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Surface and internal waves in a liquid
of variable depth

D. G. Hurley and J. Imberger

Consider a stably stratified liquid, whose density varies

exponentially with the vertical co-ordinate, that is bounded

above by a free surface and below by a bed whose height depends

on only one of the horizontal co-ordinates. Suppose that a

gravity wave, that may be either a surface or an internal one, is

travelling in a direction normal to the lines of constant depth.

It is shown that if the frequency is below a certain value an

infinite number of waves, all of the same frequency but having

differing wave lengths, are generated and expressions for their

amplitude are given in terms of the changes in depth which are

assumed to be small.

1. Introduction

It is well known that it is necessary to take account of the

stratification when discussing the wave motions that occur in the

atmosphere and the oceans. This is so even if the changes in fluid

properties associated with the stratification are small, as is the case for

the oceans, because internal waves, which are known to be of importance, do

not occur in unstratified fluid.

The model considered herein consists of a stably stratified liquid,

whose density varies exponentially with the vertical co-ordinate and which

is bounded above by a free surface and below by a bed whose height depends

on only one of the horizontal co-ordinates. The assumption of an exponential
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variation of density, which is made primarily for mathematical convenience,

is more nearly satisfied by the atmosphere than the ocean in which case

most of the density changes occur near the thermocline.

It is supposed that a small amplitude gravity wave, which may be either

a surface or an internal one, is travelling in a direction normal to the

lines of constant depth and the effect of bed irregularities on the motion

is considered. In the case of the atmosphere these irregularities could

represent mountain ranges and in the oceanic case obstacles on the floor of

the ocean. It is supposed that the motion is strictly two-dimensional so

that the effects of the Coriolis force are necessarily excluded. This

should not introduce serious errors unless the period of the waves is as

long as about half a day.

It is found that if the frequency of the primary wave is below a

certain value an infinite number of waves, all of the same frequency, but

having differing wave lengths, are generated and expressions are given for

their amplitudes in terms of the variations in the depth of the liquid. The

results agree with those of Cox and Sandstrom [7] in the limit of small

stratification which is the only case considered therein.

2. Waves in a s t r a t i f i e d l i q u i d of uniform depth

Consider a layer of stably stratified liquid of uniform depth h ,

that lies above an infinite horizontal plane surface. Let 0x*y* be a set

of rectangular axes with 0 in the undisturbed surface of the liquid and

Oy* vertically up. Then if the undisturbed density is

p = p e *

and small two-dimensional motions are occurring in the l iquid , a stream

function if such that

_ <W* _ 3 ^ *

may be introduced. If the time dependence of the motion is given by

(1)

then, see for example Lamb [ 2 ] , t|> must satisfy

(2)

and the boundary conditions,
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(3) | j y t

oX

and

(4) \ji = 0 , y = -1 ,

where

B = &h , ft2 = u2h/g , x = x*/h a y = y*/h .

The solutions of (2) that satisfy (3) and (k) and represent waves

whose phase velocity has a positive component in the direction of Ox* are

B
-irvx + -M

(5) \p(x , y) = e sinh Z,(y + 1)

where

(6)

and n is any positive real number such that t, as given by (6) is a root

of the equation

(?) tanh £ = C(<p " B) .

£2 - ~(2U2 - B)

It may readily be shown that there is only one value of n , n say,

JL J_
if Q > B2 but infinitely many n (8 = 0,1, 2,...) if ft < B* . Figure 1

shows how A = — depends on ft . If £ as given by (6) with n = n
8 ns s s

is real then the phase velocity of the wave is in the direction of Ox* ,

its wave length is A , and the wave is a surface one. The figure shows
s

that there is one such wave if

[B(l + B/4)\
\ 1 + B/2 j

and no such wave if ft is less than this value.

In all the other cases t, is pure imaginary, equal to ix\ say, so
8 8

that (5) can be written
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By
+ 2

4>(x , y) = |
( in(y + 1) ~ir\Jy + D\\e s - e 8 J .

Thus \p is the sum of two waves whose phase velocities are in the

directions in , ± n ) . The waves are called internal ones and the value
S 8

of 8 , the mode number, gives the number of times \p (and v) vanishes

in - 1 < y < 0 .

The actual values given in Figure 1 refer to the case when B is

small. Then (7) gives approximately

J.
, , , , h _ Q) B2

(8) \ - ~ *

(9)

2U-1

The curve marked 8 = 0 i n t h e Figure i s given by (8) wi th B = 0.1 and

t h e curves s = 1,2,3,... a re given by (9) -

3. Waves in stratified liquid of non-uniform depth

Now consider the case when there are small non-uniformities in the
depth that do not extend to x = ± °° . I t is assumed that the equation of
the bottom is

(10) y = -1 + e fix)

where e is a small parameter, that fix) and its derivative are of order

unity, and that an interval (X\ , X2) exists that contains the support of

fix) .

