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SIMPLE FACTORS IN THE JACOBIAN OF
A FERMAT CURVE

NEAL KOBLITZ AND DAVID ROHRLICH

1. Introduction. Let
FIN) ={(X,Y,Z) ¢ P2(C) : XN + YV = 2ZV}, N = 3,

denote the Nth Fermat curve. The period lattice of F(IV) is contained with
finite index in the product of certain lattices L, ; (see [6]), and to this inclusion
of lattices there corresponds an isogeny of the Jacobian of F(N) onto a product
of abelian varieties. The purpose of this paper is to determine when two factors
in this product are isogenous over G, and whether they are absolutely simple.

Since we shall view abelian varieties as complex tori and shall work exclusive-
ly with the lattices L, ,, it will be convenient to say that a lattice L is simple
(rather than that G?/L is simple) or that L and L’ are isogenous (rather than
that C¢/L and G%/L’ are isogenous).

We begin by recalling the definition of the lattices L, ;. Given a pair of
integers (r,s) with1 < r,sandr + s £ N — 1, let M be the integer defined by

N/M = g.c.d.(N, 7, s).

Let {(a) denote the unique representative of « modulo N between 0 and NV — 1,
and let H, ; be the subset of (Z/MZ)* of all elements % such that

(hr) + (hs) < N — 1.

Then H,  is a set of coset representatives for { —1, 1} in (Z/MZ)*. NMaking
the usual identification of (Z/MZ)* with Gal (Q (e2™/¥)/Q),

b gy, where g,(e?™%/M) = 2hi/M
we define L, ; as the lattice in C¢#®)/2 consisting of all vectors

(‘ Tty Uh(z)y c ')hem,s

where z runs through the integers of Q (e27%/).
Observe that

H, s = hHuy ns)

for any & in H, ;. Consequently, since we have not prescribed an ordering on
H, , we have

Lr,s = L(hr).(hs)~
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Now the period lattice of F(N) (relative to a suitable basis for the holo-
morphic differentials) is contained with finite index in the product

I1 ...

[7,5]

taken over equivalence classes of pairs (7, s) with1 <7, sandr +s = N — 1.
The equivalence relation is

(rys) & ({hr), (hs))

for h in H,, The observation of the preceding paragraph shows that this
product over equivalence classes is well-defined. In what follows, when we
consider the simplicity of L, , or the existence of isogenies between L, ; and
L, s, we allow ourselves to replace (r, s) by any member of its equivalence
class. In particular, if g.c.d. (r, N) = 1, we may assume that the pair is
actually (1, s).

To determine when L, , is simple, we use a criterion of Shimura-Taniyama

[7]: Let
W,.=1{we (LZ/ML)*: wH, , = H, J.

Then W, . is a subgroup of (Z/MZ)*, and L, , is simple if and only if W, , =
{1}. Suppose W, , 5 {1}. Then L, , is isogenous to a product of |W, ] iso-
morphic simple factors, where |IW, | is the cardinality of W, ;. These factors
have complex multiplication by an order of the fixed field of W, ;and CJM-type
equal to H, /W, ; (viewed as a subset of the Galois group of the fixed field of
W, s over Q).

If g.cd. (r, s, N) = gcd. (', s, N) and H, , = hH,  , for some h in
(Z/NZ)*, then L, ;and L, , are identical lattices. On the other hand, suppose
L, sand L, are isogenous. Then the CM -types of their simple factors must be
the same up to an automorphism of the field of complex multiplication, so that
hH, s = H, forsomehin (Z/NZ)*.

From now on we shall introduce a superfluous ¢ into our notation, writing
H, , ,instead of H, ,, where 7 + s + t = N. The point of this is the following:
One verifies immediately that for any % in (Z/MZ)* (where N/M = g.c.d.
(r,s, N)) either

(hr)y + (hs) + (ht) = N or (hr) + (hs) + (ht) = 2N
and that H, ; = H, , , is the set of those & for which
(hr) + (hs) + (ht) = N.

Consequently, H, ; , depends on {r, s, t} only up to permutation, so that if p is
a permutation of {r, s, ¢}, then

Lr,s,l = Lpr,ps,pl-

In addition, for any & € H,  , we have

Lr,s,t = L(hr),(hs),(ht)'
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Thus it is natural to define an equivalence {r, s, t} ~ {#', s, t'} if and only if
q y

there exists & € (Z/NZ)* such that, up to a permutation, we have

{r',s", '} = {{hr), (hs), (h)}.

Remark. This is a weaker equivalence relation than the one mentioned
previously, when no permutation was allowed. Only this new equivalence
wlll play a role from now on, in determining isogeny classes of lattices.

The equality of lattices L, ; . resulting from an equivalence of triples will be
called an obvious equality, or obvious isogeny.

THEOREM 1. Suppose N is prime to 6. Then:
() H, .= H, ¢ vifand only if {r,s, t} ~ {r',s" t'}.
(i1) The only isogenies belween the laitices L, , , are the obvious equalities.

It is clear that (ii) follows from (i). Most of the rest of the paper is devoted
to proving (i).

The same combinatorial result will allow us to determine when a lattice
L, s . is simple. For if wis in W, ,, then

H'r,s,t = er,s,t = H(w“lr),(w—ls),(w‘lt)
so that
{ros, th = {{wlr), (wls), (W)}

If at least one of M /N,sM/N,tM/N is prime to 3 (where N/M = g.c.d.
(r, s, 1, N)) then one deduces that for w 5 1, either

l1+w+w=0 inZ/MZ
or

w? =1 inZ/MZ.

