϕ is uniformized by an exponential function expϕ ∶ K→ K,
whose kernel Λϕ is a discrete, free A-submodule of K of rank r. We call Λϕ the period
lattice of ϕ. For π ∈ Λϕ , we define the Anderson generating function

fϕ(π; t) ..=
∞

∑
m=0

expϕ(
π

θm+1 )tm ∈ T.

Initially defined by Anderson [1, Section 3.2], these functions satisfy a number of
useful properties which we summarize in Section 2. Most notably,

θ fϕ(π; t) + A1 fϕ(π; t)(1) +⋯+ Ar fϕ(π; t)(r) = t fϕ(π; t),

and fϕ(π; t) is a meromorphic function on K with a simple pole at t = θ (if π ≠ 0)
and

Rest=θ fϕ(π; t) = −π.(1.6)
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Effective rigid analytic trivializations for Drinfeld modules 715

There is an obvious parallel with (1.3) and (1.4), and in fact ωC is the Anderson
generating function for π̃ on the Carlitz module (see [2, Proposition 5.1.3]).

For an A-basis π1 , . . . , πr of Λϕ , we set f j ..= fϕ(π j ; t) for each j, and we let

Υ ..=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

f1 f2 ⋯ fr

f (1)1 f (1)2 ⋯ f (1)r

⋮ ⋮ ⋱ ⋮

f (r−1)
1 f (r−1)

2 ⋯ f (r−1)
r

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.(1.7)

Pellarin [25, Section 4.2] showed that Υ is invertible in GLr(T); moreover, he observed
that (i) by (1.6) the negatives of the residues at t = θ of the entries of the first row yield
the periods π1 , . . . , πr , and (ii) based on calculations of Gekeler [13, Remark 2.7], for
1 ⩽ i ⩽ r − 1, the value f (i)j (θ) is a strictly reduced quasi-period for ϕ associated to π j .
Furthermore, he proved that

Υ(1) = ΘΥ,(1.8)

where we apply the Frobenius twist entrywise and where

Θ ..=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

(t − θ)/Ar −A1/Ar ⋯ −Ar−1/Ar

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.(1.9)

The matrix Θ arises naturally from the t-motive associated to ϕ, and by definition,
(1.8) makes Υ into a rigid analytic trivialization for ϕ (see Section 2 for details).

Remark 1.10 (1) This same specialization property that uses rigid analytic trivializa-
tions to supply periods and quasi-periods holds for other t-modules as well. For rank
1 objects, one can consult [2, Section 6], [5, Section 4], [29], for instances involving the
geometric Γ-function, and [19, Theorem 4.6] for certain rank 1 Drinfeld modules over
more general rings A. For general t-modules, see [12, Section 3], [18, Section 6], [23,
Section 5] for periods, and [24, Section 4] for periods and quasi-periods. In all of these
cases, rigid analytic trivializations are obtained through possibly higher dimensional
versions of Anderson generating functions.

(2) In the present paper, we study only rigid analytic trivializations associated to
the t-motive of a Drinfeld module, as opposed to the rigid analytic trivializations
associated to its dual t-motive. However, as seen in [8, Section 3.4], [20, Example
2.5.16], the two theories are related; moreover, using a theorem of Hartl and Juschka
[20, Theorem 2.5.13], we can transform one to the other for general abelian and
A-finite t-modules [24, Theorem 4.4.14].
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There is one noticeable advantage of ωC(t) over the more general Anderson gener-
ating functions fϕ(π; t): the definition of fϕ(π; t) ostensibly presupposes knowledge
of π itself, whereas the product expansion in (1.2) is independent of knowing π̃ in
advance. The coefficients of fϕ(π; t) form a t-division sequence of t-power torsion
on ϕ, but obtaining fϕ(π; t) exactly from these coefficients would require the precise
selection of this infinite sequence. Thus, unfortunately, in order to use fϕ(π; t) to
retrieve π or the quasi-periods associated to π, we have run into a chicken-and-egg
problem.

One goal of the present paper is to construct a rigid analytic trivialization Υ for
ϕ from a full system of Anderson generating functions f1 , . . . , fr , associated to an
A-basis π1 , . . . , πr of Λϕ , without using π1 , . . . , πr as initial inputs. Much like for
ωC , we will achieve this through an infinite product, but of matrices, which can be
constructed in an effective manner, i.e., by utilizing only a finite amount of initial
computation (see Theorems A and B). In this way, we can obtain Υ efficiently, together
with formulas for the periods and quasi-periods of our Drinfeld module, from first
principles.

The outline of this construction is as follows. After establishing definitions and
prior results in Section 2, we construct a matrix B ∈Matr(K[t]) ∩GLr(T) in Section 3
so that

∥B−1Θ−1B(1) − I∥ < 1,(1.11)

where ∥ ⋅ ∥ is the extension of the Gauss norm onT to Matr(T) and I is the r × r identity
matrix (see Theorem 3.29). The entries of B are obtained by systematic selection of a
basis of tN -torsion points ξ1 , . . . , ξr ∈ ϕ[tN], where N ⩾ 1 is determined by the degrees
of the coefficients A1 , . . . , Ar in (1.5) using estimates from [10] (see Remark 3.14). We
choose these tN -torsion points recursively through analysis of the Newton polygon
of ϕt(x) ∈ K[x] (see Propositions 3.12 and 3.17); moreover, ϕtN−1(ξ1), . . . , ϕtN−1(ξr) ∈
ϕ[t] form a strict basis of the t-torsion module ϕ[t], in that the degrees of these
elements match the slopes of the Newton polygon of ϕt(x) in a prescribed way (see
Definition 3.18). By letting

h j ..= ϕtN−1(ξ j) + ϕtN−2(ξ j)t +⋯+ ξ j tN−1 ,

the matrix

B ..= (h(i−1)
j ) ∈Matr(K[t])(1.12)

is an element of GLr(T) (see Proposition 3.26). It further satisfies (1.11) by The-
orem 3.29, which leads to the following result (stated later as Corollary 3.32),
producing a rigid analytic trivialization for ϕ via an infinite product of twists of
matrices.

Theorem A Continuing with notation as above, the infinite product

Π ..= B
∞

∏
n=0
(B−1Θ−1B(1))

(n)
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converges with respect to the Gauss norm on Matr(T) and lies in GLr(T).
Moreover,

Π(1) = ΘΠ,

and so Π is a rigid analytic trivialization for ϕ.

Because such a product of matrices depends on the order of the factors, we
note that in Theorem A and elsewhere each successive term of the infinite prod-
uct is multiplied on the right. That is, the product is (B−1Θ−1B(1))(B−1Θ−1B(1))(1)
(B−1Θ−1B(1))(2)⋯.

In the case of the Carlitz module, one checks that Θ = t − θ and B = (−θ)1/(q−1)

in Theorem A, from which we see that Π = ωC . To what extent can we use Π to
recover Υ for general Drinfeld modules ϕ? Like the Carlitz module, Drinfeld modules
of rank 1 over more general rings possess product expansions for their rigid analytic
trivializations [4, Section 3], [19, Section 4]. However, in general, we can in fact use
ξ1 , . . . , ξr to construct an A-basis π1 , . . . , πr of Λϕ , and then apply [10, Theorem 6.13]
to show that Π is the same as Υ in (1.7). The following is our main result in these
directions (stated later with additional details in Theorem 4.4).

Theorem B Choose N ⩾ 1 and ξ1 , . . . , ξr ∈ ϕ[tN] as in Proposition 3.17. Let B =
(h(i−1)

j ) ∈ GLr(T) be defined as in (1.12), and construct the rigid analytic trivialization
Π for ϕ as in Theorem A. Letting π j ..= θN logϕ(ξ j), the quantities π1 , . . . , πr form an
A-basis of Λϕ ; moreover,

Π = Υ,

where Υ is defined with respect to π1 , . . . , πr in (1.7).

In addition to providing identities for periods and quasi-periods, Theorems A
and B and their proofs lead to precise descriptions of the field generated by the
period lattice over the field of definition of the Drinfeld module in Corollary 4.6.
This recovers a result of Maurischat [22, Theorem 3.1] in rank 2, and parts of results
of Gekeler in arbitrary rank [14, Section 2]. It also wraps up a picture started in [9,
Theorem 5.3].

Remark 1.13 As pointed out by one referee, the results in Theorems A and B could in
principle be extended to Anderson t-modules which are abelian and rigid analytically
trivial. Further investigation would be necessary to make this precise, although per-
haps descriptions of rigid analytic trivializations and Anderson generating functions
from [12, 18, 20, 23, 24] would be helpful. One thing to note is that the proofs in
the present paper, and especially the proof of the convergence of the product in
Theorem A, rely heavily on the explicit nature of Θ given in (1.9).

In Section 5, we investigate the case of rank 2 in more detail. Our findings dovetail
with Maurischat’s theorem [22, Theorem 3.1], which we summarize in Theorem 5.2.
Then, in Examples 5.4 and 5.5, we approximate the matrices B and Π for specific
rank 2 Drinfeld modules and use these approximations to calculate periods and quasi-
periods.
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2 Preliminaries

The following notation will be used throughout the paper:

Fq = finite field with q elements, q a power of a fixed prime p.

A = Fq[θ], the polynomial ring in θ over Fq .

k = Fq(θ), the fraction field of A.

k∞ = Fq((1/θ)), the completion of k at its infinite place.

