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Abstract

Let Fq be a finite field with q elements, V an n-dimensional vector space over Fq and V the projective
space associated to V . Let G ≤ GLn(Fq) be a classical group and PG be the corresponding projective
group. In this note we prove that if Fq(V)G is purely transcendental over Fq with homogeneous
polynomial generators, then Fq(V)PG is also purely transcendental over Fq. We compute explicitly the
generators of Fq(V)PG when G is the symplectic, unitary or orthogonal group.
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1. Introduction

Let Fq be a finite field with q elements, V an n-dimensional vector space over Fq andV
the projective space associated to V . Let G be a classical group contained in the general
linear group GLn(Fq). It is well known that the center Z of GLn(Fq) consists of the
matrices tIn(t ∈ Fq\{0}). The quotient group G/(G ∩Z) is said to be the projective
group associated to G and is denoted by PG. Let Fq(V) = Fq(x1, x2, . . . , xn−1) denote
the rational function field over Fq. For each σ ∈ PG, we can choose a preimage
Tσ = (ti j) in G such that σ acts on Fq(V) by the rule

σ · xi =
tin +

∑n−1
j=1 ti jx j

tnn +
∑n−1

j=1 tn jx j
, 1 ≤ i ≤ n − 1.

The subfield Fq(V)PG = { f ∈ Fq(V) : σ · f = f for all σ ∈ PG} is called the invariants
field of PG on Fq(V). One may ask whether Fq(V)PG is purely transcendental over Fq

for a classical group G.
For G = GLn(Fq), Chu et al. [3] gave an affirmative answer:

Fq(V)PGLn(Fq) = Fq(u1, u2, . . . , un−1),
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where u1 = Q̃(qn−1)/(q−1)
n,1 L̃−qn+q

n and ui = Q̃n,iQ̃
(qn−qi)/(q−1)
n,1 L̃−qn+qi

n for 2 ≤ i ≤ n − 1, with

L̃n = det


x1 x2 · · · xn−1 1
xq

1 xq
2 · · · xq

n−1 1
...

...
...

...

xqn−1

1 xqn−1

2 · · · xqn−1

n−1 1


and

Q̃n,i = det



x1 x2 · · · xn−1 1
...

...
...

...

xqi−1

1 xqi−1

2 · · · xqi−1

n−1 1

xqi+1

1 xqi+1

2 · · · xqi+1

n−1 1
...

...
...

...

xqn

1 xqn

2 · · · xqn

n−1 1


· L̃−1

n .

The most crucial step in the proof of this result is to reduce the computation of
Fq(V)PGLn(Fq) to a problem of finding a basis of a free abelian group of rank n − 1.
Using the same strategy, the invariants subfield Fq(V)PSLn(Fq) for the special linear
group SLn(Fq) was also computed in [3].

On the other hand, it is well known that G acts naturally on the rational
function field Fq(V) and the invariants field Fq(V)G is purely transcendental for many
classical groups G, such as the symplectic group Sp2n(Fq), unitary group Un(Fq2 ) and
orthogonal group On(Fq) (see [1, 2, 4, 5]).

In this note we shall prove a more general result by extending the method in [3]
to the classical group G for which Fq(V)G is purely transcendental with homogeneous
polynomial generators. The following Theorem 2.2 is our main result. Applying this
theorem, we shall compute explicitly the generators of Fq(V)PSp2n(Fq) (Corollary 3.2),
Fq2 (V)PUn(Fq2 ) (Corollary 3.3) and Fq(V)POn(Fq)(Corollary 3.4).

2. A general result

We first note that the field Fq(V) can be embedded in a field Fq(y1, . . . , yn) in n
variables over Fq by defining xi = y1/yn for i = 1, . . . , n − 1. Specifically, if g, h are
homogeneous polynomials in the polynomial ring Fq[y1, . . . , yn] and we define the
degree of g/h by deg g/h = deg g − deg h, then Fq(V) is just the set of degree-zero
elements in Fq(y1, . . . , yn). Moreover, for each σ ∈ PG, it is easy to see that the action
of σ on Fq(V) is the induced action of its preimage Tσ in G on Fq(y1, . . . , yn). Thus

Fq(V)PG is just the set of degree-zero elements in Fq(y1, . . . , yn)G; the latter is well
known for many classical groups (see [1, 2, 4, 5]).
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L 2.1. If Fq(y1, . . . , yn)G = Fq(g1, . . . , gn) is purely transcendental over Fq,
where g1, . . . , gn are homogeneous polynomials with degrees d1 ≤ · · · ≤ dn
respectively, then Fq(V)PG is generated over Fq by monomials of the form

gβ1

1 gβ2

2 · · · g
βn
n , βi ∈ Z and

n∑
i=1

βidi = 0. (2.1)

P. Since each element in Fq(V)PG is of the form gh−1, where both g and h are
Fq-linear combinations of monomials

gγ1

1 gγ2

2 · · · g
γn
n , γi ∈ N ∪ {0} and

n∑
i=1

γidi = m,

we can choose a fixed n-tuple (α1, . . . , αn) such that αi ≥ 0 and
∑n

i=1 αidi = m. Let
βi = γi − αi. Then any monomial which may appear in g or h is of the form

gα1+β1

1 gα2+β2

2 · · · gαn+βn
n ,

n∑
i=1

βidi = 0.