It follows that after multiplying by an element of (Z/NZ)*, we have
{r, s, t} = {N/M, (wN/M), (w*N/M )}

or
{rys, ) = {N/M, (wN/M), {(—1 + w)N/M))}

respectively. On the other hand, suppose »M/N, sM/N, tM/N each have a
common factor with M. Then necessarily

(w™lr) =r, {wls) = s, (w™l) = {,
whence w = 1 mod 3. Hence L, ; , is simple. To summarize:

TuaEOREM 2. Suppose N is prime to 6. The only lattices L, ; , which are not
simple are those for which {r, s, t} is equivalent to a triple of the form

{N/M, (wN/M), (w*N/M)},
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for some divisor M of N, and some w € Z/MZ such that 1 + w 4 w* = 0, or to
a triple of the form

{N/M, (wN/M), (= (1 + w)N/M)},

for some divisor M of N, and some w € Z/MZ such that w* = 1, w # =£1. In
particular, if N equals « prime p, then all the factors L, . , are simple if p = 2
mod 3, and all but two are simple if p = 1 mod 3.

When N is not prime to 6, the situation is more complicated. To illustrate
this, we shall prove:

THEOREM 3. Suppose N = 3". Then the only isogenies apart from the obviois
ones are between pairs of lattices corresponding to the triples

<3m’ 3n—1 _ 2(3711), 2(37:—-1) + 3m) (lﬂd <3m+1‘ 3:;—1 — 2(3711)’ 2(371—1) . 3711)
forO0=m = n— 2.

THEOREM 4. Suppose N = 2*. Then the only isogenies apart from the obvious
ones are between pairs of lattices corresponding to the triples

a) (2m, 2n—t — 2mAL on=1 4 9m)  qpd (2mH1 272 — 2m 3 (20R) — 2m)
for0 =m =n — 3, or

b) 2m on=t — gmAl gn=1 . om)y  qupd (2mF1 272 — 2m 3 (212 — 2m)
for0 =m =n — 3, o0r

c) (2m, 2m 20 — 2mFLy  qpd  (2mFL) 2l — m o=l om)

for0 =m =n— 2, or

d) (2m’ 3(27}1)’ Qn _ 2m+2) ([nd (271—1 _ 2m’ 271—-1 _ 2m+1) 3(27}1))
for0 =m =n — 4, or

e) (Qm, 2”—1, on—1 __ Qm) (md (2771’ Qm, on 2m+1)
for0 =m =n — 2.

Furthermore, a lattice of type «),, is isogenous to the product of two luttices of type
3)m+1-

Finally, we note that Theorems 1 through 4 may equally well be interpreted
as statements about when two Stickelberger elements are distinct. The Stickel-
berger elements referred to here are the elements

0, =3 ((m + (hs) + (ht) l)a_h_l
N
of Z[Gal (Q(¢)/Q], see [2] or [5]; the classical Stickelberger relations show that
0, annihilates the ideal class group of Q({). For distinct triples (7, s, t) and
(', §', t'), the preceding theorems give conditions under which O, , and
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O, sy are or are not essentially distinct—essentially distinct means that
we do not have

er.s,t = Uer"s’.t'
for some o in Gal (Q(¢)/Q).
2. Therelatively prime case when N is prime to six. We must show that
if Nisprime to6and H, , , = H, o ,then {r,s, t} = {r, s, t'}. Without loss

of generality, we may assume that g.c.d. (I, 7, s, t) = 1, whence M = N.
In this section we shall assume in addition that

(r, N) = (s, N) = (t, N) =1 (‘“the relatively prime case’’);

in subsequent sections the remaining ‘‘boundary cases’’ will be considered.
The statement to be proved can be formulated in the group algebra

Q[Gal (Q(e* V) /Q]) as follows: If
>y 4 (hs) + (W)ow = 3 (') 4 (hs) + (W))ay

he(L /NZ)* he(Z INZ)*

then {r, s, t} = {r', &', '} up to a permutation. Equivalently, we can define,
for any » € (Z/NZ)*,

G@#) = > Bi(hr)oy, where Bi(a) = (@) _

1
ne(ZNZ)* N 2

Then the statement becomes: If
*) GO +G6) + G =G0 + G + G{)

then {7, s, t} = {r',s', t'} up to a permutation.
We shall now follow an idea of Carlitz-Olson [1] to prove this statement.
Assuming the truth of (*), let us apply a character

x : Gal (Q(e'™)/Q) — C*
to both sides of the equation. We get

Bixx(r) + Biyx(s) + Bixx(t) = Bixx(r') + Bixx(s") + Bixx(t')
where B is the generalized Bernoulli number

Biy = 2}: Bi(h)x (h).
If By does not equal 0, we get

x(r) + x(s) + %) — x(') = x(s") = %) = 0.

Let us now consider exclusively odd characters x, i.e. those for which x(—1) =
—1. Such a character x may be written x = xof, where ¢ is an even character
and x, is a fixed odd character chosen once and for all. Then the above equation

https://doi.org/10.4153/CJM-1978-099-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-099-6

1188 N. KOBLITZ AND D. ROHLRICH

may be rewritten
Xo(P(r) + x0T () + %o OF(E) — %W (E") — xo(sHP(s")
— %)) = 0
for any even character y such that By, # 0. In other words, we have a

relation of linear dependence between the six row vectors v, « = 7, s,t, 1, 5", t',
where

UV = ( - I,Z(CL), . ')\0659

with S the set of even characters ¢ such that By 5 # 0. Now if IV is a prime
power, then S is the set of all even characters, hence by the independence of
characters we must have

{r, s, 1} = {(£r), (), (£}
Since (') + (—r") = N, and similarly for s’, ¢, we conclude that
{rys iy = {r', ', 1'}.

Thus if NV is a prime power, the desired statement is an immediate conse-
quence of the linear independence of the G(r) for 1 = r < p*/2, (r, p) = 1.
The reader interested only in this case need proceed no further. Unfortunately,
for composite NV the set S is smaller than the set of all even characters, so that
the linear dependence of the vectors v, does not give an immediate contradic-
tion. However, we have the following lemma:

LEMMA. Let G be an abelian group, S a subset of G, T" « subset of G. If

S| > %—1 G|

then the rows of
W(€))seryes

are linearly independent.

Proof. Assuming the contrary, let

> any(g) =0 forall yin S
geT

be a nontrivial relation of linear dependence and choose gy such that
lag,| = la,| forall g € 1.