K = the completion of an algebraic closure of k∞.

deg = −v∞, where v∞ is the∞-adic valuation on K, deg θ = 1.

A = Fq[t], the polynomial ring in t over Fq , t independent from θ.

T = the Tate algebra of K[[t]] on the closed unit disk.

Tθ = the Tate algebra of K[[t]] on the closed disk of radius ∣θ∣.
F = a separable algebraic closure of a field F.

Matm×n(R) = for a ring R, the left R-module of m × n matrices.

Matd(R) = Matd×d(R).
[B]i j = the (i , j)-entry of a matrix B.

The absolute value ∣ ⋅ ∣ on k∞ is chosen so that ∣θ∣ = q, its valuation satisfies
v∞(θ) = −1, and we let deg ..= −v∞. Then ∣ ⋅ ∣, v∞, and deg extend uniquely to K.

2.1 Drinfeld modules

For fundamental properties of Drinfeld modules, see Goss [17, Chapters 3 and 4] or
Thakur [31, Chapter 2]. For the qth power Frobenuis map τ ∶ K→ K (z ↦ zq), the ring
of twisted polynomials K[τ] in τ over K satisfies τc = cqτ for all c ∈ K. A Drinfeld
module of rank r over K is an Fq-algebra homomorphism ϕ ∶ A→ K[τ] determined
by

ϕt = θ + A1τ +⋯+ Ar τr , Ar ≠ 0.(2.1)

As usual, we obtain an A-module structure on K induced by ϕ by the action a ⋅ x ..=
ϕa(x) for a ∈ A, x ∈ K. For any a ∈ A, we take ϕ[a] ..= {x ∈ K ∶ ϕa(x) = 0} to be the
A-submodule of a-torsion points on ϕ. Then ϕ[a] ≅ (A/(a))r as A-modules.

The exponential of ϕ is defined to be the entire, surjective, Fq-linear power series,

expϕ(z) =
∞

∑
n=0

αnzqn
, α0 = 1, αn ∈ K,(2.2)

satisfying expϕ(a(θ)z) = ϕa(expϕ(z)) for every a ∈ A. Letting Λϕ ..= ker expϕ , one
finds that Λϕ is a discrete, free A-module of rank r inside K. We call Λϕ the period
lattice of ϕ, and any element of Λϕ a period of ϕ. The logarithm logϕ(z) of ϕ is the
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formal inverse of expϕ(z) with respect to composition, and it has a finite radius of
convergence Pϕ on K. By [17, Proposition 4.14.2],

Pϕ =min{∣π∣ ∶ π ∈ Λϕ , π ≠ 0}.(2.3)

2.2 Tate algebras

The Tate algebra of power series converging on the closed unit disk of K,

T ..= {∑ c i t i ∈ K[[t]] ∶ ∣c i ∣ → 0, for i →∞},

is a complete normed K-algebra with respect to the Gauss norm ∥ ⋅ ∥, which is defined
by ∥∑ c i t i∥ ..= supi ∣c i ∣ =maxi ∣c i ∣. We recall that u = ∑ c i t i ∈ T is in T

× if and only
if (i) c0 ≠ 0 and (ii) we can write u = c0(1 + g) for g ∈ T with ∥g∥ < 1 (see [1, Lemma
2.9.1], [11, Corollary 2.2.4]). For η ∈ K×, we further define the Tate algebra

Tη ..= {∑ c i t i ∈ K[[t]] ∶ ∣η∣i ⋅ ∣c i ∣ → 0, for i →∞},

consisting of functions that converge on the closed disk of radius ∣η∣. For more details
on the theory of Tate algebras, see [11, Section 2]. For a matrix F = ( f i j) ∈Matr×s(T),
we set ∥F∥ ..=maxi , j∥ f i j∥, making Matr×s(T) into a complete normed T-module.

For any f = ∑ c i t i ∈ K((t)) and n ∈ Z, the nth Frobenius twist of f is f (n) ..=
∑ cqn

i t i . For F = ( f i j) ∈Matr×s(K((t))), we take F(n) ..= ( f (n)i j ). For δ > 0 and any
f ∈ Tθ δ/q , we have f (1) ∈ Tθ δ . In particular,

f ↦ f (1) ∶ Tθ 1/q → Tθ .(2.4)

For Δ = b0 + b1τ +⋯+ b�τ� ∈ K[τ] and f ∈ T, we define

Δ( f ) ..= b0 f + b1 f (1) +⋯+ b� f (�) ,(2.5)

thus making Δ into an A-linear endomorphism of T.

2.3 Anderson generating functions

We continue with our Drinfeld module ϕ in (2.1). For u ∈ K, the Anderson generating
function for ϕ associated to u is defined by

fϕ(u; t) ..=
∞

∑
m=0

expϕ(
u

θm+1 )tm ∈ T.(2.6)

Pellarin [25, Section 4.2] exhibited a partial fraction decomposition,

fϕ(u; t) =
∞

∑
n=0

αnuqn

θqn − t
,

where αn are the coefficients of expϕ from (2.2). From this decomposition, we see
that fϕ(u; t) extends to a meromorphic function on K with simple poles (when
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720 C. Khaochim and M. Papanikolas

u ≠ 0) at t = θqn
, n = 0, 1, . . ., with respective residues Rest=θ qn fϕ(u; t) = −αnuqn

. In
particular,

Rest=θ fϕ(u; t) = −u.

It follows from (2.6) and the functional equation for expϕ(z) that

ϕt( fϕ(u; t)) = θ fϕ(u; t) + A1 fϕ(u; t)(1) +⋯+ Ar fϕ(u; t)(r) = fϕ(θu; t),(2.7)

and so for each a ∈ A, ϕa( fϕ(u; t)) = fϕ(a(θ)u; t). Another fundamental property is
that

ϕt( fϕ(u; t)) = t fϕ(u; t) + expϕ(u).(2.8)

It follows that if π ∈ Λϕ , then for all a ∈ A, we have ϕa( fϕ(π; t)) = a fϕ(π; t). The
partial fraction decomposition of fϕ(π; t) implies that it is an element of Tη for any
η ∈ K with ∣η∣ < ∣θ∣. Thus, by (2.4), we find that fϕ(π; t)(1) ∈ Tθ , and, in particular,
fϕ(π; t)(i) is well defined at t = θ for all i ⩾ 1.

2.4 Logarithm deformations

We fix a Drinfeld module ϕ of rank r as in (2.1). For ξ ∈ K, El-Guindy and the
second author defined a series Lϕ(ξ; t) in [10], which is a deformation of logϕ(ξ)
and is related to Anderson generating functions. This series is defined using shadowed
partitions defined in [9] as follows. For n, r ∈ N, we let Pr(n) be the set of r-tuples
(S1 , S2 , . . . , Sr) such that (i) for each i, S i ⊆ {0, 1, . . . , n − 1}, and (ii) the sets {S i + j ∶
1 ⩽ i ⩽ r, 0 ⩽ j ⩽ i − 1} form a partition of {0, 1, . . . , n − 1}. For n ∈ N, define

Bn(t) ..= ∑
S∈Pr(n)

r
∏
i=1
∏
j∈S i

Aq j

i
t − θq i+ j ∈ K(t).(2.9)

Let N(ϕ) ..= {1 ⩽ i ⩽ r ∶ A i ≠ 0}. For each n ∈ N(ϕ), let

μn ..= deg An − qn

qn − 1
,(2.10)

and let

Rϕ ..= ∣θ∣−μm ,(2.11)

where m is the smallest index in N(ϕ) ..= {1 ⩽ i ⩽ r ∶ A i ≠ 0} such that μm ⩾ μ i for
every i ∈ N(ϕ).

Remark 2.12 It was shown in [10, Remark 6.11 and Theorem 6.13(b)] that Rϕ ⩽ Pϕ ,
where Pϕ is the radius of convergence of logϕ(z) from (2.3) and that Rϕ = Pϕ if μm > μ i
for all i ≠ m. We will see in Corollary 4.5 that in fact Rϕ = Pϕ in all cases.

Assuming ∣ξ∣ < Rϕ , we set

Lϕ(ξ; t) ..=
∞

∑
n=0

Bn(t)ξqn
∈ T,(2.13)
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which converges inTwith respect to the Gauss norm and, as a function of t, converges
on the open disk of radius ∣θ∣q inK [10, Proposition 6.10]. Furthermore, if expϕ(u) = ξ
and ∣u∣ < Rϕ , then by [10, Theorem 6.13],

Lϕ(ξ; θ) = logϕ(ξ) = u;

moreover, we recover the Anderson generating function for u, as

Lϕ(ξ; t) = −(t − θ) fϕ(u; t).(2.14)

2.5 t-motives for Drinfeld modules

Anderson originally defined t-motives in [1], which we briefly review. The ringK[t, τ]
is the polynomial ring in t and τ with coefficients in K subject to the following
relations:

tc = ct, tτ = τt, τc = cqτ, c ∈ K.

A t-motive M is a left K[t, τ]-module that is free and finitely generated as a left K[τ]-
module and for which there is � ∈ Nwith (t − θ)�(M/τM) = {0}. The rank d of M as a
left K[τ]-module is the dimension of M. Diverging from Anderson’s usage somewhat,
we say that M is abelian if M is also free and finitely generated as a left K[t]-module.
In this case, the rank of M is its rank as a K[t]-module.

