ON THE EXISTENCE OF RIGID ARCS

B. J. PEARSON

(Received 2 June 1972; revised 9 October 1972)
Communicated by G. Szekeres

By an arc we mean a nondegenerate simply ordered set which is compact and connected in its order topology. A space X is rigid if the only homeomorphism of X onto itself is the identity map. Examples of rigid totally disconnected compact ordered spaces may be found in [1], [2], and [3]. It is the purpose of this note to prove the existence of an arc such that no two of its subarcs are homeomorphic. The proof makes use of arcs of large cardinality and the technique of inverse limit spaces.

In what follows, we use the convention that each ordinal is the set of all ordinals preceding it and that the cardinals are certain ones of the ordinals. If M is a set, the cardinal of M is denoted by $|M| . \omega$ denotes the least infinite cardinal, and Ω denotes the least uncountable cardinal. For each regular cardinal $\lambda>\omega$, let L_{λ} denote the cross product $\lambda \times[0,1$) ordered lexicographically and let $A_{\lambda}=L_{\lambda} \cup\{\lambda\}$ with the order on L_{λ} extended to A_{λ} in such a way that each point of L_{λ} is less than λ. L_{Ω} has sometimes been called the long line. We call any arc order isomorphic to A_{λ} a long arc of order λ. If α is an infinite regular cardinal and X is a set, then by an α-sequence in X we mean a map of α into X. If X is a topological space and x is a point of X, then the weight of X at x, denoted by $w(x)$, is the least cardinal α such that X has a base at x of cardinal α. Note that if X is an arc, x is an interior point of X, and there exist an increasing α sequence converging to x and a decreasing β-sequence converging to x, then $w(x)=\sup \{\alpha, \beta\}$. A long arc X also has the important property that for each point x of X different from the right end point, there exists a decreasing ω sequence converging to x. We shall need the following lemma, which is probably well known.

Lemma. If $\left\{M_{i}, f_{i}\right\}$ is an inverse limit system, each M_{i} is an arc, each f_{i} is onto and order preserving, M is the inverse limit space, and M is ordered lexicographically, then M is simply ordered and its order topology is the same as its inverse limit topology. Furthermore, for each i, the projection of M onto M_{i} is order preserving.

The existence of an arc such that no two of its subarcs are homeomorphic follows immediately from the following theorem together with the fact that a homeomorphism preserves weight.

Theorem. There exist an arc M and a cardinal $\Lambda>\Omega$ such that (1)for each point x of $M, w(x)<\Lambda$, (2) for each regular cardinal α such that $\Omega \leqq \alpha<\Lambda$, there is one and only one point x of M such that $w(x)=\alpha$, and (3) the set of all points x of M such that $w(x) \geqq \Omega$ is totally disconnected and dense in M.