Then if we multiply
a¥(g0) = — 2 a¥(2)
e

9790
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by ¢¥(go)~* and sum over all ¢ in .S, we get

“00]5‘ = - FGZT aawezs \l/(g)‘p(gO)‘l

9700

2 ay 2o v(@w ()

gET vES
9700

by the orthogonality relations. Hence

lagol [S] = Z; la,|(IG] = [S]) = ap| (T = D)(G| — [S]
o0
whence
T —1
si=—1ig,
st st e
a contradiction.
We apply the lemma by letting G = (Z/NZ)*/=41, S be the set of even
characters y such that B ,,y # 0, and 7" be the set consisting of 7, s, £, 7/, s, t/,
viewed as elements of (Z/NZ)*/41. But first we must know that

S| > (5/6)Gl,.

i.e. we must know that for more than five-sixths of the odd characters x of
(Z/NZ)*, B, # 0. This is what we turn to now.

Remark. The map
G :Z/NZ —Q[Gal (Q()/Q)]
r—G(r)
extends uniquely to a map of vector spaces

G : Q[Z/NZ] — Q[Gal (Q(¢)/Q)]

and it is easy to verify that G is an ‘‘odd distribution”, i.e. that it satisfies the
relations

1) :216(7 + %]) = G(Mr) and

2) G(—r) = —=G(r)

for any 7 in Z/NZ and M dividing N. Furthermore, it is a fact (see [4]) that
all relations satisfied by G are a consequence of relations 1) and 2) above. In
particular, to show that the relation

G(r) + G(s) + G(t) = G(') + G(') + G()

does not hold, one need only show that it does not follow from 1) and 2) above.
However, we have not been able to get from this line of argument a proof which
is simpler than the present one.
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TABLE 1

All primes = 5 dividing p™ — 1 for certain p and m

?
m 5 7 11 13 17 19 23 29
1 — — 5 — — — 11 7
2 — — 5 7 - 5 11 5,7
3 31 19 5,7,19 61 307 127 TIL79 713,67
4 13 5 5,61 57,17 529 5181 511,53 57,421
5 11,71 2801 5,3221

6 7,31 19,43 5,7,19,37

7 19531 29,4733

8 13,313 5,1201

9 | 19,31,829 19,37,1063

ProrositioN. Suppose 2, 3 + N. Let S(N) be the set of odd characters of
(Z/NZ)*, and let So(N) C S(N) be the set of “‘bad’ characters, i.e.,

SO(N> = {X € S(N)!Bl,x = 0}-
Then #S¢(N) < $S(N).

Proof. For x € S(N) let No|N be the conductor of x, and let x, be the
character mod Vo which induces x. Then

By = Biy H (1 - XO(p))-

pIN
Thus x € So(N) if and only if there exists p|N/Ny such that xo(p) = 1.
Let
N = I—:Il Piﬂi

be the prime factorization. Let V; = N/p#7, and let ord; denote the order of
piin (Z/NZ)*. If x € So(IN), then for some 7 the corresponding xo must be
an odd character mod N; such that x¢(p,;) = 1. For fixed 7, the number of
such xo is

0 if p;isarootof —1mod N,

H@/NL* /(b)) = £ othervise.

Thus,

_ 1S@) _ ¥ 1
sV aet #S(V) = 12::1 o(p) ord;”

We claim that this sum is < §. It clearly suffices to prove this when all @; = 1.
So suppose N is a product of m distinct primes,

N=Tl b0 55p<pi< <pu
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Note that ord; > log,;N; = m — 1. Thus
1) ordizm+1—4.
Also,
(2) ord,

Il

1 onlyifp, =2]] pi+ L

i<m
1 i 1
(Pl — 1) ord; (Pz — 1) ords
By Table 1, if p; = 5or 7, then ord; = 3 with equality only if p» = 31 or 19.
If py = 11, then (p — 1) ord; = 20 by (1). Thus in either case

Casel.m = 2,s(N) =

1 1 . . .
< < = > ; <
s(V) = G-1)3 =+ W10 if po = 13 (with at least one £ strict).
For the remaining case p; = 5, po = 11 : s(55) = 1/4.5 4+ 1/10 = 3/20 < 1/6.

Case 2. m = 3.

If p; = 50r 7, then for j < 5 Table 1 shows that ;7 — 1 is not divisible by
two distinct primes = 5. Hence ord; = 5 and (p; — 1) ord; = 20. If p; = 11,
then by (1) and (2) also (p; — 1) ord; = 20. Thus s(N) = 3/20 < 1/6.

Case 3. m = 4.

If p; = 5or 7, then ord; = 9 by Table 1. This, together with (1) and (2),
gives:

v Ao ot ot 1
(p1 — 1) ordi = 49’ (p2 — 1) ords = 10.3° (p3 — 1) ordz = 10.2°
11
(ps — 1) ordy = 12.2°
and so

=

1
2 e = D ord; ©

Case 4.5 <m < 9.
From Table 1, if p; = 5, 7, 11, then ord; = 10, 10, 6, respectively, and if
13 = p; < 29, then ord; = 5. Thus,

5 pi=5
o pe=T
mé 050 po= 1L
Wl.z’ Py = 31,
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Hence,
1 m—1 _m-+1 1
< = <X
M =5+t <60 =5
Case 5. m = 10.
We show that for all b; we have (p;, — 1) ord; > 6m, which will imply
m 1 1
W)= % G S e, <6

ord; > log; n/5 = logs (7-11-13-17-19-23-29 31 - 37 - 41"~10)
> 16 + 5(m — 10)/2 > 3m/2,
so that (p; — 1) ord; > 4 - 3m/2 = 6m.
(2)pe=1.
ord; > logy(5- 111317 -19-23-29 31 - 37 - 41™—10)
> 13 + 3(m — 10)/2 > m,
so that (p; — 1) ord; > 6m.

(ps — 1) ord; = 10(m — 2) > 6m by (1).

4) 13 = p; < 3m/2 + 1.

There are clearly no more than m/2 — 1 primes p with 5 < p < 3m/2 — 1.
(This holds for m = 10, 11, 12, 13, and for m + 4 whenever it holds for m,
since any sequence of 6 consecutive integers has at most 2 primes.) Since any
prime p < p; must be <p;, — 2 < 3m/2 — 1, there are at least m/2 primes
>p;among pi, + * -, Pm. Then

ord; > log,;p™'* = m/2,

so that (p; — 1) ord; > 6m.