Suppose that any one of the waves given by (5) is incident on the

non-uniformities from x = - °° . Then \p must satisfy (2) and (3), but

(It) must be replaced by the condition

(11) * = 0 , y = -1 + e fix) .

This condition may be changed into a set of conditions applied at y = -1
by expanding ^ in a Taylor series about y = -1 ,
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(12)

Ipfa , -1 + ef) = iK* , -V + ef §£ (x , -1) + (-^- ^ (x , -1) + . . .

and assuming that i|i may tie expressed in the form

(13) * = f(0) + e * ( a )
 + e 2 « ( 2 ) + ...

where IJJ is given by (5) with n = n. , i being the mode of the

incident wave. In this way the single problem of determining 4> that

satisfies (2), (3) and (ll) may be reduced to a series of similar problems

(one for each order of e), namely

(W \l - A ^ • ^ - B
{ ) 9a:2 3i/2

£ f + Q2 f .......
(It) t ( i ) - - J<£) , y - -1 ,

where

Equations (1*0 and (l6) show that each ty (i > 1) represents the

motion in an infinite strip of unit depth produced by sources on the bottom

f
(i) .

e . The function g (x) depends only on

I)/05, ty<-l\...J^
1'~l'> and this enables each of the \ji to be determined

successively. As well as satisfying (lU), (15) and (l6), ij; must satisfy

radiation conditions at x = ± °° . These are that i|; ° is the only

incident wave so that each of the \p (i > 1) must represent an outgoing

wave at both x = ± °° . Now it can be shown, [3], that if the phase

velocity of an internal wave has a positive component in the direction of
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Ox* then so has its group velocity. Thus ip t has an outgoing group

velocity as required if its phase velocity is outgoing.

The obvious way of determining if» is to take a Fourier transform

with respect to x . If it is assumed that ip and its derivatives are

no more than algebraically large as x •* ± » , then a theory based on

generalised functions [4] may be used.

Thus suppose that lpfx ,, y) belongs to the space S' , of

distributions defined by the continuous linear functional (ty , g) , where

g e. S , the space of good functions1. If the Fourier transform2 G(w) , of

g(x) , is defined by

G(w) = — rm g(x) e~
iADX dx ,

j2a
then the generalised Fourier transform mâ  be defined by invoking Parseval's

Relation,

<* , G) =<) , g) .

Hence a set of equations equivalent to (l4), (15) and (l6) is

(19) fi2 ^ = W^U)
 3 y = 0 ,

(20) V{i) = -GH)(w) , y = -1 .

I t may readily be shown that the solution of equations (18) to (20) is3

1 A good function is one which is everywhere infinitely differentiable

and such that i t and all i t s derivatives are 0(\x\~N) as |x| •*• °° for all
N .

2 Capital let ters will be used throughout to denote Fourier transforms.
3 The delta functions on the right hand side of (21) arise because in

generalized function theory, they are solutions of the equation

k(w , y) ° •
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>,y) GU)(u) + f U r G - (n)

where

(22) k(w,y) =

and ? are the roots of the equation

(24) 8

and C, and Co are constants.
Is 2s

Now equation (7) and (2U) are the same, and (23) is obtained from (6)

hy replacing n2 by W2 . Thus, in accordance with Figure 1, (2\) will

have only two real roots

w = ± nQ , if n
2 > B

but infinitely many

w = ± n s = 0,1,2,..., if Q2 < B .
8

The asymptotic behaviour of \ji (x,y) for large distances from the

mound, may now be determined by Lighthi I I's techniques [4]. Thus

N rG t (ng)e

I R(n 3y)\ 2 l"sgn x

s=o *•

"» r 1 B/2\
— \2L sinh2^ + (S12-B)(C, - sinh £ cosh, Z, )\ e ' \

2 L s s S s S J(25) S

... -in x
s*, \ If ) / 1 S

sgn

- sinh
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where

B(y+l)/2 fi2c 2

(26) R(n y) = 2 j

nA2c sinh2C + (Q.2-B) (C - sinh c cosh r }
S S S S 8 8

and N , the upper l imit of the summation in (25), is zero if Q2 > B and

inf in i ty if ti1 < B

The radiation conditions are satisfied if

(27) CU = C2s

whence

i eB/2 «2 C 2

n {2 C, sinh2 C V- Cfi2-S; fCo - sinh Cocosh Z, )s s s s s s

. . . °° -x-n x . . .
(28) V'1' ~ - i S2H I R(ns,y)e GKX' (-ng) , x •> co J n2 < B

s=o

00 i n a; . . .
(29) ~ - i J2H I R(noJy)e S GK%)(n) , x •+ - » , fi2 < 5

8 S
S=O

and

, . . -in x ,•.
r30; 1J1 ; ~ - i /2V R(nQ,y) e ° Gy%'(-nQ) , x * » , fi2 > S

in x . . .
~ - i /27T R(nQ,y) e G (nQ) , x -»• - » fi2 > B .