Dividing both the denominator and numerator in gh−1 by gα1
1 gα2

2 · · · g
αn
n completes the

proof. �

Let N be the free abelian group (written additively) of rank n with free basis
g1, g2, . . . , gn. We define φ :N → Z by gi 7→ di, then φ is a group homomorphism
and so the kernel is

Ker(φ) =

{ n∑
i=1

βigi :
n∑

i=1

βidi = 0
}
.

Let d be the great common divisor of d1, . . . , dn. Then the image of φ is just dZ.
There exist integers β01, . . . , β0n such that

∑n
i=1 β0idi = d, thus

φ
( n∑

i=1

β0igi

)
= d

and we have

N = Ker(φ) ⊕ Z
( n∑

i=1

β0igi

)
.

Hence Ker(φ) is a free abelian group of rank n − 1. Choose

e1 =

n∑
i=1

β1igi, . . . , en−1 =

n∑
i=1

β(n−1)igi

as a basis of Ker(φ). We are now ready to prove the following theorem.

T 2.2. If Fq(y1, . . . , yn)G = Fq(g1, . . . , gn) is purely transcendental over Fq,
where g1, . . . , gn are homogeneous polynomials with degrees d1 ≤ · · · ≤ dn
respectively, then Fq(V)PG = Fq(u1, u2, . . . , un−1), where for j = 1, . . . , n − 1,

u j =

n∏
i=1

gi(x1, . . . , xn−1, 1)β ji .
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P. Note that the transcendental degree of Fq(V)G over Fq is equal to n − 1. By
Lemma 2.1 it suffices to show that each monomial f in (2.1) can be generated by
u1, u2, . . . , un−1.

Let f = gβ1

1 gβ2

2 · · · g
βn
n with

∑n
i=1 βidi = 0. Then the element β1g1 + · · · + βngn in N

can be expressed as k1e1 + · · · + kn−1en−1 for some integers ki. That is, f = ek1
1 · · · e

kn−1
n−1 .

Since each gi is homogeneous, then

gi(y1, . . . , yn−1, yn) = gi(x1yn, . . . , xn−1yn, yn)

= ydi
n gi(x1, . . . , xn−1, 1).

Since
∑n

i=1 β jidi = 0 for each j = 1, . . . , n − 1, we have

e j =

n∏
i=1

(
y
∑n

i=1 β jidi
n gi(x1, . . . , xn−1, 1)β ji

)
=

n∏
i=1

gi(x1, . . . , xn−1, 1)β ji

= u j.

This completes the proof. �

3. Some classical groups

In this section, we first compute Fq(V)PSp2n(Fq) explicitly for the projective
symplectic group PSp2n(Fq). The generators of Fq2 (V)PUn(Fq2 ) and Fq(V)POn(Fq) can
be computed using the same techniques, so the details are omitted.

Let B(x, y) be the alternating bilinear form on the 2n-dimensional vector space
F2n

q and B = (bi j) be the associated matrix of B. Then B is skew-symmetric and the
associated symplectic group, Sp2n(Fq, B) can be written as

Sp2n(Fq, B) = {T ∈ GL2n(Fq) : T tBT = B}.

Naturally, the group Sp2n(Fq, B) can act on Fq(y1, y2, . . . , y2n) and we know that the
field of invariants Fq(y1, y2, . . . , y2n)Sp2n(Fq,B) = Fq(S2n,1, S2n,2, . . . , S2n,2n), where

S2n,k = (y1, . . . , y2n)B


yqk

1
...

yqk

2n


=

∑
1≤i< j≤2n

bi j(yiy
qk

j − yqk

i y j), k = 1, 2, 3, . . . .

Note that the degree of S2n,k equals qk + 1. Let

d = gcd{q + 1, q2 + 1, . . . , q2n + 1}.
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Then d = gcd{q + 1, q2 + 1, q4 + 1, . . . , q2s
+ 1; 2s−1 ≤ n} since q + 1 divides qr + 1

for odd positive integers r. Actually, we have the following result.