(5) 3m/2 + 1 < p; < 6m + 1.

If suffices to prove that ord; = 4. But if ord; < 3, then log,;n/p; < 3, and
son < pt = (6m 4 1)% But (6m + 1)*is less than the product of the first m
primes starting with 5 as soon asm = 7.

(6) p; > 6m + 1.

Then obviously (p; — 1) ord; > 6m. This completes the proof.

Remarks. 1. When N = 55, #S(NV) = 3¢ (V) = 20, and #S¢(N) = 3 (name-
ly, So(N) consists of: hoth odd characters mod 5 and the Legendre character
mod 11). Thus, s(55) = 3/20. It is clear from the above proof that 3/20 is
the maximum for s(V).

It is also clear that

lim s(V) = 0.

N-oo
2,34/N
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2. If N is odd and 3|N, it can similarly be proved that there are precisely
two values of N for which s(N) = 1/6: s(21) = 1/6, s(39) = 1/4. For all
other values of IV, it thus follows that there can be no non-obvious isogenies
between J,  ,and J, o o if r, s, t, 7', s, t' are all prime to N. However, there
are non-obvious isogenies in the boundary cases if 3| V.

When N = 21, 39, the non-obvious isogenies in the relatively prime case
all turn out to occur when J, ;,, is isogenous to a product of elliptic curves. In
each case we can take (r, s, t) to be (1, p, {p?)) where pis a cube root of 1 mod
N.For N = 21, J1 416 1s isogenous to the product of 6 copies of the same elliptic
curve that occurs for N = 7 and the triple (1, 2, 4). (Recall that if Vis a prime
= 1 mod 3, then J; , (2 splits up into 3 curves of genus (N — 1)/6.) For
N =39, Ji 16,22 is isogenous to a product of 12 copies of an elliptic curve that
does not occur as a simple factor for prime V.

It would be interesting to understand more directly why, if 7 and 7’ are
triples all of whose components are prime to N, then J, and J, can only be
isogenous when they split into a product of elliptic curves.

It is unclear to us why the ‘“relatively prime case’’ should be so different
from the ‘““boundary cases.”

3. The boundary cases when N is prime to six. To prove Theorem 1,
it remains to establish the following proposition.

ProrosiTION. Let 2, 3 + N, 7= (r,s,t),7 = (', s, '), r+s+ t=DN.
Supposeg.c.d. (r,s,t,7',s" ') = 1. Let

H, = {h € (Z/NZ)*|(hr) + (hs) + (bt) = N}.

and similarly for H,.. Suppose N is not prime to rstr's't’. In the case thatr = v’ for
some ordering of the triples v and 7', suppose further that N is not prime to sts't’.
Finally, suppose H, = H,..

Then v’ is a permutation of T.

Proof. Case 1. g.c.d.(r, s, ¢, N) > 1.
Let plg.cd.(r, s, t, N), p =2 5. Let P =1+ (N/p)(Z/bZ), P*
(Z/NZ)*, v = #(P\P*). Then

_{o if p2|N
T ifp*r

PN

Since (ur) = r, (us) = s, {ut) = ¢t for u € P, we have:
P* CH.=H,.

Thus
u;* (ur'y + (us’y 4+ (ut’'y = (p — »)N.
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Since (ur') 4+ (us'y + (ut') = N or 2N for u € P\P*, we have

3) > (wr'y+ (us"y + (ut'y £ (p — »)N.

uepP

Let 7o' = ("' )vsp So" = vy 1 = ')y p, where for any positive integer 3/
we let { ),; denote least non-negative residue mod A. For x prime to p, note
that {ux) runs through {x)y,, + iN/p,2 = 0,1, -, p — 1, as « runs through
P.

First suppose p 1 ¢, s, 1. Then

p—1
2 ') s’y F ') = p( + s+ 1)+ 3N/p 2

uepr

> pN/p + 352N = pv + SN,

9

because 7y’ + sy’ 4+ 1’ = N/p or 2N/p. This contradicts (3) because (p — 1)/2
> 2> .

Now suppose, say, p|#’. Since g.c.d.(r, s, {, ¥', s, #') = 1, we then have
p 4 s', 1. Note that if 7 and 7’ are replaced by uor = ({utor), (itos), {uot)) and
wor’, where 1, € (Z/NZ)*, the assumptions of the proposition remain valid,
except that (uer) 4+ (ips) + (uot) will equal 2N instead of N if uy ¢ H,. In
that case (3) can be replaced by

@) D 'y + {us'y + (ut'y = (2p — v)N.

uepP

Since plr’, we have
p—1
;P ur'y + us"y + (ut’")y = p(r' + s’ + ') + 2N/p ZO: 1

= pr'+plsd + 1) + (p — DN.

We claim that 7’ can be modified by a suitable uy, € (Z/NZ)* so that
(b +rIN <pr'+p(sd +1)+ (p— 1N < (2p —»)N,

contradicting (3) and (4). Since 0 < s,/ + t’ < 2N/p, we would like 7' to
satisfy

W+ DN/p=r=N— v+ 1)N/p.
It clearly sufhices if 2N/5 < ' £ 3N/5.

Let x = g.c.d. (¢, N), vy = N/x, 8 = [logs v/4/2]. Then y/24/2 < 28 <
v/4/2. Note that 8 = 1, since y = 5. If 26 < 2y/5, then 3 - 26-1is <3y/5 and
> (3/2)(v/24/2) > 2v/5. 1f 28 > 3y/5 (in which case note that 8 = 2), then
3262 s > (3/4) - (3y/5) > 2y/5 and < (3/4)(y/A/2) < 3y/5. Now let
uy € (Z/NZ)* equal either 28, 3 - 261 or 3 . 262 so that 2y/5 < u; < 3y/5.
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Then if wy = 1, (r'/x)=' € (Z/NZ)*, we have
2N/5 < {ugr’) = 3N/5,
as required.