Given our Drinfeld module ϕ ∶ A→ K[τ], as in (2.1), the t-motive associated to ϕ,
denoted M(ϕ), is defined as follows: let M(ϕ) ..= K[τ] and make M(ϕ) into a left
K[t]-module by setting ct i ⋅m ..= cmϕt i , for m ∈ M(ϕ), c ∈ K. The t-motive M(ϕ) is
abelian of rank r and dimension 1.

2.6 Rigid analytic trivializations

Anderson [1, Section 2.3] defined the notion of an abelian t-motive to be rigid
analytically trivial, which is equivalent to the following definition. Let m ∈Matr×1(M)
comprise a K[t]-basis for M, and let Θ ∈Matr(K[t]) represent multiplication by
τ on M with respect to m, i.e., τm = Θm. It is known that det Θ = c(t − θ)d for
some c ∈ K×, where d is the dimension of M (see [1, Section 3.2] or [24, Propo-
sition 3.2.5]). Then M is rigid analytically trivial if there exists Υ ∈ GLr(T) that
satisfies

Υ(1) = ΘΥ.(2.15)

The matrix Υ is called a rigid analytic trivialization for M with respect to Θ.
Returning to the situation of our Drinfeld module ϕ from (2.1) and its associated

t-motive M(ϕ) = K[τ], one checks that {1, τ, . . . , τr−1} forms a K[t]-basis for M(ϕ)
(see, e.g., [1, Section 4.1], [17, Section 5.4], [31, Section 7.3]). If we let m = (1, τ,⋯τr−1)tr,
then it follows (see, e.g., [24, Example 4.6.7], [25, Section 4.2]) that τm = Θm, where
Θ is defined in (1.9).
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Proposition 2.16 (Pellarin [25, Section 4.2]) Let ϕ ∶ A→ K[τ] be a Drinfeld module
of rank r. Let π1 , . . . , πr be a basis of Λϕ , and for 1 ⩽ j ⩽ r, let f j ..= fϕ(π j ; t). Then

Υ ..=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

f1 f2 ⋯ fr

f (1)1 f (1)2 ⋯ f (1)r

⋮ ⋮ ⋱ ⋮

f (r−1)
1 f (r−1)

2 ⋯ f (r−1)
r

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∈ GLr(T)

is a rigid analytic trivialization for ϕ with respect to Θ in (1.9).

The proof of the functional equation follows from applications of (2.8). To show
that det Υ ∈ T× involves showing that it is a constant multiple of ωC (see, for example,
[15, Section 6] or [24, Proposition 4.3.10] [note that ‘Υ’ in [24] would be ‘Υ(1)’ in
the present paper]). The reader is directed to [25, Section 4] (or [8, Section 3.4], [24,
Section 4.3]) for more details.

When r = 2, Pellarin [26, Section 2] showed that, as we vary ϕ, we can realize Υ in
terms of vector-valued Drinfeld modular forms, which led to special value identities
for what are now called Pellarin L-series.

3 t-power torsion and matrix estimates

We fix a Drinfeld module ϕ ∶ A→ K[t] as in (2.1), together with the data assembled
in Section 2, including Θ ∈Matr(K[t]) from (1.9). The main goal of this section
(Theorem 3.29) is to construct a matrix B ∈Matr(K[t]) ∩GLr(T) so that

∥B−1Θ−1B(1) − I∥ < 1.(3.1)

We further strive for this construction to rely on only a finite amount of initial
calculation of t-power torsion points of ϕ. The purpose of (3.1) is the following.
We first note that since det Θ = ±(t − θ)/Ar ∈ T×, we have Θ ∈ GLr(T). By letting
F ..= B−1Θ−1B(1) ∈ GLr(T), we obtain that

∥F(n) − I∥ = ∥F − I∥qn
→ 0, n →∞.

Thus, the infinite product ∏∞n=1 F(n) converges in Matr(T) with respect to the
Gauss norm, and its determinant is in T

×. And so, by defining Π ..= BFF(1)F(2)⋯ ∈
GLr(T),

Π(1) = B(1)F(1)F(2)⋯ = ΘBFF(1)F(2)⋯ = ΘΠ,(3.2)

i.e., Π is a rigid analytic trivialization for ϕ with respect to Θ (see Corollary 3.32).
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To construct B, we make judicious choices of polynomials in K[t] of the form

h = ϕt�−1(ξ) + ϕt�−2(ξ)t +⋯+ ξt�−1 , ξ ∈ ϕ[t�].

There are two things to note about such polynomials. The first is that if ϕt�−1(ξ) ∈ ϕ[t]
is nonzero, then there is some nonzero period π ∈ Λϕ so that ϕt�−1(ξ) = expϕ(π/θ).
Thus, as elements of T,

h ≡ fϕ(π; t) (mod t�),(3.3)

and so h is a truncation of an Anderson generating function. Though, as π is not
uniquely determined by ξ, neither is fϕ(π; t). Furthermore, taking ϕt to be an operator
on T as in (2.5), one quickly checks that

ϕt(h) − th = −ξt� ,(3.4)

which is a truncated version of (2.8). Ultimately, we will consider such polynomials
for ξ1 , . . . , ξr ∈ ϕ[t�] for which ϕt�−1(ξ1), . . . , ϕt�−1(ξr) form a strict basis of ϕ[t]
(see Definition 3.18). These Fq-bases of ϕ[t] arise in a directly similar manner to
computations of Maurischat [22, Theorem 3.1] for rank 2 Drinfeld modules and
successive minimum bases of Λϕ defined by Gekeler [14, Section 1.3].

Proposition 3.5 Let � ⩾ 1. For j = 1, . . . , r, we fix ξ j ∈ ϕ[t�], and let h j ..=
∑�−1

m=0 ϕt�−1−m(ξ j)tm . Let

B ..=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

h1 h2 . . . hr

h(1)1 h(1)2 . . . h(1)r

⋮ ⋮ ⋱ ⋮

h(r−1)
1 h(r−1)

2 . . . h(r−1)
r

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,(3.6)

and assume det B ≠ 0. Then

B−1Θ−1B(1) − I = − t�

t − θ
B−1W ,

where

W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ξ1 ξ2 ⋯ ξr

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.(3.7)
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Proof We first observe that

(t − θ)Θ−1B(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 A2 ⋯ Ar−1 Ar

t − θ 0 ⋯ 0 0

0 t − θ ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ t − θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h(1)1 h(1)2 . . . h(1)r

h(2)1 h(2)2 . . . h(2)r

⋮ ⋮ ⋱ ⋮

h(r)1 h(r)2 . . . h(r)r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.8)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

w1 w2 ⋯ wr

(t − θ)h(1)1 (t − θ)h(1)2 ⋯ (t − θ)h(1)r

⋮ ⋮ ⋱ ⋮

(t − θ)h(r−1)
1 (t − θ)h(r−1)

2 ⋯ (t − θ)h(r−1)
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where w j = A1h(1)j +⋯+ Ar h(r)j . For each j = 1, . . . , r, (3.4) implies w j = ϕt(h j) −
θh j = (t − θ)h j − t�ξ j . Thus,

(t − θ)Θ−1B(1) = −t�W + (t − θ)B,

and the result follows by multiplying through by (t − θ)−1B−1. ∎

Remark 3.9 By the above proposition, if B ∈ GLr(T) so in particular det(B) is
invertible in T, we have ∥B−1Θ−1B(1) − I∥ = ∥t�/(t − θ) ⋅ B−1W∥. Since ∥t�/(t − θ)∥ =
1/q, it follows that proving ∥B−1Θ−1B(1) − I∥ < 1 is equivalent to showing

∥B−1W∥ < q.(3.10)

The remainder of this section is devoted to finding � ⩾ 1 and ξ1 , . . . , ξr ∈ ϕ[t�] so that
B ∈ GLr(T) and this inequality holds.

Suppose that B has been chosen as in Proposition 3.5 and that B ∈Matr(K[t]) ∩
GLr(T). For each j, we note that if

∣ξ j ∣ < ∣ϕt(ξ j)∣ < ⋯ < ∣ϕt�−1(ξ j)∣,

then we obtain ∥h j∥ = ∣ϕt�−1(ξ j)∣. This will facilitate estimating ∥B−1W∥ and prompts
our next investigations.

Consider the Newton polygon Γ (see Figure 1) of the polynomial

ϕt(x) = θx + A1xq +⋯+ Ar xqr
∈ K[x].

Letting s ⩾ 1 be the number of edges of Γ, we denote its vertices by (qd j ,−deg Ad j)
for 0 ⩽ j ⩽ s. We note that 0 = d0 < d1 < ⋯ < ds = r and that each d j is an element of
N(ϕ) as defined in Section 2. For 0 ⩽ n < m ⩽ r, define Ln ,m to be the line segment
connecting vertices (qn ,−deg An) and (qm ,−deg Am) and let wn ,m be its slope. For
1 ⩽ j ⩽ s, let λ j ..= wd j−1 ,d j . We observe that λ1 < λ2 < ⋯ < λs and that the line segments
Ld0 ,d1 , . . . , Lds−1 ,ds form the edges of Γ. For more information on Newton polygons, see
[17, Section 2] or [28, Section VI.1.6].
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λ1

λ2 λs−1

λs

0 1 qd1 qd2 ⋯ qds−2 qds−1 qds

−1

v∞(Ad1 )

v∞(Ad2 ) ⋯

Figure 1: Newton polygon Γ of ϕt(x).

