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INTRODUCTION

Recently Bailey (1957) and Kendall (1956) have discussed the behaviour of certain
distributions of epidemic size, especially in relation to the threshold theorem of
Kermack & McKendrick (1927). The latter was put forward on the basis of a
deterministic theory of the epidemic process, and suggested that the introduction
of a small number of infected persons into a eommunity would only result in a
major epidemic if the density of population was above a certain threshold value.
Numerical investigations by Bailey (1957) and Kendall (1956) suggested that a
rough parallel with this existed for stochastic analogues of the determinist epidemic,
and it seemed worth while to make a more detailed investigation of this question
for stochastic epidemics using an electronic computer for the calculations required.
Other reasons for carrying out such a study were that the general properties of
the distributions of epidemic size for moderately large communities are not well
understood, and are of some practical interest in connexion with epidemics in
such units as nurseries, or school classes. Direct application to practical examples
is not likely to be possible owing to the great heterogeneity that usually exists
between communities, and the variations in susceptibility among their members.
On the other hand, the broad picture may not be too badly disturbed by these
factors and can be taken as a background against which observed results can be
viewed.

Another use to which tables of epidemic size distribution might be put is in
assessing the effectiveness of preventive or prophylactic measures. For example,
comparisons of various policies of exclusion or treatment of symptomless carriers
of infection in relation to the course of an epidemic in a small school or nursery
will usually be based on highly skew or U-shaped distributions. This may vitiate
the tests that are used in comparing effects on groups of individuals where no
contagion exists.

A further reason for writing computer programmes is that once this has been
done they are available for any other investigation that requires them. The com-
putations are extremely laborious and time-consuming when performed on desk
calculators, particularly for large community sizes.
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METHODS AND SCOPE OF THE INQUIRY

The models of epidemic processes chosen for study were those due to Bailey (1953),
Frost [see Bailey (1957), Chap. 6] and Greenwood (1931). Another class of general
contagious distributions is that due to Neyman (1939), and there is also the well-
known Polya-Eggenberger distribution (see Feller, 1950), a particular case of
which was derived in relation to epidemic data by Irwin and discussed by Green-
wood (Greenwood, 1949; Irwin, 1954). We have not examined the Neyman distri-
butions but some consideration is given to the Polya—~Eggenberger distribution in
the discussion.

The programming of the three distributions for the computer has been based
on the recurrence relations that exist between the probabilities of epidemics of
different sizes in communities with different numbers of susceptibles. Contagious
distributions of the kind considered can always be considered as being built up of
a series of sub-epidemics as the number of susceptibles is successively reduced by
infection, and the final epidemic size is the outcome of these sub-epidemics.

It is worth while giving a brief account of the distributions studied and their
recurrence relations.

(@) Continuous infection-removal model. This model assumes that the infective-
ness of a case is a continuous process, and that the probability per unit time of
infecting an exposed susceptible is constant. At the same time the case has a
constant probability per unit time of ceasing to be infectious. The ratio of the
removal to the infection rate, p, is the only parameter of the distribution. In terms
of this constant the probability P (n, w) of an epidemic of size w in a community
of size n, after the introduction of one infectious case, can be derived from the
recurrence relation
p(s +1)

s(r+p)

(r+1) (s—1)
s(r+p)

P(n’ w) =pfn—w,l'
The boundary conditions are such that

fr+1, §—1»

fr,s fr s+1

where

1
f. lzm, I1<r+s<n+1l, 0<r<l, 1<s<n+1.

Full details can be found in Bailey’s book (Bailey, 1957).

(b) Frost chain binomial. This distribution assumes that the infectious process
is a point event and that each case has a probability p of infecting any of the
susceptibles exposed to it at the end of the incubation period. If r cases occur
simultaneously then the probability that any susceptible exposed to them is
infected is {1 — (1 —p)"}. The recurrence relation for this distribution is

P = (7)1 - )0,

-1
where 4d,=1- rZ P(r, s)
8=0
and P(n, 0)=(1—p)~.
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This form of the recurrence was given by Lidwell & Sommerville (1951).