Case 2. There exists a prime p dividing N, r, ' but not dividing sts’t’; and
r# .

We need the following simple lemma, whose proof is straightforward and
will be omitted.

LemMa. Let 2, 3 + N, 1 <x, y < N, x # vy, p|N. Then there exists u ¢
(Z/NZ)* such that

] - [fa]] 2 43 7220

Ifx=1,y#2 (N+1)/2,and 5 + N, then there exists u ¢ (Z/NZ)* such

that
][iﬂ)] _ [M)]
N/5 N/5
Let P, P*, v, 7y, 5o/, {’ be defined as before, o = {r)x,p So = {S)n/p Lo =
{)wsp. Since H, = H.,, for u € P* we have
(ury + (us) 4+ (ut)y = (ur'y + (us’) + (ut').
For u ¢ P\P* we have

[{ury 4+ (us) + (ut)y — ((ur’)y + (us’y + wt’')| < N.

= 3.

Thus

> Aury + (us) + wt) — D wr'y + (us'y + (ut)

uep ucpP

WN/pZ
B) wN/pzZlr+sotto—7r — s’ — 1]
r 7’ 1 ’ ’ ’
’[7\771;1 — [j\f/—f;:l 777 o+ so+to — (rd' + 50 + 1) |
r 7
® »+lz 1[&7}5] - [m]

First suppose p > 5, or p = 5 and p2|N (so that » = 0). By the lemma ap-
plied with x = », y = 7/, if we multiply through by a suitable u € (Z/NZ)*,
without loss of generality we may assume that

EAREA

which contradicts (6).

%

v

2 v+ 2,
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Now suppose N = 5Ny, 54Ny, |r, v'. If there is another prime p > 5 with
p|N and p|r or p|r’, we can use either Case 1 or Case 2 for p > 5 above or Case 3
below. So suppose g.c.d. (N, r) = g.c.d.(N,?") = 5.

If v/¢r'" # 2% mod IV, then we use the above lemma (with N,, »/7" in place
of N, y) to find u prime to N, such that

(PPN e B |

Here v'/5 € (Z/NZ)*. 1f 5|u, replace 1 by « + Ny € (Z/NZ)*. Thus, we can
find uy = d5u/r" or (5u + N)/r’ prime to N, such that

L52]-[52] =5

which contradicts (6).

It remains to consider the case r/r" = 2! mod Ny, say r = 2" mod N.
Multiplying through by (r/5)~! ¢ (Z/NZ)*, we may assume r = 5, r' =
(N 4 5)/2. By (5) we have

Noz |r+so4to— 7 — so — t]
= ‘1’0 + So + ty — 70/ —_ So/ — fol — 2N0|

Thus,
(7) ro =+ So + to = 2No, 7o' + s’ + td = N,.

Sayr = (5,1N¢y — a,jN¢ — b), wherea,b > 0,a + b = 5. Multiplying through
by a suitable « € P*, without loss of generality we may assume r = (5, N — «,
N —b) (namely, if iNy —a = k mod 5, let v = (—i/k);Noy + 1). Since
2¢ H, = H/ and (Z¥') = 5, we must have 27/ = (5, N — «’, N — 1), where
a, 0 >0,a +0 =5, Say o' is even. Then v/ = (N 4+ 5)/2, N — a'/2,
(N —=10")/2), and ry 4+ 5o’ + t’ = 2N,, contradicting (7).

Case 3. There exists a prime p|N, 7, ptstr's't’.

Multiplying through by a suitable element of (Z/NZ)*, without loss of
generality we may assume that » = g.c.d.(IV, 7). Let P, P¥*, rq, so, lo, 7o, So’, ty
be defined as in Cases 1 and 2. We have

|

yN = | D0 (ur) + (us) + ut) — > wr'y + (us'y + (ut')
uepP ueEP
p--1
= |pr+ }:0 (so +iN/p + to+iN/p — v’ —iN/p — s’ — iN/p
— t — iN/p)‘
—_—p 7’+S(x+to—7’o’—50'—lf0’—j); lN/P‘ .
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(8) VN/p>£“""‘“N/p+7’0 +So +t0 —1’—50—'1‘0

> f—)—;— N/p+N/p —2N/p —r,
9) =—> pb—3_ v.

Leta = N/r 2 5. If p 2 11, (9) implies
0 < pla—p/24+5/2<5/2—3p/10 < 0,

a contradiction. If p = 7 and a« = 7. then we obtain

0<p/T—p/2+5/2=0,

again a contradiction.
I't remains to consider the case p = 7, « = 5 and the case p = 5. Note that
when » = 0, (9) gives

0<pla—p/2+3/220

foralla = 5, p = 5. So suppose p2 + N.

First suppose p = 7,« = 5. If a prime ¢ > 7 divides r, we can use Case 1, 2,
or 3withp = ¢ > 7instead of p = 7. If 5|r, so that 52| N, we can use Case 1, 2,
or 3 with p = 5, v = 0. The only remaining case when p =7, a = 5, 72N
is when » = 7, i.e., N = 35; this case is easily checked by hand.

We now consider the case p = 5, 5*fN. If » > 5, there is a prime ¢ > 5
dividing » and N, and we can use Case 1, 2, or 3 with p = ¢ > 5. So suppose
vy = 5.

By (8),

N/5 Z2N/5 +rd + s+t — (5 + so+ t),

which is only possible if 7y + s/ 4ty = N/5, 5 + so + to = 2N/5. Thus,
= (5,1N/5 — «,jN/5 — D), wherea,b > 0,a + b = 5. Multiplying through
by a suitable element in P*, without loss of generality we may assume that
7= (5,N—a, N — D).

But for this 7 we know H, C (Z/NZ)* explicitly. Namely, if h € (Z/NZ)*,
then

(10) heH o [ﬁ?] + [%J + [<h>] is odd.

In particular, whether or not & € H, depends only on [(k)/5ab] (here 5ab = 20
or 30). By a tedious examination of possible ranges of values for 7/, s’, ¢/, we
verified that no 7" # 7 has H,. given by (10). This part of the proof will be
omitted in the interest of brevity.