Lemma 3.11 Recall the definitions of μn for n ∈ N(ϕ) and μm from (2.10) and (2.11).
For 1 ⩽ j ⩽ s, let a j be the y-intercept of the line containing Ld j−1 ,d j . The following hold.
(1) a1 = μm .
(2) a1 > a2 > ⋯ > as .

(3) −a j ⩾ −
⎛
⎝

deg Ad j − qd j

qd j − 1
⎞
⎠

for every j = 1, . . . , s. ∎

Proof Recalling the definitions of μn for n ∈ N(ϕ), we observe that μn is the
y-intercept of the line through the points (−1, 1) and (qn ,−deg An). Due to the
convexity of the Newton polygon, we have μd1 ⩾ μm . On the other hand, it follows
from the definition of μm that μd1 ⩽ μm . So μd1 = μm , and it is clear that a1 = μd1 ,
which proves (1). For part (2), since λn < λn+1, we have that an > an+1 (see Figure 2).
To prove (3), we recognize that again due to the convexity of the Newton polygon, the
y-intercept a j must be at most the y-intercept μd j . Therefore,

−a j ⩾ −
⎛
⎝

deg Ad j − qd j

qd j − 1
⎞
⎠

for every j = 1, . . . , s. ∎
Building on the preceding lemma, we produce an algorithm to choose a sequence

of torsion points y1, y2 , . . . on ϕ that form a t-division sequence above 0 (that is
convergent in the sense of [20, Section 2.5.3]).

Proposition 3.12 Given nonzero y1 ∈ ϕ[t], there exists a recursive algorithm to choose
y2, y3 , . . . ∈ K such that
(1) ϕt(yk) = yk−1 for k ⩾ 2,
(2) deg y1 > deg y2 > deg y3 > ⋯,
(3) there exists a positive integer N such that ∣yN ∣ < Rϕ ,
(4) limk→∞ deg yk = −∞,
(5) for k ⩾ N, yk is uniquely determined by yN .
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λn λn+1

0 qdn−1 qdn qdn+1

an

an+1

Figure 2: Demonstrating an > an+1 .

Proof Since y1 is a root of ϕt(x), we see that deg y1 ⩽ λs , as λs is the slope of the
final segment of the Newton polygon Γ. For k ⩾ 1, we perform the following recursive
process. Suppose deg yk ⩽ λs and set y ..= yk . Consider the Newton polygon of ϕt(x) −
y, which is obtained from Γ by adding one more point (0,−deg y). We observe that
−deg y must belong to one of the following intervals:

I1 ..= (a1 ,∞), I2 ..= (a2 , a1], . . . , Is ..= (as , as−1],
where a1 , . . . , as are defined in Lemma 3.11. To see why −deg y > as , we claim that
−λs > as , which follows from the following observation. For a line through the point
(1,−1) the sum of its y-intercept and its slope is −1. If the line runs below the point
(1,−1), this sum is less than −1. We conclude that as + λs ⩽ −1, which makes as < −λs .
Since −deg y ⩾ −λs , we have −deg y > as as claimed.

Now, for n ∈ N(ϕ), we define the rational function un(z) ..= (z − deg An)/qn .
(i) If −deg y ∈ (a1 ,∞), then the Newton polygon of ϕt(x) − y is obtained from Γ by

adding the line segment from (0,−deg y) to (1,−1). This new segment has slope
deg y − 1 = u0(deg y), so there is exactly one root of ϕt(x) − y with degree equal
to u0(deg y).

(ii) If −deg y ∈ (a j+1 , a j] for some 1 ⩽ j ⩽ s − 1, then the Newton polygon of ϕt(x) −
y is obtained from Γ by replacing line segments Ld0 ,d1 , Ld1 ,d2 , . . . , Ld j−1 ,d j by the
line segment from (0,−deg y) to (qd j ,−deg Ad j). This new segment has slope
(deg y − deg Ad j)/qd j = ud j(deg y), and so there are qd j roots of ϕt(x) − y with
degree equal to ud j(deg y).

Choose yk+1 to be a root of ϕt(x) − y with

deg yk+1 =
⎧⎪⎪⎨⎪⎪⎩

u0(deg y), if − deg y ∈ (a1 ,∞),
ud j(deg y), if − deg y ∈ (a j+1 , a j].

First, we prove the inequality

deg yk+1 ⩽ deg yk − 1.(3.13)
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For the first case, we note simply that u0(deg yk) = deg yk − 1. For the second case,
note that deg yk+1 = ud j(deg yk) only if −deg yk ∈ (a j+1 , a j] for some 1 ⩽ j ⩽ s − 1.
Lemma 3.11(3) then implies that deg yk ⩾ −a j ⩾ (qd j − deg Ad j)/(qd j − 1), and after
some straightforward manipulations, we deduce deg yk+1 = (deg yk − deg Ad j)/qd j ⩽
deg yk − 1. In summary, in all cases, we obtain a root yk+1 of ϕt(x) − yk , which satisfies
deg yk+1 ⩽ deg yk − 1 < deg yk ⩽ λs . This proves (3.13), as well as sets up the next step
in the recursion, proving (1) and (2). The inequality in (3.13) also readily proves (3)
and (4). By (2.11) and Lemma 3.11(1), we see that once deg yk < −a1, we are in case (i)
above; moreover yk+1 is uniquely determined by yk . Thus, taking N sufficiently large
as in (3), we obtain (5). ∎

Remark 3.14 To make the recursion in Proposition 3.12 effective, we further deter-
mine N explicitly from the given data. That is, we determine N so that deg yN < −a1.
From (2.11) and (3.13), we see that this will occur when

N > deg y1 − logq(Rϕ) + 1.

However, with some small effort, this can in general be improved. Continuing with
the notation in the proof, we first note that

u○k
n (z) =

z
qnk − (

qnk − 1
qn − 1

) deg An

qnk ,(3.15)

where u○k
n (z) is the kth iterate of un under composition. If −deg y1 ∈ I1 = (a1 ,∞),

then we already have deg y1 < −a1 and we can choose N = 1. Now, assume that
−deg y1 ∈ I j+1 for some 1 ⩽ j ⩽ s − 1. By Lemma 3.11,

lim
k→∞

u○k
d j
(deg y1) = −

deg Ad j

qd j − 1
< −a j ,

so there exists a smallest integer k1 so that u○k1
d j
(deg y1) < −a j . Therefore

−deg yk1+1 = −u○k1
d j
(deg y1) ∈ I1 ∪⋯∪ I j . Repeating the same argument, we can

choose the smallest integer k2 ⩾ 0 that makes u○k2
d j−1
(deg yk1+1) < −a j−1, and thus

−deg yk2+k1+1 = −u○k2
d j−1
(deg yk1+1) ∈ I1 ∪⋯∪ I j−1 .

Continuing inductively, we finally obtain k j ⩾ 0 with u○k j

d1
(deg yk j−1+⋯+k1+1) < −a1, i.e.,

−deg yk j+⋯+k1+1 = −u○k j

d j
(deg yk j−1+⋯+k1+1) ∈ I1 .

Letting

N = 1 + k1 +⋯+ k j ,(3.16)

we thus obtain −deg yN ∈ I1, i.e., deg yN < −a1. Moreover, we observe that

deg yN = u○k j

d1
○ ⋯ ○ u○k2

d j−1
○ u○k1

d j
(deg y1).

In the next proposition, we explain how the recursive process in Proposition
3.12 can be used to produce ξ1 , . . . , ξr that are suitable inputs for Proposition 3.5.
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Although a sequence {yk} obtained from Proposition 3.12 is infinite, we construct
ξ1 , . . . , ξr after only finitely many applications of the recursive algorithm defining such
sequences.

Proposition 3.17 Let x1 , . . . , xr be an Fq-basis of ϕ[t]. Then there exists N ⩾ 1 and
ξ1 , . . . , ξr ∈ ϕ[tN] such that for each j = 1, . . . , r,
(1) ∣ξ j ∣ < Rϕ ,
(2) ϕtN−1(ξ j) = x j ,
(3) deg ϕtN−1(ξ j) > ⋯ > deg ϕt(ξ j) > deg ξ j .

Proof For 1 ⩽ j ⩽ r, apply Proposition 3.12 to x j , obtaining a sequence x j,1, x j,2 , . . .
with the designated properties (x j,1 = x j). We let N j be the positive integer from
Proposition 3.12(3), e.g., from (3.16). Let N ..=max{N1 , . . . , Nr}, and for 1 ⩽ j ⩽ r, let
ξ j ..= x j,N . Then, for each j, Proposition 3.12 implies

ϕtk(ξ j) = x j,N−k , 0 ⩽ k ⩽ N − 1.

This proves (2). Parts (1) and (3) are then consequences of Proposition 3.12(2)
and (3). ∎

Definition 3.18 An Fq-basis x1 , . . . , xr of ϕ[t] is strict if, for 1 ⩽ j ⩽ r, we have
deg x j = λk , where dk−1 + 1 ⩽ j ⩽ dk .