Proof. We describe inductively an inverse limit system $\left\{M_{i}, f_{i}\right\}$ of arcs and maps. Let $M_{0}=A_{\Omega}$, and let $\mathscr{S}_{0}=\left\{M_{0}\right\}$. Suppose M_{i} is an arc and \mathscr{S}_{i} is a collection of disjoint long subarcs of M_{i} such that $\cup \mathscr{S}_{i}$ is dense in M_{i}. Let g be a map with domain M_{i} such that (1) if x is an interior point of some arc in \mathscr{S}_{i}, then $g(x)$ is a long arc, (2) if x is an end point of some arc in \mathscr{S}_{i} or a point or $M_{i}-\cup \mathscr{S}_{i}$, then $g(x)=\{x\}$, (3) if x and y are distinct points of M_{i}, then $g(x) \cap g(y)=\varnothing$, (4) no two arcs in the range $R(g)$ of g have the same order, and (5) if α is the least regular cardinal γ such that each arc in \mathscr{S}_{i} has order less than γ, then for some regular cardinal $\beta>\alpha$, the set of all orders of the arcs in $R(g)$ is the half-open interval $[\alpha, \beta)$ of regular cardinals. Let $M_{i+1}=\cup R(g)$, and let \mathscr{S}_{i+1} be the set of all arcs in $R(g) . M_{i+1}$ is ordered as follows. If each of p and q is a point of M_{i+1}, then $p<q$ if and only if (1) for some x and y in $M_{i}, p \in g(x)$, $q \in g(y)$, and $x<y$ in M_{i} or (2) p and q belong to the same arc $g(x)$ and either i is even and $p>q$ in $g(x)$, or i is odd and $p<q$ in $g(x)$. Clearly, M_{i+1} is an arc, and $\cup \mathscr{S}_{i+1}$ is dense in M_{i+1}. Let f_{i+1} be the map of M_{i+1} onto M defined as follows. For each point p in M_{i+1}, let x be the point in M_{i} such that $p \in g(x)$ and let $f_{i+1}(p)=x$. Thus M_{i+1} and f_{i+1} have been obtained from M_{i} by exploding certain points of M_{i} into long arcs and defining f_{i+1} in the natural way. Note that the long arcs in M_{i+1} are all oriented the same way but that the orientation is opposite to that of the long arcs in M_{i}. Let M denote the inverse limit space of the inverse limit system $\left\{M_{i}, f_{i}\right\}$, and for each i, let p_{i} denote the projection of M onto $M_{i} . M$ is a continuum, and it follows from the lemma that M is an arc.

Now let $a=a_{0}, a_{1}, \cdots$ be any point of M. We shall determine the weight of M at a. Suppose that for some even integer i, a_{i} is the left end point of some long $\operatorname{arc} A$ in \mathscr{S}_{i}. There is a decreasing ω-sequence x_{0}, x_{1}, \cdots in M_{i} of interior points of A converging to a_{i}. For each n, let r_{n} be a point of the arc $p_{i}^{-1}\left(x_{n}\right) . r_{0}, r_{1}, \cdots$ is then a decreasing ω-sequence in M and hence converges to some point $b \geqq a$. But if $b>a$, then $p_{i}^{-1}(a)$ is nondegenerate, which is a contradiction. Therefore r_{0}, r_{1}, \cdots converges to a. If $i=0$, then $a=0$ and hence a is the left end point of M, so that $w(a)=\omega$. Assume that $i>0 . a_{i-1}$ is an interior point of some long $\operatorname{arc} A_{i-1}$ in \mathscr{S}_{i-1} with order α. Now the original order of the points in A_{i-1} has been reversed in M_{i-1}. Hence there exists an increasing ω-sequence y_{0}, y_{1}, \cdots in M_{i-1} of interior points of A_{i-1} converging to a_{i-1}. For each n, let $s_{n} \in p_{i-1}^{-1}\left(y_{n}\right)$.

It follows as before that s_{0}, s_{1}, \cdots converges to a. Therefore $w(a)=\omega$. Now suppose that for some odd integer i, a_{i} is the left end point of some long arc A_{i} in \mathscr{S}_{i} with order α. There is a decreasing α-sequence x_{0}, x_{1}, \cdots in M_{i} of interior points of A converging to a_{i}. For each n, let $r_{n} \in p_{i}^{-1}\left(x_{n}\right)$. It follows that r_{0}, r_{1}, \cdots is a decreasing α-sequence in M converging to $a . a_{i-1}$ is an interior point of some long $\operatorname{arc} A_{i-1}$ in \mathscr{S}_{i-1} with order γ. For some cardinal β, there is an increasing β sequence y_{0}, y_{1}, \cdots in M_{i-1} of interior points of A_{i-1} converging to a_{i-1}. For each n, let $s_{n} \in p_{i-1}\left(y_{n}\right)$. As before, s_{0}, s_{1}, \cdots is an increasing β-sequence converging to a. Now $\beta<\gamma<\alpha$. Therefore $w(a)=\alpha$. Similar arguments will show that if i is odd and a is the right end point of a long arc in \mathscr{S}_{i}, then $w(a)=\omega$ and if i is even and a is the right end point of a long arc in \mathscr{S}_{i} with order α, then $w(a)=\alpha$. Finally, suppose that for each i, a is not an end point of any arc in \mathscr{S}_{i}. For each i, there exists an $\operatorname{arc} A_{i}$ in \mathscr{S}_{i} such that a_{i} is contained in the interior U_{i} of A_{i}. Then for each $i, p_{i}^{-1}\left(U_{i}\right)$ is an open set in M, and $\bigcap_{i} p_{i}^{-1}\left(U_{i}\right)=\{a\}$. Therefore $w(a)=\omega$. It now follows that if α is a cardinal such that for some i, there is an arc in \mathscr{S}_{i} of order α, then there is one and only one point a in M such that $w(a)=\alpha$.