This completes the proof of Case 3 of the proposition, and hence of Theorem 1.
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4. Isogenies for N a power of 3. Theorem 3 can be restated as follows.

PROPOSITION. Let N = 3%, Ny = 3"\, r = (r,s,t),7 = (', s", '), H, = H..
Suppose that v’ is not « permutation of v, und that g.c.d.(r, s, t, ', s', ') = 1.
Then for some 1w € (Z/NZ)*, ur = ({ur), {us), {ut)) and ur" are permutations
of 1, Ny — 2,2N, + 1) and (3, Ny — 2,2N, — 1).

Proof. Let ord m denote the highest power of 3 that divides an integer #:.
Without loss of generality, we may suppose ord 7 = ord s = ord ¢ and ord »’ =
ord s’ = ord t'. Note that thenord s = ord ¢, ord s’ = ord ¢’ and eitherord s = 0
or ord s* = 0. We may suppose ord s = 0.

The proof that 7 = 7" if 3 4 rst /s’ orif r = v’ and 3 + st s’ is included
in the proof of Theorem 1 in the relatively prime case (§ 2).

Case 1. ord s > 0.

If 3|7/, multiply through by a suitable « € (Z/NZ)* so that N; < (ur') =
2N, (namely, let u = (37°m 7" ¢/ )=1((3—° " N — 1)/2)). Thus, without loss of
generality we may suppose
(11) N, =+ = 2N, if 3]r.

Let P =1+ Ny(Z/3Z) C (Z/NZ)*, and let ry’ = "y, s = " ayy
t' = {{')n,. By (3) and (4), we have

’ ’ ’ é 3N or
uEZP ur'y + (us"y + (ut") {g i~

But if 3 + #/, this sum equals

3N 4 3y’ + s’ + ') = 4N or 5N;

while if 3|7/, the sum equals

2N 4 3(r" + 5o’ + 1),

which by (11) equals 4V or 5N.
We may now suppose 3 1 sis’t’. Also suppose ord r = ord 7'.

Case 2. 3|¥" and r # 7',

Letm = n —ord ¢, M = 3™ M, = 3" L Letting P = 1 + M(Z/3° " Z)
and proceeding as in Case 2 of § 3, we obtain (see (6))
(12) 12 |[r/M] — [/ M]].
The case N = 9 is easily checked by hand; if m = 1, n = 3, then 3|r/M,
r'/ M, contradicting (12). So suppose m = 2.

We need a simple lemma, whose proof will be omitted.

LEMMA. Suppose 1 < x, vy < M, x # vy, 3 + g.c.d.(x, v). Then there exists
u prime to 3 such that

|<uy>JlI - <ux>];{| > ]‘[1
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We apply the lemma with x = /37 y = r/3°7 ' Alultiplying through
by the « in the lemma, without loss of generality we may assume that |[r — /| >
Ni. But (12) gives |[r — #'| < 3M £ N, a contradiction.

Case 3. 3Ystv's't’, 32|r.

AMultiplying through by (r/3°7 7)~! € (Z/NZ)*, without loss of generality
we may assume that r = 3° 7, Lettingm = n — ord 7, M/ = 3", P =1+
M(Z/3°% " Z), and proceeding as in Case 3 of § 3, we obtain (see (9))

%0!'(1 7

30rdr_ 3
< 3

r
2 M

a contradiction.

IIA

Case 4. 3tstr' s't', ord v = 1.

Multiplying through by a suitable i € (Z/NZ)*, we may assume that» = 3.
Suppose 7 = (r,s,t) and 7' = (¥, s', ') are arranged so that s = 1 ((mod 3),
t=2(mod3),r £s Z£2t¢. Wehave3 & st s’ 1.

Note that 7 =5’ = ¢ (mod 3). We claim ' =1 (mod 3). Let ' = r/
(mod 3), ry/ = 1or 2 Let P =1+ 3(Z/N.\Z) C (Z/NZ)*. Then
> ur) + (us) + {ut) = ; (ur’y 4+ (us"y + (ut’).

uer

The sum on the left equals

3 2 k+ 2 k=9 >k

k=3mod 9 34k k=4mod 9
1Sk<y 1Sk<N 1=k<v

The sum on the right equals

3 2 (k+@ —-1))=9 > k4 (' — DN
k=1 (mod 3) k=4mod 9
1Sk<N 1Sk<N

Hence 7" = 1 as claimed.

Now first suppose that " < N;. We shall call a triple admissible if the sum
of its components is N rather than 2N. Then, since ¥ = s = ¢/ = 1 (mod 3),
we have

(Ny — 1) = (Ny — ¥/, Ny — s/, 4N, — ') is admissible,

ie, Ny —7¢)+ (N, — ')+ N, — ) = N. Hence N, — 1 € H,, = H,,
and

Ny — 1)r = (N — 3, {(Ny — 1)s), {(INy — 1)¢)) is admissible,

in other words ((N; — 1)s) + (N1 — 1)¢) = 3. Since s = 1 (mod 3), ¢t = 2
(mod 3), we have ((N; — 1)s) = 2, ((N; — 1)¢) = 1. Hence

s= @/ (Ni—=1)) =N —2,t=(1/(Ny— 1)) = 2N, — L.

Next suppose that 7 is not admissible. Then 7 = (3, (—2), (—1)), and
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(Ny+1)r = (3, N\ — 2, 2N; — 1). Thus we may again obtain = = (3,
N, — 2, 2N, — 1) after multiplying through by a suitable v ¢ (Z/NZ)*.

Now suppose 7 is admissible, and s" > N;. Then we must have Ny < ¥/,
t' < 2N;, and so

@N, — (', s, ') = 2N, — ¢/, 2N, — s', 2N, — ') is admissible.
Thus,

(2N; — 1)r = (N — 3, {(2N; — 1)s), ((2N; — 1)¢)) is admissible,
which gives

s=(2/@2N,—1))=2N; —2, t=(1/2N,—-1)) =N, — L

Then (N; + 1)r = (3, Ny — 2,2N, — 1).