Lemma 3.19 (Cf. [14, Proposition 1.4]) There exists a strict Fq-basis of ϕ[t].

Proof For 1 ⩽ k ⩽ s, define

Qk
..= {x ∈ ϕ[t] ∶ deg x ⩽ λk}, Rk

..= {x ∈ ϕ[t] ∶ deg x = λk}.(3.20)

We observe that Qk is an Fq-subspace of ϕ[t] for each k. Since Q1 = R1 ⊔ {0} and the
set Q1 has qd1 elements, there exist x1 , . . . , xd1 ∈ R1 such that

Q1 = Fqx1 ⊕⋯⊕ Fqxd1 .

Now, Q1 ⊆ Q2 and the set Q2 has qd2 elements, so we can pick xd1+1 , . . . , xd2 in Q2
such that

Q2 = Fqx1 ⊕⋯⊕ Fqxd1 ⊕ Fqxd1+1 ⊕⋯⊕ Fqxd2 .

We claim that for every d1 + 1 ⩽ j ⩽ d2, we have deg x j = λ2. Indeed, fix d1 + 1 ⩽ j ⩽ d2
and suppose that deg x j < λ2. Since x j is a nonzero element in ϕ[t], we have deg x j ∈
{λ1 , . . . , λs}, and deg x j < λ2 implies that deg x j ⩽ λ1. But then, x j ∈ Q1, violating the
Fq-linear independence of x1 , . . . , xd2 . We continue inductively to produce an Fq-
basis x1 , . . . , xds of Qs , with {xdk−1+1 , . . . , xdk} ⊆ Rk for each 1 ⩽ k ⩽ s. As ds = r and
Qs = ϕ[t], we are done. ∎

Definition 3.21 For the remainder of this section, we fix the following data. Pick a
strict basis x1 , . . . , xr of ϕ[t]. Choose N ⩾ 1 and ξ1 , . . . , ξr ∈ ϕ[tN] as in Proposition
3.17. For 1 ⩽ j ⩽ r, we set

h j ..= ϕtN−1(ξ j) + ϕtN−2(ξ j)t +⋯+ ξ j tN−1 ∈ K[t].
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Proposition 3.17(3) implies that

∥h j∥ = max
0⩽m⩽N−1

{∣ϕtN−1−m(ξ j)∣} = ∣x j ∣;(3.22)

moreover, ∣x j ∣ is the unique maximum among the norms of the coefficients of h j . Fix
B to be the r × r matrix with (i , j)-entries defined by [B]i j ..= h(i−1)

j as in (3.6). For the
rest of this section, our goal is to prove that B is in GLr(T) and satisfies (3.10). Thus,
by Proposition 3.5 (and Remark 3.9), B will satisfy (3.1) as desired.

Lemma 3.23 Let x1 , . . . , xr be a strict basis of ϕ[t]. For 1 ⩽ k ⩽ s and dk−1 + 1 ⩽ j ⩽ dk ,

deg(c1x1 +⋯+ c j−1x j−1 + x j) = λk = deg x j ,

for every c1 , . . . , c j−1 ∈ Fq .

Proof Let y = c1x1 +⋯+ c j−1x j−1 + x j , and let z = cdk−1+1xdk−1+1 +⋯+ c j−1x j−1 + x j .
We observe that deg y ⩽ deg x j = λk . If deg y ⩽ λk−1, then it must be the case that
deg z ⩽ λk−1, whence z ∈ Qk−1 as in (3.20). As x1 , . . . , xdk−1 is an Fq-basis of Qk−1, this
would violate the Fq-linear independence of x1 , . . . , x j . ∎
Lemma 3.24 Let x1 , . . . , xr be a strict basis for ϕ[t], and fix X ∈Matr(K) so that
[X]i j = xq i−1

j . Then

deg(det X) =
r
∑
j=1

q j−1 deg x j .

Proof As X is a Moore matrix, we obtain from [17, Corollary 1.3.7] that

det X =
r
∏
j=1

∏
c1 , . . . ,c j−1∈Fq

(c1x1 +⋯+ c j−1x j−1 + x j).

For 1 ⩽ k ⩽ s, let Pk = {dk−1 + 1, . . . , dk}. Thus, by Lemma 3.23,

deg(det X) =
s
∑
k=1
∑
j∈Pk

∑
c1 , . . . ,c j−1∈Fq

deg x j =
s
∑
k=1
∑
j∈Pk

q j−1 deg x j ,

which easily converts to the desired formula. ∎
The following modification of the identity in Lemma 3.24 can be obtained by the

same argument and will be useful in Proposition 3.26. For 1 ⩽ j1 < ⋯ < jn ⩽ r and 1 ⩽
i ⩽ n, consider the n × n matrix X̃ so that [X̃]i� = (xq i−1

j� ). Then

deg(det X̃) =
n
∑
�=1

q�−1 deg x j� .(3.25)

We can now compute det B and show that B ∈ GLr(T).

Proposition 3.26 For 1 ⩽ j ⩽ r, write h j = x j + y j t with y j ∈ K[t]. Let B = (h(i−1)
j )

and let X = (xq i−1

j ). Then
(1) det B = det X + yt for some y ∈ K[t] with ∥y∥ < ∣det X∣,
(2) B ∈ GLr(T).

https://doi.org/10.4153/S0008414X22000153 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000153


730 C. Khaochim and M. Papanikolas

Proof Using the calculation in (3.22) via Proposition 3.17(3), we see that ∥y j∥ < ∣x j ∣
and so

h(i−1)
j ∈ T×, 1 ⩽ i , j ⩽ r.

For 1 ⩽ n ⩽ r, let B̃ be any n × n minor of B, where any of the columns of B are removed
and all of the final r − n rows of B are removed. Thus, we can choose 1 ⩽ j1 < ⋯ < jn ⩽ r
so that [B̃]i� = (h(i−1)

j� ). If n = r, then B̃ is simply B. Recalling X̃ from (3.25), we claim
that for some ỹ ∈ K[t],

det B̃ = det X̃ + ỹt,

with ∥ ỹ∥ < ∣det X̃∣, and that det B̃ ∈ T×.
We proceed by induction on n. When n = 1, the claim follows since h j ∈ T× for

each j. Consider the case n = 2. Then suppose h j1 = x̃1 + ỹ1 t and h j2 = x̃2 + ỹ2 t. Then

det B̃ = (x̃1 + ỹ1 t)(x̃(1)2 + ỹ(1)2 t) − (x̃2 + ỹ2 t)(x̃(1)1 + ỹ(1)1 t) = det X̃ + ỹt,

where ỹ = ỹ1h(1)j2
+ x̃1 ỹ(1)2 − ỹ2h(1)j1

− x̃2 ỹ(1)1 ∈ K[t]. We quickly verify that

∥ ỹ1h(1)j2
∥ < ∣x̃1∣ ⋅ ∣x̃2∣q , ∥x̃1 ỹ(1)2 ∥ < ∣x̃1∣ ⋅ ∣x̃2∣q ,

∥ ỹ1h(1)j1
∥ < ∣x̃2∣ ⋅ ∣x̃1∣q , ∥x̃2 ỹ(1)1 ∥ < ∣x̃2∣ ⋅ ∣x̃1∣q .

Combining these inequalities with (3.25), we have ∥ ỹ∥ < ∣det X̃∣, and thus det B̃ ∈ T×.
The general argument is similar, although there is more bookkeeping. Suppose the

statement is true for n − 1 < r, and for 1 ⩽ � ⩽ n, write h j� = x̃� + ỹ�t. We can express

det B̃ =
n
∑
�=1
(−1)n+�h(n−1)

j� det B� ,(3.27)

where B� is the (n − 1) × (n − 1)-minor matrix obtained by removing the last row and
the �th column from B̃. We observe that

B� =
⎛
⎜⎜⎜⎜
⎝

h j1 ⋯ h j�−1 h j�+1 ⋯ h jn

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

h(n−2)
j1

⋯ h(n−2)
j�−1

h(n−2)
j�+1

⋯ h(n−2)
j�

⎞
⎟⎟⎟⎟
⎠

.

By the induction hypothesis, det B� = det X� + b�t for some b� ∈ K[t] and ∥b�∥ <
∣det X�∣ (where X� is the evident (n − 1) × (n − 1)-minor matrix of X̃). Starting from
(3.27),

det B̃ =
n
∑
�=1
(−1)n+�(x̃qn−1

� + ỹ(n−1)
� t)(det X� + b�t)

=
n
∑
�=1
(−1)n+�(x̃qn−1

� det(X�) + c�t),
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where c� ..= ỹ(n−1)
� ⋅ det B� + x̃qn−1

� b�, and continuing,

= det X̃ +
n
∑
�=1
(−1)n+�c�t.

We claim that for each �, ∥c�∥ < ∣det X̃∣. Considering the definition of c�, we estimate

∥ ỹ(n−1)
� ⋅ det B�∥ < ∣x̃�∣q

n−1
⋅ ∣det X�∣, ∥x̃qn−1

� ⋅ b�∥ < ∣x̃�∣q
n−1
⋅ ∣det X�∣.