(¢) Greenwood’s chain binomsal. This is a slight modification of the Frost model
and assumes that when several cases become infectious simultaneously they are
no more likely to infect an exposed susceptible than a single case. The main reason
for examining this distribution was to see what effect this change of assumptions
had in differentiating the behaviour of the Frost and Greenwood models. The
recurrence relation used for calculating the probabilities was

P(n,r)= ril B(n,r—k) Pm—r+k, k),
k=0
n —m
where B(n, m)= (m)p (1-p)

the usual Bernoullian probability term.

It will be noticed that this procedure involves having available the relevant
binomial probabilities. A very fast programme for these is possible using the basic
recurrence relation of the binomial distribution.

The electronic computer used for this investigation was the Elliott-N.R.D.C. 401
computer at Rothamsted Experimental Station (for a description of this machine
see Lipton (1955)). In order to keep the running-time of the programmes within
reasonable bounds it was decided to impose an upper limit on the community size
examined. In this type of work the computing time increases very rapidly as the
community size increases. For the Frost and Greenwood models the highest value
for the number exposed to risk was fixed at 40, while for the Bailey model only
integral values of p greater than 1 were permissible and n was never allowed
above 40. Speed of computation was the main consideration in programming the
three models and for this reason several techniques, such as floating arithmetic,
which would have eased the programming work, were not adopted. A further
limitation, though not one which seriously affected the present study, is imposed
by the storage space available in the computer. The storage required is pro-
portional to the square of the community size and so, like the running-time,
increases rapidly as larger communities are examined. Although it would be
simple to alter our programmes to handle a larger community size, say up to 60,
it would be very uneconomical in machine time. In any event the present in-
vestigation was intended to study the general nature of the epidemic size distri-
bution rather than to produce specific numerical values for some particular set of
observations. We believe the upper bounds chosen are sufficient for this purpose.

Some examples of various times (in minutes) taken by the computer are:

Community
size/model Bailey Greenwood Frost
5 1(p=2>5) 1 1
10 4 (p=10) 4 4-5
20 15 (p=20) 6 6

The comparatively short times for the Greenwood model are due mainly to a
modification of the computer itself which was made after work on the other two
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models had been completed. All these times include the printing of results, which
in the case of the Greenwood and Frost models was over 50 %, of the total running
time.

The programmes were checked by verifying that the probabilities of the terms
of the distributions added up to unity and, in some cases, by independent calcu-
lations on a desk machine.
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Fig. 1. Distribution of epidemic size according to Frost’s mathematical model in com-
munities of 2-20 susceptibles (n), and various degrees of infectiousness (p).

Fig. 2. Distribution of epidemic size according to Greenwood’s model. Same values of
parameters as for Fig. 1.

RESULTS

The results are summarized graphically in Figs. 1, 2 and 3. The numerical values
on which these graphs are based can be given to those who may find them useful,
but the general behaviour is best demonstrated pictorially.

Fig. 1 shows the behaviour of the Frost distribution for values of p (the chance
of a single infection of one exposed by one primary case) from 0-1 to 0-5 and for
communities of 2-20 susceptibles. When p is 0-1 or less there is a slow tran-
gition, as the size of community is increased, from a J-shaped distribution with a
maximum at zero to one J-shaped in the opposite sense. The rapidity of the
transition increases sharply with increase in p, and for p > 0-5 the distribution is
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always negatively skewed and, as the size of community increases, becomes con-
centrated in a single ordinate corresponding to infection of all the exposed
susceptibles.