In point of fact (28) is not merely asymptotic but is exact for x > X2 and

(29) is exact for x < Zj where, as previously remarked, (Xi,X2) is any

interval that contains the support of f(x) and hence of g (x) .

Results for a homogeneous liquid may be obtained by taking B = 0 in

those equations above that hold for the case £52 > B .

4. Reflection and transmission coefficients

If Q2 < B it follows from (13), (28) and (29) that
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(32)

where

(33)

i l
3

oo xn_x

8=0

-in x

, x < Xl ,

x > X2
s=o

sinh I (y+l) t
O

i eB/Z (ng)

n\2 ?o sinh2 Co + (Q,2-B) (Z - sinh t cosh Zjs s s s s s

6i8~

i eB/Z Q2Z 2{e
8

(-n
S

n\2 C sinh2 £ + (U2-B)(C - sinh C cosh E j]• P I O

Now if P(x) denotes the mean rate at which energy is being

transferred across unit width of a plane normal to Ox , then

(34)
1

P(x) = |
1

p u dy* dt

where T is the period of the liotion and p is the pressure perturbation

and is given in terms of ip by, [2],

It follows from (28), (29), (31*) and (35) that

2 \ 8=0
x <

(37) L 2n
8=0 8

x > X2

where
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dY

dy dy

(38)

8 - 1 + =T 1 +

(36) gives the mean rate at which energy is being carried by the

incident and reflected waves and (37) the mean rate for the transmitted

waves. Thus if

„ i _ mean power carried by mode e of reflected wave
s mean power carried by incident wave

and

then

(39)

and

(40)

_ i _ mean power carried by mode 8 of transmitted wave
8 mean power carried by incident wave

Cn.
Re = a. n

1. s

. \b |2 C n.

If ft2 > B the incident, reflected and transmitted waves must all be

surface ones so that there is a single reflection coefficient, R , and a

single transmission coefficient, T , given by

(41) R= |aQ|
2, T- |2>J2 .

The expressions (33) for a and b that must be substituted into
8 8

(39) and (1*0) to give R % and T V involve G ^ (± n ) , and a convenient
8 8 8

method of calculating the functions G do) is as follows.

Let f = Z-f so that equation (17) can be written

(i) (x t -1) .I
8=1

Then by (5) and the convolution theorem
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(42)

3/1

By/2 sxnh C. F.(u+n.) .

Equations (21), (27) and (k2) enable G % (w) (1 = 0,1,2,...) to fce

determined successively and the first few are

V0)(w) =0 ,

(43)
= e~B/2 Z. F, (w+n.) ,

G(2)(w) = Be~B/2 Z- Fz(w+n.)

-B/2

IT % (u>-l)F(u+n.)F(w-u)du
where k(w,y) is given by (22) and the path of integration T is the real

axis with indentations below the points -n and above the points +n .
S 8

5. An example

As an example of the application of the previous results consider the

case

f(x>

Then

F2(w) = £ e
-l2wz/2

d (w)
le'B/2Z- -I2(w+n.)2

G2(w) = §_
2/2 a^â o
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where

w(z) = e~

is the probability integral, [5],

a s = ^ ni + 2ns- w

*- r

" w) >

a n d i s def ined by (26).

6. Approximate results for small stratification

If B is small and if

o2 : B(l + B/4)
1 1 + B/2

so that all the possible modes are internal ones (Figure 1), then, to the

first order in B , the following simplified results are obtained:

(44)

(B - SI2) 2

8 > 1

If these values are used to calculate R v and T and only the

leading terms in e are retained then it is found that:

(a) if the incident wave is the zeroth mode (i = 0)

TT c2Q2F2(2nQ) o _ 7 , TT e2a2F2(0)
o ~ 2

(45)

R
nQ) •n2E2sQ2F2(-n + n

• 2

(B -
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(b) if the incident wave is not the zeroth mode (i > 1)

(B - Q2)~ (B - a2; 2
(46)

2-n3e2isn2F2(n + n.) . 2Ti3£2isQ2F2(-n + n.)