Thus, after multiplying through by a suitable i € (Z/NZ)*, we may assume
thatr = (3, N, — 2,2N; — 1). Let 7o = (1, Ny — 2,2N; 4+ 1); then H,, =
H, = H,. But H,, = H, implies that 7’ is a permutation of 7, because all
components in 7 and 7y are prime to 3 (see beginning of this proof).

5. Isogenies for N a power of 2. Theorem 4 can be restated as follows.

PROPOSITION. Let N = 2", n = 4. Let Ny = 2", Ny = 2" 2 7 = (r, s, 1),
= (', s" "), H, = H.. Suppose that ' is not « permutation of =, und that
goed. (r, s, t, 1", s ") = 1. Then for some u € (Z/NZL)*, ur and ur’ are permii-
tations of one of the following pairs of triples:

1) (N —4,1,3), (N, — 2, N, — 1, 3):

(2) any 2 of the triples (N — 2,1,1), (N1, 1, N, — 1), (2, N, — 1, N, — 1);

(3) any 2 of the triples (N — 4,2,2), (Ny,2, Ny — 2), (N, — 2,1, N, + 1),

2, Ny — 1, 3N, — 1).

Proof. Nost of the proof is similar to the proof of Theorem 2, and will be
omitted. ITowever, one case is somewhat harder. When N = 2" there is no
“relatively prime case’’ when rst ¢’ s’ t’ is prime to N (since at least one com-
ponent in a triple must be even). Instead, the “relatively prime case,” in which
divisibility is least possible, occurs when, say, 2|r, ¥ ;4 ¥ r, 7' ;2 & st s't'. Since
it does not seem to be possible to apply the Frobenius determinant formula to
this situation, our proof of the ‘‘relatively prime case’”” when N = 2" needs
another technique, based on a probabilistic consideration.

Let (r,s,1), (v, s, t") fall in the “relatively prime case,’ i.e., 2|r, ', 4 & r, 7',
2 4 st §'t’. Multiplying through by s—!' € (Z/NZ)*, we may suppose that
s =1

Ift=Ny4+1,thens = (Ny — 2,1, Ny + 1), H, = {odd j|0 < j < Nyor
N1 < j < 3Ns}. Then for all u € (Z/NZ)* we have:

w)y€e H, & (u+ Ny € H,.
Since (1 + Ni)r') = '), ((u+ Ny)s') = (us’ + N1y, {(u + N)t') =
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(ut’" + Ny), this means that exactly one of (us’), (ut’) is <N;. Then for all
u < Ni: (u(t'/s" + N1)) < Ni. By Sublemma 1 below, ¢ = (—s’) or (N; +
s"). Butt’ # (—s'). Hence 7/ = s'(N, — 2,1, Ny + 1). Then s’ preserves H,,
and it is easy to see that then s’ = 1 or N, — 1. If s/ = 1, we have 7’ = 7;
if &/ = N: — 1, we have a pair in list (3) of the proposition.

Next, if t = 1 = s, then H, = {odd j < N}, and a similar application of
Sublemma 1 gives a pair in list (2) of the proposition. Sublemma 1 can also be
used to rule out the cases s’ ort’ = lor Ny +1;¢, s"ort/ = N —1orN; — 1
or reduce them to a pair in list (2) or (3) of the proposition.

Thus, we may assume that s = 1, ¢, s’, / # =1 mod N,. In addition, at
least one of the ¢, s, ¢’ may be assumed 2 =43*! mod N, since otherwise we
could find two with the same sign in the exponent, divide 7 and 7’ by one of
these two, and reduce to a case already considered when one of s, ¢, s', ¢’ is 1
andoneis1or Ny #1.

Now we apply the Probabilistic Lemma. (We suppose n = 9, i.e., N = 512.
The “relatively prime case’’ of Theorem 3 was verified by computer for N = 16,
32, 64, 128, 256.) Let vy, ¥2, v3 be (—t), s, ¢, where y; is chosen # +3*! mod
Ny Letw € S,, NS, Let k be the index in {1, 2, 3} notequal to 7 or j.

First consider the case vy, = s" or {. Then (us) = u < Ny, {(ut) < N,, so
that w € H,, u + N, ¢ H,. At least one of (us"), (ut') is > N,. If both are,
then v ¢ H,, a contradiction. If one is > V; and one is <N, then

(e + NPy + (w4 No)s') + ((w + NoY')
= (ur')y + (us") &= Nv+ ut’y F Ny = (ur’) + (us’) + (ut’),

so that either both #, © + N, € H, or both u, uw + Ny ¢ H,., also a contra-
diction.

Now consider the case y, = (—t) and u« ¢ S, ie., (ut) > N;. Since
{us"y, (ut’"y > Ny, we have u ¢ H,,, u + Ny ¢ H,.. But since (us) = u < N,
and (ut) > N, we must have either u, u + N, € H, or u, u + N, ¢ H,, a
contradiction. This proves the proposition assuming the Probabilistic Lemma.

PROBABILISTIC LEMMA. Let N = 2% N, = 2" Ny=2"2 5 =29 S =
{1,3,5, -+, Ny — 1}. Let { ) denote least positive residue mod N. For y €
(Z/NZ)*, let S, = {s € S|{sy) > Ni}. Suppose yi, v, y3 € (Z/NZL)*, y1, 2, y3
#Z £1 (mod Ny), y1 # £3*" (mod Ni). Then for some i # j, S,; M S,
is not empty.

Proof. We shall need some simple sublemmas.

SUBLEMMA 1. Let yS = {{ys)|s € S}. If ¥S =S, then y=1 or Ny — 1

(mod N).
1 2M + 1
SUBLEMMA 2. = < log = .
BLEMMA 0<%&”J og AT
J ol
SUBLEMMA 3. Let a1 =2 ay = - =2a, 20, by = b, = =b,=0. For
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any permutation o of {1, 2, -+, r} define A, = Y. aboyy. Then 4, £ 4, =

Z Gibi.

SUBLEMMA 4. For M odd, let

4 sin 2mjx
Sar(x) = = ﬁflrj. .