The behaviour of the Greenwood distribution is shown in Fig. 2 for the same
values of » and p. This is mathematically related to the Frost binomial but the
infectious process is much less intense and the transition to virtual certainty of a
‘pandemic’ with increasing numbers of susceptibles is much slower.
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Fig. 3. Distribution of epidemic size for Bailey’s continuous stochastic model for 5, 10 and
20 susceptibles (n), and various values of p, the ratio of removal, to infection rate in an
affected case.
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A few representative examples of Bailey’s distribution are given in Fig. 3. They
are set out to show how the form of the distribution alters with increasing values
of p, the ratio of the removal, to the infection rate. It was suggested as a working
rule by D. G. Kendall (1956) that when p was less than » the distribution was
U-shaped, while at about the point where p=n there was a transition from a U-
to a J-shape, most epidemics petering out without affecting more than a fraction
of the community. This rule is fairly accurate for small values of », as is illustrated
in Fig. 3 by the case n=>5. As n becomes larger the transition is much less abrupt
and occurs at values of p less than n. This can be seen in Fig. 3 for n =20 where
the distribution actually becomes J-shaped at about p=17.* Furthermore, as was
noted by Bailey, the distribution goes through a phase in which the right-hand
mode moves to the left and ceases to correspond to a ‘pandemic’.

* This is not quite apparent from Fig. 3 due to the small size of the diagrams.
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DISCUSSION
The most obvious conclusion to be drawn from the present study is that, where
these mathematical models are applicable, any moderately infectious disease
is likely to spread to almost all susceptible members in communities of 10 or
more.

By a moderately infectious disease is meant one in which the probability of an
initial case infecting a single exposed susceptible is more than about 0-1. This is
the parameter p of the Frost and Greenwood distributions, and in Bailey’s model
is found by calculating 1(p+1)=p.

The general parallelism between the two discrete processes represented by the
Greenwood and Frost distributions and the continuous case studied by Bailey
can be seen from the figures. The threshold for the Bailey distribution occurs
roughly at p=n, when there is a transition from a J-shaped to a U-shaped distri-
bution as n increases. If p and p are connected by the relation p=(1—p)/p then,
for a given p, we should expect a transition to occur in the Greenwood and Bailey
distributions at about the point where n=(1—p)/p. In fact, this transition takes
place at rather higher values of » in the range of p considered, though a rough
analogy with Kendall’s rule exists.

In those diseases for which reliable estimates of p exist its value is so high as to
ensure that moderate-sized communities of susceptibles will all be infected. There
is also evidence that some diseases, for example, poliomyelitis and Sonne dysentery,
are widely spread in nursery or school outbreaks, where mixing is considerable
and there are ample opportunities for transmitting infection. If any of the mathe-
matical models considered here are approximately applicable to these diseases
this effect of aggregation would often appear in communities of 10-15 or more,
since their values of p are very small.

The range of applicability of the results given above is difficult to assess, but
their main features are probably not badly distorted by departures from the basic
assumptions. The most likely source of disagreement with observation would be
the presence of wide variations in susceptibility in the community. This would
manifest itself particularly when an appreciable number of those exposed were
not susceptible, so that the infective contacts of a case were greatly reduced.

The distributions studied differ fundamentally from the contagious distributions
of Neyman’s types, and from the Polya—Eggenberger distribution. These two
distributions have no behaviour analogous to a threshold, and in the case of the
Polya—Eggenberger distribution it appears that the main effect of increasing the
size of the population at risk is to cut down rather than to increase the proportion
of the community affected. However, for the less extreme forms of the epidemic
distributions, we have found empirically that the Polya—Iiggenberger distribution
often gives a good fit and could not be distinguished by any ordinary set of obser-
vational data.
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SUMMARY

A numerical investigation of three contagious distributions characteristic of
epidemic data has been made using an electronic computer.

All three show a modified threshold effect such that the proportion of a com-
munity affected tends to 1009, as its size increases though there is no abrupt
change of form.

We would like to thank Mr M. J. R. Healy for assistance with one of the pro-
grammes, and Miss Molly Fretton for her help with the computing.
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