S B - a2 S B - Q2

2 s B - n2

Nearly all the reflection and transmission coefficients given by (1*5)

and (k6) tend to infinity as ft •*• B~ so that the analysis must fail for J2

near B2 .

7. Discussion

According to the present analysis the wave system consists of the

incident wave and the waves produced by sources distributed along the line

•y = -1 having the same frequency as the incident wave. If Q.2 < B the

sources produce an infinite number of waves having the lengths shown in

Figure 1. The strength of the sources is such that they induce at the lower

boundary a normal velocity equal and opposite to that due to the incident

wave.

If only the terms that are of the first order is e are retained this

strength is, by (5) and (17),

-in.x - B/2
P!(x) = 2 Zi e

 V if'(x) - inj .

Pl (x) depends only on the -incident wave so that the first order theory only

takes account of one-time reflections. The effects of multiple reflections,

and of the changes in the wave length of the waves as they traverse the

region of variable depth will appear in higher terms.

It is instructive to consider the case

fix) = H(x - I) - B(x + I)

which represents a low rectangular sill. Then

-in -x - B/2

i6(x I) - 6(x + I) - in^ ,
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and

B / V sin l(n. + w)

This expression for G together with equations (28) and (29) show that

the reflected and transmitted waves have a sinusoidal dependence on I

(and («£ ± np) ), the reflected wave containing the factor sxnKn- + n )

and the transmitted wave the factor sinl(n- - n ) . The occurence of

these factors is consistent with the following simple physical

considerations. px (x) includes a point source at x = -I and an equal

sink at x = + I . During the passage of the incident wave from x = -I

to x = + I its phase changes by 2Z x — and during the passage of the

reflected wave from x = I to x = - I its phase changes by T . The
Kr

reflected waves from the sources will reinforce if the sum of these phase

changes is ir so that the factor sin {Z(n. + n )} is to be expected in

the reflected wave. Similarly the factor sin {l(n. - n )} is to be

expected in the transmitted wave.

In the case of a general topography, the strengths and phases of the

source distribution depend on the wave length of the incident waves. The

topography may be such that the phases change with the wave length in such

a way that the incremental waves always add destructively to give a much

lower reflection coefficient than would be expected. This behaviour is

especially noted in certain smooth depth changes. Schelkunoff [6] has

called this phenomena "a better matching of incremental waves".

The above process is well illustrated by the mound

1 + d
f(x)

cosh -g- + d

where d and 9 are real positive constants. This gives

where
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If d is small, the mound is gentle and as d is increased it

approaches a rectangular sill. If d < 1 , the radiations add

destructively and the additions to the incident wave are slowly varying

functions of the wave length. However, when d > 1 , A becomes

imaginary and a rapidly varying dependence on the wave length is obtained.

If X. is small compared to the depth, n- is large and equation

(17) shows that then g is much larger than g . Thus the

perturbation expansion will not converge and the analysis ceases to be valid.

Another important parameter is the ratio of the length of the mound

to the wave length. In §5 results correct to the second order in e are

given for the case

Here I is the horizontal length scale of the mound and it is noted that it

only occurs in the results in the combination In where n is a wave

number. The magnitude of this parameter determines whether the reflections

occuring are weak or strong as for the case when the liquid is homogeneous.

Gi2)(w) is seen to be of order e~l W ^ and G{1) (w) of order e~l W .

(2)
If Xw is of order unity, then G (w) will be considerably larger than

G (w) and the results of the first order theory in e will not hold.

Equation (IT) shows that the r order source distribution is a linear

combination of terms of the type f3 * (function of w and y) ,

(j = li2i...1v) which suggests that for the above example G (w) will

7 2 2 / •
contain terms of the type e~ x (function of x and y). When

coupled with the r power of the expansion parameter, e , these results

suggest that as In increases, the overall reflection will decrease and

the main contribution will no longer come from the lowest order terms. The

physical implication is that multiple reflections become more and more

important as the process moves to weak reflection.

The expression for G\(w) in §5 in conjunction with (28) and (29)
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shows that most of the energy in the reflected waves will be carried by the

surface or lowest mode whilst the energy in the transmitted wave will be

mostly carried by the incident mode and its closest neighbours.

When the present investigation was well advanced the authors attention

was drawn to the work of Cox and Sandstrom [7] which appears to be the only

other investigation of the effect of depth variation on gravity waves in a

continuously stratified fluid. Their analysis, however, only deals with

the case of small stratification and only the first order effects of changes

in the depth are considered. They obtain results that are equivalent to

those given by equations (kk), (1*5) and (1*6).
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Figure 1

Horizontal wave lengths of Surface and Internal Waves in Liquid of Uniform

Depth.
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