L 3.1. We have d = 2 if q is odd, and d = 1 if q is even.

P. We note that q2 + 1 = (q + 1)(q − 1) + 2. Thus 2 divides d = gcd{q + 1,
q2 + 1} = gcd{q − 1, 2}. It is clear that d = 2 if q is odd, and d = 1 if q is even. �

Choose α, β such that α(q + 1) + β(q2 + 1) = d. In this case, (N , +) is the free
abelian group of rank 2n with free basis S2n,1, S2n,2, . . . , S2n,2n. It is easy to see that
S2n,k − ((qk + 1)/d)(αS2n,1 + βS2n,2) (k = 1, 2, . . . , 2n) generates Ker φ. On the other
hand, we note that Ker φ is a free abelian group of rank 2n − 1 and

S2n,1 −
q + 1

d
(αS2n,1 + βS2n,2) = β

(q2 + 1
d

S2n,1 −
q + 1

d
S2n,2

)
,

S2n,2 −
q2 + 1

d
(αS2n,1 + βS2n,2) = −α

(q2 + 1
d

S2n,1 −
q + 1

d
S2n,2

)
.

Thus {q2 + 1
d

S2n,1 −
q + 1

d
S2n,2

}
∪

{
S2n,k −

qk + 1
d

(αS2n,1 + βS2n,2), 3 ≤ k ≤ 2n
}

is just a basis of Ker φ.
For k = 1, 2, 3, . . . , we define

S̃2n,k = (x1, . . . , x2n−1, 1)B


xqk

1
...

xqk

2n−1

1

 .
Then by Theorem 2.2 we have the following corollary.

C 3.2. (1) If char Fq is not 2, then Fq(V)PSp2n(Fq,B) = Fq(s1, s2, . . . , s2n−1),
where

s1 = S̃ (q2+1)/2
2n,1 S̃ −(q+1)/2

2n,2 ,

si = S̃2n,i+1S̃ ((q−1)(qi+1+1))/2
2n,1 S̃ −(qi+1+1)/2

2n,2 , 2 ≤ i ≤ 2n − 1.

(2) If char Fq is 2 then q = 2s for some positive integer s. Note that

(22s−1 − 2s + 1)(q + 1) − 2s−1(q2 + 1) = 1.

Letting α = 22s−1 − 2s + 1 and β = −2s−1, then in this case Fq(V)PSp2n(Fq,B) =

Fq(s1, s2, . . . , s2n−1), where

s1 = S̃ q2+1
2n,1 S̃ −(q+1)

2n,2 ,

si = S̃2n,i+1 S̃ −α(qi+1+1)
2n,1 S̃ −β(qi+1+1)

2n,2 , 2 ≤ i ≤ 2n − 1.
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We conclude this note by giving the explicit generators of invariants fields of
projective unitary group and projective orthogonal group.

Let ρ : a 7→ aq be the unique involution of Fq2 , H(x, y) be the Hermitian form
on the n-dimensional vector space Fn

q2 and H = (hi j) be the associated matrix of H .
Then H is Hermitian and the associated unitary group, Un(Fq2 ,H), can be written as
Un(Fq2 ,H) = {T ∈ GLn(Fq2 ) : T tHT ρ = H}. We define

H̃n,k = (x1, . . . , xn−1, 1)H


xq2k+1

1
...

xq2k+1

n−1

1

 , k = 0, 1, 2, . . . .

Then we have the following corollary.

C 3.3. We have Fq2 (V)PUn(Fq2 ,H) = Fq2 (h1, h2, . . . , hn−1), where

hi = H̃n,iH̃
−(q2i+1+1)/(q+1)
n,0 , 1 ≤ i ≤ n − 1.

Assume that char Fq is not 2. Let O(x, y) be the symmetric bilinear form on the
n-dimensional vector space Fn

q and A = (ai j) be the associated matrix of O. Then A is
symmetric and the associated orthogonal group, On(Fq, O), can be written as
On(Fq, O) = {T ∈ GLn(Fq) : T tAT = A}. Define

Ãn,k = (x1, . . . , xn−1, 1)A


xqk

1
...

xqk

n−1
1

 , k = 0, 1, 2, . . . .

We have the following corollary.

C 3.4. If char Fq , 2 then Fq(V)POn(Fq,O) = Fq(w1, w2, . . . , wn−1), where

wi = Ãn,iÃ
−(qi+1)/2
n,0 , 1 ≤ i ≤ n − 1.

R 3.5. If char Fq is 2, then up to isomorphisms, the orthogonal groups over
Fq are of just three types. We will obtain similar conclusions by applying the same
techniques and the result of Tang and Wan [5].
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