Let c denote the cardinal of the real numbers. Now $\left|M_{0}\right|=c$, and the only long arc in \mathscr{S}_{0} has order \aleph_{1}. Hence the long arcs in \mathscr{S}_{1} have orders from \aleph_{2} up to \aleph_{c}. Then $\left|M_{1}\right|=\aleph_{c}$, and hence the long arcs in \mathscr{S}_{2} have orders from \aleph_{c} up to $\aleph_{\aleph_{c}}$. Therefore if $\Lambda=\sup \left\{c, \aleph_{c}, \aleph_{\aleph_{c}}, \cdots\right\}$, then the long arcs in $\bigcup_{i} \mathscr{S}_{i}$ have all orders from Ω up to Λ. Conditions (1) and (2) of the conclusion of the theorem now follow. In order to prove condition (3), suppose a and b are two points of M such that $a<b$. Let i be an integer such that $a_{i}<b_{i}$. There exists a point c_{i} of M_{i} such that $a_{i}<c_{i}<b_{i}$ and c_{i} is an interior point of some arc in \mathscr{S}_{i}. For each $n>i$, let c_{n} be an interior point of $f_{n-1}^{-1}\left(c_{n-1}\right)$, and for each $n<i$, let $c_{n}=f_{n+1}\left(c_{n+1}\right)$. Then if $c=c_{0}, c_{1}, \cdots, a<c<b$ and $w(c)=\omega$. Now let d_{i+1} be the left end point of $f_{i+1}^{-1}\left(c_{i}\right)$ if i is even and the right end point of $f_{i+1}^{-1}\left(c_{i}\right)$ if i is odd. For each $n>i+1$, let $\left\{d_{n}\right\}=f_{n-1}^{-1}\left(d_{n-1}\right)$, and for each $n<i+1$, let $d_{n}=f_{n+1}\left(d_{n+1}\right)$. Then if $d=d_{0}, d_{1}, \cdots, a<d<b$ and $w(d)>\omega$. This completes the proof.

Corollary. There exists a nondegenerate rigid totally disconnected compact ordered space.

Proof. Let M be the arc of the above theorem, let H be the set of all interior points x of M such that $w(x)=\omega$, and let $K=M-H$. Let M^{\prime} be the ordered space obtained from M by exploding each point of H into an ordered pair of points, and let f be the natural map of M^{\prime} onto M. Now $f^{-1}(K)$ is dense in M^{\prime}, and if x and y are distinct points of $f^{-1}(K)$, then $w(x) \neq w(y)$. It follows that the only homemorphism of M^{\prime} onto itself is the identity map.

References

[1] J. de Groot and M. A. Maurice, 'On the existence of rigid compact ordered spaces', Proc. Amer. Math. Soc. 19 (1968), 844-846.
[2] B. Jonsson, 'A Boolean algebra without proper automorphisms', Proc. Amer. Math. Soc 2 (1951), 766-770.
[3] L. Rieger, 'Some remarks on automorphisms of Boolean algebras', Fund. Math. 38 (1951), 209-216.

University of Missouri
Kansas City
Missouri 64110
U.S.A.