The first inequality follows from ∥ ỹ�∥ < ∣x̃�∣ and ∥det B�∥ = ∣det X�∣, and the second
from ∥b�∥ < ∣det X�∣. Finally, ∣x̃�∣q

n−1 ⋅ ∣det X�∣ ⩽ ∣det X̃∣ by (3.25). Thus, this claim and
the induction are complete. ∎

Remark 3.28 From the above proposition, we see that ∥det B∥ = ∣det X∣, and for each
minor B̃ in the proof, ∥det B̃∥ = ∣det X̃∣.

We now prove the main theorem of this section, which verifies that the matrix B
we have constructed in Proposition 3.26 satisfies (3.1).

Theorem 3.29 Let x1 , . . . , xr be a strict basis of ϕ[t]. Choose N ⩾ 1 and ξ1 , . . . , ξr ∈
ϕ[tN] as in Proposition 3.17, and for 1 ⩽ j ⩽ r, define

h j ..= ϕtN−1(ξ j) + ϕtN−2(ξ j)t +⋯+ ξ j tN−1 .

Let B ..= (h(i−1)
j ) ∈Matr(K[t]) as in (3.6). Then B ∈ GLr(T) and

∥B−1Θ−1B(1) − I∥ < 1.

Proof That B ∈ GLr(T) was proved in Proposition 3.26. By Remark 3.9, we thus see
that ∥B−1Θ−1B(1) − I∥ < 1 if and only if ∥B−1W∥ < q, where W is defined in (3.7) as

W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ξ1 ξ2 ⋯ ξr

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Letting m i j ..= [B−1]i j , we find

B−1W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

m11 ξ1 m11 ξ2 ⋯ m11 ξr

m21 ξ1 m21 ξ2 ⋯ m21 ξr

⋮ ⋮ ⋱ ⋮
mr1 ξ1 mr1 ξ2 ⋯ mr1 ξr

⎞
⎟⎟⎟⎟⎟⎟
⎠

.
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By definition, ∥B−1W∥ =max{∥m i1 ξ j∥ ∶ 1 ⩽ i , j ⩽ r}. Now, fix i and j. Expressing B−1

in terms of cofactors, we see that m i1 = (−1)i+1(det B∗)/(det B), where

B∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h(1)1 ⋯ h(1)i−1 h(1)i+1 ⋯ h(1)r

h(2)1 ⋯ h(2)i−1 h(2)i+1 ⋯ h(2)r

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

h(r−1)
1 ⋯ h(r−1)

i−1 h(r−1)
i+1 ⋯ h(r−1)

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We note that B∗ = B̃(1), where B̃ is the (r − 1) × (r − 1) minor of B obtained by
removing the ith column and the last row, whose properties were investigated in
the proof of Proposition 3.26. In particular, if as in that proof we let X̃ be the
corresponding minor of X, we see from Remark 3.28 that

∥det B∥ = ∣det X∣, ∥det B∗∥ = ∥B̃(1)∥ = ∣det X̃∣q .

We can use Lemma 3.24 to calculate ∣det X∣ and (3.25) to calculate ∣det X̃∣, and we find

logq∥m i1 ξ j∥ = logq(
∥det B∗∥ ⋅ ∣ξ j ∣
∥det B∥ )(3.30)

=
i−1
∑
�=1

q� deg x� +
r
∑

�=i+1
q�−1 deg x� + logq ∣ξ j ∣ −

r
∑
�=1

q�−1 deg x� .

Using that deg x� ⩽ deg x�+1 for all � ⩽ r − 1, after reindexing the sum, we find
i−1
∑
�=1

q� deg x� ⩽
i
∑
�=2

q�−1 deg x� .

Combining this with (3.30), we have

logq∥m i1 ξ j∥ ⩽ −deg x1 + logq ∣ξ j ∣.(3.31)

Since ξ1 , . . . , ξr are chosen so that ∣ξ j ∣ < Rϕ = q−μm , we have logq ∣ξ j ∣ < −μm . Recall
from Lemma 3.11(1) and its proof that

μm = a1 = pd1 = −1 −w0,d1 = −1 − λ1 = −1 − deg x1 .

Continuing with (3.31), we then find

logq∥m i1 ξ j∥ < −deg x1 + 1 + deg x1 = 1.

Thus, logq∥B−1W∥ =maxi , j(logq∥m i1 ξ j∥) < 1, and so ∥B−1W∥ < q as sought. ∎

Based on the discussion at the beginning of this section and in particular (3.2), the
following corollary is immediate.

Corollary 3.32 Continuing with the setting of Theorem 3.29, the infinite product

Π ..= B
∞

∏
n=0
(B−1Θ−1B(1))

(n)
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converges with respect to the Gauss norm on Matr(T) and lies in GLr(T). Moreover,

Π(1) = ΘΠ,

and so Π is a rigid analytic trivialization for ϕ.

4 Product expansions for rigid analytic trivializations

We continue with the constructions and notations of Section 3, especially the results
from Theorem 3.29 and Corollary 3.32. A natural question to ask is how the matrix Π
from Corollary 3.32 compares to Υ defined by Pellarin in Proposition 2.16. By applying
results from [10], we will show in Theorem 4.4 that once we define an appropriate basis
π1 , . . . , πr for Λϕ , using our already chosen ξ1 , . . . , ξr ∈ ϕ[tN], that in fact Π = Υ (cf.
[21, Section 3]).

Lemma 4.1 Set F ..= B−1Θ−1B(1). For n ⩾ 0, set Πn ..= BFF(1)⋯F(n). Let W be the
matrix defined in (3.7), and let

R0 ..= I
t − θ

, Rm ..= Θ−1(Θ−1)(1)⋯(Θ−1)(m−1)

t − θqm , m ⩾ 1.

Then, for n ⩾ 0,

Πn = B − tN
n
∑
m=0

RmW(m).

Proof First, for n ⩾ 0, we observe that

Πn = Θ−1(Θ−1)(1)⋯(Θ−1)(n)B(n+1) .

Moreover, Proposition 3.5 yields

Θ−1B(1) = B − tN

t − θ
W ,

which proves the case n = 0. Proceeding by induction, assume the formula holds for
Πn−1. Then, combining the previous displayed equations,

Πn = Θ−1(Θ−1)(1)⋯(Θ−1)(n−1)(B(n) − tN

t − θqn W(n)) = Πn−1 − tN RnW(n),

and the formula for Πn follows from the induction hypothesis. ∎
In the previous lemma, we wrote Πn as a finite sum involving the matrices B, W,

and Rm , 0 ⩽ m ⩽ n. Next, we investigate an explicit formula for the first column of Rm .
For n ⩾ 0, recall the rational function Bn ∈ K(t) from (2.9). We set Bn ..= 0 for n < 0.

Lemma 4.2 For m ⩾ 0, let Rm be defined as in Lemma 4.1. Then, for 1 ⩽ i ⩽ r,

[Rm]i1 =
B
(i−1)
m−(i−1)

t − θq i−1 .

Proof We proceed by induction on m. As B0 = 1, the conclusion holds trivially for
R0. For general m, we observe that Rm = Θ−1R(1)m−1, and so by combining the exact
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form of Θ−1 (see (3.8)), the induction hypothesis, and [10, Lemma 6.12(a)],

[Rm]11 =
r
∑
k=1
[Θ−1]1k[R

(1)
m−1]k1 =

r
∑
k=1

Ak

t − θ
B
(k)
m−k

t − θqk =
Bm

t − θ
.

The cases 2 ⩽ i ⩽ r follow immediately from the induction hypothesis, as

[Rm]i1 =
r
∑
k=1
[Θ−1]ik[R

(1)
m−1]k1 = [R

(1)
m−1]i−1,1 =

B
(i−1)
m−(i−1)

t − θq i−1 . ∎

Combining Lemmas 4.1 and 4.2, we determine the matrix Πn completely.

Proposition 4.3 For n ⩾ 0 and 1 ⩽ i, j ⩽ r,

[Πn]i j = (h j −
tN

t − θ

n−(i−1)

∑
m=0

Bm ξqm

j )
(i−1)

.

Proof Using (3.7) and Lemma 4.2, we obtain that for each m,

[RmW(m)]i j = [Rm]i1 ξqm

j =
B
(i−1)
m−(i−1)

t − θq i−1 ⋅ ξ
qm

j .

Substituting this into the formula for Πn in Lemma 4.1, it follows that

[Πn]i j = h(i−1)
j − tN

n
∑
m=0

B
(i−1)
m−(i−1)

t − θq i−1 ⋅ ξ
qm

j = (h j − tN
n
∑

m=i−1

Bm−(i−1)

t − θ
⋅ ξqm−(i−1)

j )
(i−1)

,

and the result follows by reindexing the sum. ∎

The following theorem determines the entries of Π in terms of Lϕ(ξ j ; t) from
(2.13), starting from a strict basis x1 , . . . , xr of ϕ[t]. As a consequence, we find that
Π is the same as the matrix Υ constructed from Anderson generating functions in
Proposition 2.16.

Theorem 4.4 Let x1 , . . . , xr be a strict basis of ϕ[t], and choose N ⩾ 1 and ξ1 , . . . , ξr ∈
ϕ[tN] as in Proposition 3.17. Let B = (h(i−1)

j ) ∈ GLr(T) be defined as in Theorem 3.29,
and construct the rigid analytic trivialization for ϕ,

Π = B
∞

∏
n=0
(B−1Θ−1B(1))

(n)

as in Corollary 3.32. For 1 ⩽ i , j ⩽ r,

[Π]i j = (h j −
tN

t − θ
Lϕ(ξ j ; t))

(i−1)

.