™ jS531, J
jodd

Then

. 1 17) = min {|x —
lsa ()] = Ol + 1D 3Z) where d(x, {2) = min e —1/4]}.

The proofs of the first three sublemmas are very simple, and will be omitted.
To prove the fourth, we write

sin 47x s (x) = *47; Wl @é%_s_@ﬂ?_w&
odd j=M+2
_ 4 3 cos 27 (j — 2)x — cos 27 (j + 2)x
T odd j>M+2 Qj
2 (cos 2w Mx 4 cos 27 (M + 2)x
Cor\ MA42 M+ 4

1 1
by el - ).
odd ;I-H ™ jt+2 j—2

(.——1‘*5 —-“L") =4 > 7§—1‘“ <4 2 4
odd j=a+4 \] T 2

: i
odd jzarta ] — 2 even 7= AM+3 ]

Since

1 2
MF1

<
) ) iz (1+3) /2]
and since |sin 47x| = 8d(x, 1Z), we have

2 2 2 1
< . _ .
0] = 7 8d(x, 17) (M + 2 Tar + 1) < (M + Dd(x,1Z2) "
This concludes the proof of Sublemma 4.

Proceeding to the proof of the Probabilistic Lemma, we define

4 sin 2mjx 4 e
X) = — —_—— = —
76 m ZO: J 27t fsqa 7
jodd
1 N N — J—
1 2 3 4
—1 _ _ _
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For y ¢ (Z/NZ)*, let

a= 2 ) -5 s AR

jodd jodd
Clearly, 4, = 4,-1, 4, = —A_, = —A,1y,. Moreover,
j N
ps,= = (1=A2)) e =a-a,
0<j<N1 ~

Jodd
and the lemma follows if we show that Ny < (No/2)(3 — 4,, — 4,, — A,,).
We shall show that [4,,] + [4,.] + |4,,] < 1.
A is easily computed directly:

Ay = % ({—1\[ — 2(#ofod(1jsuch that%—r <j< g))
N+2 N/2-—2 .. .
3 5——6 ——————— T if n is even;
=l=N\v—2 No+2
R if n 1s odd,

1 2 16
=3~ (=g
Thus, |4, £ 1/3 + 16/3N if y = £3%! (mod N,).

We now prove: If y 2 +1, 3% (mod Ny) and n = 9, then |4,| < 1/3 —
32/3N. This will give us the required |4,,| + |4,.| + |4, < 1/3 — 32/3N +
2(1/3 + 16/3N) = 1.

First suppose (Z£y*') or (N1 =4 y*!) is <N./2 for some choice of signs;
say 0 < y < Ny/2. Fork =0,1,---, (y —1)/2 — 1, clearly

J_'z) <
kN/y<j<(k+x>N/l,f(N =7
jodd
while
y—1
; Ny —*5-—=N+1
(ﬂ) s—3 T
w-vNTE<<n: - AN/ | T B 4y T3
jodd
Thus,
4 (y—1, N 1) 2y | 1
e - = = — =
|Ay|=N( s Yot =nt;
10,11 2) N,
<max (2241 2. = 5 < N
=““X(N+5,4+N2 for 5 y<3
1 8
=4 = >
i + N forn = 6
1 32
e =
< 373 forn = 8
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Now suppose {=£y*') > No/2 and (N; £ y*!') > N,/2 for all choices of
signs. For M odd, let
4 sin 2mjx ”
SM(x) = - Z =, 531(95) =f(4c) — Sy (x).

T 0<j=M, J
jodd

Applying Sublemma 4 with A/ = N — 1, x = k/N, we obtain

1

[sy_1(B/N)| < A NZ) where d(k, NoZ) = nllglln {[k — NaoI|}.

Then
wisd] 2 seld)sol@) 5 2 fanld)
vyl = N o N—-1 N N—1 N N[)<j<4v, N— N
jodd jodd
- NO<]Z<N, SN—I( )1 sy
jodd

The second sum is bounded by

1 . S 1 8 Ny + 2
= 1/d(j, N.Z) = = + < ~log =
m™ og;.w / (] : ) ™ 0<j;1\;2 127 < ™ 08 vV N,

Jodd jodd

by Sublemma 2. The third sum is bounded by

1 1 S 9

- E - : — < —5 E 1/7°

T o<y d(j,No2L)d(jy, NoL) = w~ 0<j<Ne 2 /i
jo jodd

by Sublemma 3. We rewrite the first sum as

_ _4}7 J—_ 627rij(r+z/s) IN
3
T N7, s<N 0<G<nN TS
7,5 odd jodd
4 N

_ x4V _1_ (r4ys) /N1
- Y (_ 1)
T 2 —N<r,s<N,7,s0dd 'S
r+ys=0(mod N1)

4N 1

= — == el (_ 1)(f+1/8) /N1
T 0<s<N, s odd rs
—~N<r<N,r=—ys(mod N1)
_ AN 5 L (_1 R SN B ,____1_-4)
™ o L2y s \(—ys)  (ys)  (Ni—ys)  (Ni+ys))’

s odd
Thus,

|first sum | gijg > 2()g(—ys),
T 0L

| N O S 1
where g(s) = | &y T =%y <N1+5)+ (N1—s) |”
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Clearly,
(1) g1) =2 g(3) = -+ = g(Ny, — 1);

(2) {g(=ys)}ocsen, is a permutation of {g(s)}o<s<ns;
s odd s odd

3) g(s) < 1/s fors < No/2;
(4) g(s) < 2/N, fors > N,/2.
Hence by Lemma 3

first sum| = 2 (ga)g(—y) +e(=1/MgV) + T g<s>2)

=s<N2
s odd
vz 2 1N (1)
< 71‘2 (N2 N2+3§S;VZ/QSZ+ 4 Nz
s odd
4N (_2_0 nt )
< 2\ + S 1).
Putting the three estimates together now gives:
160 8 (w_‘“’_ ) B2 Nat2 2
Ml <+ g — 1) Tyl R, Ty

<028 if N =512,
Thus,
|4, < 1/3 —32/3N if N = 512.

This completes the proof of the Probabilistic Lemma.
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