Moreover, letting π j ..= θN logϕ(ξ j), the quantities π1 , . . . , πr form an A-basis of Λϕ and
[Π]i j = fϕ(π j ; t)(i−1). It follows that

Π = Υ,

where Υ is defined with respect to π1 , . . . , πr ∈ Λϕ in Proposition 2.16.
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Proof Recall in Proposition 3.17 that ξ1 , . . . , ξr are chosen so that ∣ξ j ∣ < Rϕ for each j.
Thus, as in (2.13), we have Lϕ(ξ j ; t) ∈ T for each j by [10, Proposition 6.10]. For
1 ⩽ i , j ⩽ r fixed, it then follows from (2.13) and Proposition 4.3 that

[Π]i j = lim
n→∞
(h j −

tN

t − θ

n−(i−1)

∑
m=0

Bm ξqm

j )
(i−1)

= (h j −
tN

t − θ
Lϕ(ξ j ; t))

(i−1)

,

thus verifying the first identity. As Rϕ is at most the radius of convergence of logϕ(z)
(see [10, Theorem 6.13(b)], but also Corollary 4.5), logϕ(ξ j) is well defined for each j,
and so we can define π j ..= θN logϕ(ξ j) (⇒ ξ j = expϕ(π j/θN)). By Proposition 3.17,

expϕ(π j) = expϕ(θN logϕ(ξ j)) = ϕtN (ξ j) = 0,

so π1 , . . . , πr ∈ Λϕ . As in (3.3), since ϕtN−1(ξ j) = x j = expϕ(π j/θ), we have h j =
∑N−1

m=0 expϕ(π j/θm+1)tm . By (2.14), we find Lϕ(ξ j ; t) = −(t − θ) fϕ(π j/θN ; t), and
using the definition of Anderson generating function in (2.6), we obtain (cf. [10,
Equation (7.2)])

h j −
tN

t − θ
Lϕ(ξ j ; t) = fϕ(π j ; t).

Thus, for each i, j, we have [Π]i j = fϕ(π j ; t)(i−1), and so Π has the form of Υ in
Proposition 2.16, but in order for that proposition to apply, it remains to verify that
π1 , . . . , πr is an A-basis of Λϕ . Let ω1 , . . . , ωr ∈ Λϕ be any A-basis of Λϕ , and let U =
( fϕ(ω j ; t)(i−1))be the corresponding matrix from (1.7). Suppose E ∈Matr(A) satisfies

(ω1 , . . . , ωr)E = (π1 , . . . , πr),

and let Ẽ ∈Matr(A) be the corresponding matrix where θ ↦ t. From (2.7), it follows
that UẼ = Π, whence det U ⋅ det Ẽ = det Π. Since Π, U ∈ GLr(T) (by Proposition 2.16
and Corollary 3.32), it must be that det Ẽ ∈ T×. However, T× ∩A = F×q , and so det E =
det Ẽ ∈ F×q . Therefore, π1 , . . . , πr form an A-basis of Λϕ . ∎

Corollary 4.5 The radius of convergence of logϕ(z) is exactly Rϕ .

Proof As in (2.3), the radius of convergence Pϕ of logϕ(z) is the minimum norm
among nonzero periods in Λϕ by [17, Proposition 4.14.2]. Furthermore, Rϕ ⩽ Pϕ , as
explained in Remark 2.12. From our strict basis for ϕ[t], it follows that deg x1 = λ1, and
Lemma 3.11 implies λ1 = −1 − μm . Therefore, ∣x1∣ = Rϕ/∣θ∣ < Rϕ , and it follows from
the proof of Theorem 4.4 that π1 = θ log(x1). Furthermore, by [17, Proposition 4.14.2],
logϕ(z) is an isometry on the open disk of radius Pϕ centered at 0, and so ∣π1∣ = ∣θ∣ ⋅
∣x1∣ = Rϕ . Thus, Rϕ ⩾ Pϕ . ∎

These results also shed light on the field generated by the period lattice. Let L/k∞
be a finite extension, containing the coefficients A1 , . . . , Ar . When r = 2, Maurischat
[22, Theorem 3.1], proved that L(Λϕ) = L(ϕ[tN]), using Newton polygons in a similar
fashion to Propositions 3.12 and 3.17 (see Theorem 5.2). For higher ranks, Gekeler
[14, Section 2] used the spectrum of successive minimum bases for Λϕ to extend
Maurischat’s result. Although not providing the degree of detail as Gekeler’s result, we
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obtain the following for all ranks, whose proof has been designed in a similar manner
to Maurischat’s rank 2 result.

Corollary 4.6 Suppose that ϕ is defined over a finite extension L/k∞. Choose N ⩾ 1 as
in Remark 3.14 and Proposition 3.17. Then L(Λϕ) = L(ϕ[tN]).

Proof As finite extensions of k∞, L and L(ϕ[tN]) are complete. By [22, Proposition
2.1], we have that L(ϕ[tN]) ⊆ L(Λϕ). By definition of the A-basis π1 , . . . , πr of Λϕ
from Theorem 4.4, π j = θN logϕ(ξ j). Since logϕ(z) has coefficients in L, we have
logϕ(ξ j) ∈ L(ϕ[tN]) for each j. ∎

Remark 4.7 It is an interesting question, brought up by one of the referees, about
how much the preceding constructions and results depend on whether the initial Fq-
basis x1 , . . . , xr ∈ ϕ[t] is strict or not. At first, the authors suspected that one could use
the results for strict bases to, then, deduce the same results for nonstrict bases, but it
appears to be fairly subtle, and certain conclusions may turn out to be false if the initial
basis is not strict.

For example, we can look ahead to Example 5.5, where q = 3, ϕ has rank 2, and
N = 2, and use the torsion elements x1, x2 ∈ ϕ[t] and ξ1, ξ2 ∈ ϕ[t2] from (5.6) and
(5.7). If we take

x′1 ..= x1 + x2 , x′2 ..= x2 ∈ ϕ[t],

ξ′1 ..= ξ1 + ξ2 + x1 , ξ′2 ..= ξ2 ∈ ϕ[t2],

then x′1, x′2 do not form a strict basis for ϕ[t], but the sequences x′1, ξ′1 , . . . and x′2, ξ′2 , . . .
can be extended to t-division sequences as in Proposition 3.12 with terms of strictly
decreasing degree. However, when we consider the corresponding polynomials, h′1 =

x′1 + ξ′1 t, h′2 = x′2 + ξ′2 t, the matrix B′ = (
h′1 h′2

h′1
(1) h′2

(2)
) has determinant inF3((θ−1/2))[t],

det B′ = −θ1/2 − (θ1/2 + θ−1/2 + θ−5 +⋯) ⋅ t + (θ−11/2 + θ−15 +⋯) ⋅ t2 .

The details of this computation follow quickly from (5.6) and (5.7). What we notice
is that the coefficient of t in det B′ has the same∞-adic norm as the constant term,
implying the conclusion from Proposition 3.26(1) does not hold if we start with the
nonstrict basis x′1, x′2.

5 Rank 2 Drinfeld modules and examples

We now specialize to the case that ϕ has rank 2, defined by

ϕt = θ + A1τ + A2τ2 , A2 ≠ 0.(5.1)

We seek to express the data from the previous sections explicitly, and we work out
concrete examples. Though framed slightly differently, Theorem 5.2 was proved by
Maurischat [22, Theorem 3.1] using similar methods to Propositions 3.12 and 3.17.
It is interesting to extract it from these propositions, which we briefly summarize
afterward. The Newton polygon for ϕt(x) falls into two cases, depicted in Figure 3,
where (1) it has a single bottom edge of slope λ1, or (2) it has two bottom edges

https://doi.org/10.4153/S0008414X22000153 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000153


Effective rigid analytic trivializations for Drinfeld modules 737

λ1

0 1 q q2

−1

v∞(A1)

v∞(A2)

Case 1

λ1

λ2

0 1 q q2

−1

v∞(A1)

v∞(A2)

Case 2

Figure 3: Rank 2 Newton polygon cases for ϕt(x).

Case N deg ξ1 deg ξ2

1 1 1 − deg A2

q2 − 1
1 − deg A2

q2 − 1

2 �
1 − deg A1

q − 1
− (� − 1) (−q� + q + 1)deg A1 − deg A2

q�(q − 1)

Figure 4: Degrees of ξ1 , ξ2 in rank 2.

of slopes λ1 < λ2. We note that ϕt(x) belongs to case (1) if and only if deg A1 ⩽
(q + deg A2)/(q + 1).

Theorem 5.2 (Maurischat [22, Theorem 3.1]) Let ϕ be a rank 2 Drinfeld module
defined as in (5.1), and consider the following cases.
(1) deg A1 ⩽ (q + deg A2)/(q + 1),
(2) deg A1 > (q + deg A2)/(q + 1).
In Case 2, let � ⩾ 1 be the unique integer such that

q� + deg A2

q + 1
⩽ deg A1 <

q�+1 + deg A2

q + 1
.

Then the positive integer N and the degrees of ξ1, ξ2 ∈ ϕ[tN] in Proposition 3.17 can be
chosen to satisfy the values in Figure 4.

We briefly recount how Remark 3.14 and Proposition 3.17 lead to these results in the
case of rank 2. Let x1, x2 ∈ ϕ[t] be a strict basis. (i) In Case 1, deg(x1) = deg(x2) = λ1.
As in the proof of Corollary 4.5, ∣x j ∣ < Rϕ for j = 1, 2, and so N = 1. (ii) In Case 2,
deg(x1) = λ1, deg(x2) = λ2, and λ1 < λ2. Again, as in Corollary 4.5, ∣x1∣ < Rϕ , and
so N1 = 1. Now, −λ2 ∈ (a2 ,∞], and we choose κ ⩾ 0 minimal so that u○κ1 (λ2) < −a1.
Using (3.15), together with the definitions of a1 and λ2, a short calculation yields that
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κ is minimal so that

deg A1 <
qκ+2 + deg A2

q + 1
,

from which κ = � − 1 (cf. [22, Proof of Theorem 3.1]). Applying Remark 3.14, we then
have N2 = κ + 1 = �, and the degrees of ξ1, ξ2 follow.

As in Theorem 4.4, the periods π1, π2 ∈ Λϕ are defined by π j = θN logϕ(ξ j), for
j = 1, 2. As ξ1, ξ2 are strictly within the radius of convergence of logϕ(z),

deg π j = N + deg ξ j , j = 1, 2,(5.3)

by [17, Proposition 4.14.2]. We now consider explicit examples to demonstrate how one
can perform the constructions of B and Π in Sections 3 and 4. Although both examples
below are Drinfeld modules with complex multiplication, the approximations that
follow could be performed for any Drinfeld module, and it is not especially important
that they have complex multiplication. On the other hand, we found it enlightening
to compare the calculations of various quantities with those previously obtained by
other methods.

Example 5.4 We let ϕ ∶ A→ K[τ] be defined by

ϕt = θ + (θq/2 + θ1/2)τ + τ2 ,

which in essence is the Carlitz module for the ring Fq[t1/2] ⊇ A. In this case, deg A1 =
q/2 and deg A2 = 0. From Theorem 5.2, we are in Case 2 and N = � = 1. Let i be a choice
of (−1)1/(q−1), and let F = Fq(i). Then, in the field F((θ−1/(2q−2))), we set

ζ ..= iθ1/(2q−2) , β ..= θ−1/2 + θ−q/2 + θ−q2/2 + θ−q3/2 +⋯.

We verify that x1 ..= ζβ and x2 ..= ζ form a strict basis of ϕ[t] with
deg(x1) = −(q − 2)/(2q − 2) and deg(x2) = 1/(2q − 2). The matrix B from Theorem
3.29 is

B =
⎛
⎝

ζβ ζ

ζq βq ζq

⎞
⎠
= ζ
⎛
⎝

β 1

1 − θ1/2β −θ1/2

⎞
⎠

.

A small calculation reveals that

B−1Θ−1B(1) =
⎛
⎜⎜⎜⎜
⎝

1 − θ1/2β t
t − θ

−θ1/2 t
t − θ

θ1/2βq+1 t
t − θ

1 + θ1/2βq t
t − θ

⎞
⎟⎟⎟⎟
⎠

,

and we easily verify that ∥B−1Θ−1B(1) − I∥ < 1 as in Theorem 3.29. We omit the details,
but it is instructive to compare approximations of residues and evaluations of Π at
t = θ to the expected periods and quasi-periods coming from the theory of the Carlitz
module.
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Example 5.5 Let q = 3, and choose ν ∈ K so that ν2 = θ3 − θ − 1. Fix the Drinfeld
module ϕ ∶ A→ K[τ] defined by

ϕt = θ + (ν3 + ν)τ + τ2 .

This Drinfeld module has been widely studied as it has complex multiplication by the
class number 1 ring F3[t, y], where y2 = t3 − t − 1 and

ϕy = ν + (ν4 − ν2)τ + (ν9 + ν3 + ν)τ2 + τ3 .

Thakur [30, Section 2.3(c)], [31, Section 8.2], showed that the coefficients of ϕt , ϕy ,
expϕ(z), and logϕ(z) can be derived from its associated shtuka function, and this
point of view was used in [19, Sections 4 and 9] to find explicit product expansions of
the direct analogues of ωC and π̃.

First, we observe that deg A1 = 9
2 and deg A2 = 0, so λ1 = − 7

4 and λ2 = 3
4 . Thus, in

Theorem 5.2 and (5.3), we have N = � = 2 and

deg ξ1 = −
11
4

, deg ξ2 = −
5
4

, deg π1 = −
3
4

, deg π2 =
3
4

.

These agree with [9, Section 7], where some of these quantities were also calculated.
In what follows, all quantities are contained in L ..= F9((θ−1/4)). We fix i ..=

√
−1 ∈ F9.

The sign function on k×∞ → F
×
3 extends to L× → F

×
9 in the natural way, and we choose

ν to have sign +1. Using Newton’s method, we approximate the strict basis x1, x2 for
ϕ[t]:

x1 = −iθ−7/4 − iθ−19/4 − iθ−27/4 + iθ−31/4 − iθ−35/4 + iθ−39/4

+ iθ−43/4 + O(θ−51/4),

(5.6)

x2 = iθ3/4 − iθ−1/4 + iθ−5/4 + iθ−9/4 − iθ−13/4 − iθ−17/4 + iθ−21/4

+ iθ−33/4 − iθ−37/4 + iθ−41/4 + O(θ−45/4).

If desired, we can solve for x1, x2 algebraically and find

x2
1 = θ1/2(θ + 1) − (−(θ − 1)νθ1/2 − θ(θ + 1)2)

1/2
,

x2
2 = θ1/2(θ + 1) + (−(θ − 1)νθ1/2 − θ(θ + 1)2)

1/2
.

Again using Newton’s method, we approximate ξ1, ξ2 ∈ ϕ[t2] as in Proposition 3.17:

ξ1 = −iθ−11/4 − iθ−19/4 − iθ−23/4 + iθ−31/4 + iθ−35/4 + iθ−39/4

+ iθ−43/4 + O(θ−51/4),
(5.7)

ξ2 = −iθ−5/4 + iθ−9/4 + iθ−13/4 − iθ−17/4 + iθ−21/4 + iθ−25/4

− iθ−29/4 − iθ−33/4 − iθ−37/4 − iθ−45/4 + O(θ−53/4).
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We then have h1 = x1 + ξ1 t and h2 = x2 + ξ2 t, from which we form B as in Theorem
3.29. Writing F = B−1Θ−1B(1), we find

[F]11 = 1 + (θ−2 + θ−4 + θ−7 − θ−8 − θ−9 + θ−10 + O(θ−14))t2

+ ( − θ−5 − θ−7 − θ−8 + θ−10 + θ−12 + O(θ−15))t3 + O(t4),

(5.8)

[F]12 = (θ−1/2 − θ−3/2 − θ−5/2 + θ−13/2 + θ−15/2 + θ−17/2 + θ−19/2

+ θ−21/2 + O(θ−27/2))t2 + ( − θ−7/4 + θ−9/2 + θ−11/2

− θ−13/2 + θ−15/2 + θ−17/2 + θ−19/2 + O(θ−27/2))t3 + O(t4),

[F]21 = (θ−19/2 + θ−23/2 + O(θ−25/2))t2 + O(t4),

[F]22 = 1 + (θ−8 − θ−9 − θ−10 + θ−11 − θ−12 + O(θ−13))t2 + O(t4).

Thus, B−1Θ−1B(1) conforms to the expected inequality in Theorem 3.29. We can
approximate Π using its product expansion in Theorem 4.4, and then we estimate
the periods π1, π2, and corresponding quasi-periods η1, η2, for ϕ as described in
Section 1. Namely, π j = −((t − θ)[Π]1 j)∣t=θ and η j = ([Π]2 j)∣t=θ for j = 1, 2. From
this,
we find

π1 = −iθ−3/4 − iθ−11/4 − iθ−15/4 − iθ−19/4 + iθ−23/4 + iθ−39/4

+ iθ−47/4 + O(θ−55/4),
(5.9)

π2 = −iθ3/4 + iθ−5/4 + iθ−9/4 − iθ−29/4 − iθ−33/4 + iθ−37/4

− iθ−41/4 + iθ−45/4 + O(θ−61/4).

We first note that these formulas approximate the identity π2 = νπ1 at least to the
precision taken, as one would expect in this case of complex multiplication. Moreover,
although we omit the details, this approximation for π1 agrees numerically with (i) the
one due to Green and the second author [19, Theorem 4.6 and Remark 4.7], coming
from shtuka functions, and (ii) the one of Gekeler and Hayes [17, Equation (7.10.6)],
from the theory of sign-normalized Drinfeld modules. We further compute the quasi-
periods,

η1 = iθ−21/4 + iθ−29/4 + iθ−37/4 + iθ−45/4 − iθ−53/4 + iθ−57/4 + O(θ−61/4),(5.10)

η2 = −iθ9/4 + iθ−3/4 + iθ−11/4 − iθ−15/4 + iθ−19/4 − iθ−23/4

+ iθ−39/4 + iθ−47/4 + O(θ−51/4).

Using (1.1), one checks that π1η2 − π2η1 and iπ̃ agree to the given precision, which
aligns with the Legendre relation [16, Section 2], [31, Theorem 6.4.6].
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