ON AN INTEGRAL IN THE DISTRIBUTION OF EIGENVALUES

by J. B. McLEOD
(Received 18th April 1961)

1. In the case of a wave function with spherical symmetry, the wave equation can be separated using spherical polar coordinates, and the equation for the radial component becomes

$$
\begin{equation*}
\frac{d^{2} \psi}{d r^{2}}+\left\{\hat{\lambda}-q(r)-\frac{l(l+1)}{r^{2}}\right\} \psi=0 \tag{1.1}
\end{equation*}
$$

where λ is a constant parameter, proportional to the energy of the particle under consideration, $q(r)$ is proportional to the potential energy, and l is a positive integer or zero.

In a recent paper (1) I discussed the distribution of the eigenvalues for cases of (1.1) similar to that of the hydrogen atom, for which $q(r)$ is proportional to $-1 / r$. To make this situation analytically precise, we set

$$
V(r)=q(r)+\left(l+\frac{1}{2}\right)^{2} / r^{2}
$$

and impose the following conditions on $V(r)$ and $q(r)$:
(i) except at $r=0, q(r)$ is continuously differentiable, while, as $r \rightarrow 0$, $q(r)=O\left(r^{-2+c}\right)$ for some fixed $c>0$;
(ii) $V(r)$ has one and only one zero, and that simple, from which it follows that $V(r)<0, q(r)<0$ for sufficiently large r;
(iii) as $r \rightarrow \infty, V(r)$ is three times continuously differentiable, and $V(r) \rightarrow 0$ with

$$
\frac{V^{\prime}(r)}{-V(r)} \asymp \frac{1}{r}, \frac{V^{\prime \prime}(r)}{V^{\prime}(r)}=O\left(\frac{1}{r}\right), \quad \frac{V^{\prime \prime \prime}(r)}{V^{\prime}(r)}=O\left(\frac{1}{r^{2}}\right)
$$

where \asymp means that the ratio of the two sides lies between positive constants;
(iv) as $r \rightarrow \infty, r^{d-2}\{-V(r)\}^{-1}$ is a decreasing function for some fixed $d>0$.

If we now impose on solutions of (1.1) the boundary condition that they be $L^{2}(0, \infty)$ (or, if $l=0$, that in addition they vanish at the origin), then we will have defined an eigenvalue problem which will have a discrete spectrum for $\lambda<0$ and a continuous spectrum for $\lambda>0$. (These results are proved in (1)). In § 6 of (1), I obtained a formula for the distribution of the discrete eigenvalues for which we require the following notation.

From (i) and (ii) above, we have that for λ_{n} sufficiently small and negative, $\lambda_{n}-V(r)$ has exactly two zeros, one being close to the zero of $V(r)$ while the
other tends to infinity as $\lambda_{n} \rightarrow 0$. We therefore define R_{2} to be the smaller zero of $\lambda_{n}-V(r), r_{1}$ to be the zero of $V(r)$, and $q(\lambda)$ to be the inverse function to $V(r)$ for large r, with $q\left(\lambda_{n}\right)=q_{n}$; thus q_{n} is the larger zero of $\lambda_{n}-V(r)$. We finally define

$$
\omega=\omega(r)=\tan ^{-1}\left\{[-V(r)]^{\frac{1}{2}}\left[r^{-\frac{1}{2}} V_{1}(r)\right] / \frac{d}{d r}\left[r^{-\frac{1}{2}} V_{1}(r)\right]\right\}
$$

where $V_{1}(r)$ is the solution of (1.1) with $\lambda=0$ which vanishes at the origin, the existence and uniqueness (apart from an unimportant constant factor) of this function being guaranteed by Lemma 3(a) of (1); the correct branch of the inverse tangent is determined by insisting that $\omega\left(r_{1}\right)=0$ and that ω be continuous.

We then have the result that the $(n+1)$ th eigenvalue λ_{n}, as we approach zero through negative values, is given by

$$
\begin{align*}
&\left(n+\frac{3}{4}\right) \pi=\int_{R_{2}}^{q_{n}}\left\{\lambda_{n}-V(r)\right\}^{\frac{1}{2}} d r+\frac{1}{4} \int_{r_{1}}^{\infty} \frac{d / d r\left[r^{2} V(r)\right]}{r^{2} V(r)} \sin 2 \omega d r+ \\
&+O\left\{\lambda_{n}^{\frac{1}{4} V^{-\frac{1}{2}}}\left[\left(-\lambda_{n}\right)\right]^{-\frac{1}{2}}\right\} . \tag{1.2}
\end{align*}
$$

The usual approximation of the physicist to this is

$$
\begin{equation*}
\left(n+\frac{1}{2}\right) \pi=\int_{R_{2}}^{q_{n}}\left\{\lambda_{n}-V(r)\right\}^{\frac{1}{2}} d r \tag{1.3}
\end{equation*}
$$

where the size of the error involved is not specified. If, however, it is understood (as seems reasonable) that the error tends to zero, as $n \rightarrow \infty$, then, in order for (1.2) and (1.3) to be consistent, the second integral in (1.2) (which is a constant independent of n) must take the value π. In fact, it is surprising (but true) that the integral does take the value π if $q(r)$ takes the special form $-k r^{-a}(0<a<2), k$ being some positive constant. This is proved in $\S 6$ of (1).

The question then arises whether this is in the nature of a freak result or whether it is true for all $q(r)$ satisfying the conditions of the theorem. It is the purpose of this note to show that the first alternative is the case by demonstrating a function $q(r)$ for which the integral does not take the value π.
2. By (6.4) of (1), we have

$$
\begin{equation*}
\int_{r_{1}}^{\infty} \frac{d / d r\left[r^{2} V(r)\right]}{r^{2} V(r)} \sin 2 \omega d r=\lim _{R \rightarrow \infty} 4\left\{\omega(R)-\int_{r_{1}}^{R}[-V(r)]^{\frac{1}{2}} d r\right\} \tag{2.1}
\end{equation*}
$$

In the case where $q(r)=-k r^{-a}$, we can, as in (1), evaluate the right-hand side of (2.1) and so show that the left-hand side has the required value π. We now want to show that we can alter $q(r)$ away from $-k r^{-a}$ and by so doing alter the right-hand side (and so the left-hand side) of (2.1).

Consider therefore $q(r)$ changed from $-k r^{-a}$ to a function $q^{*}(r)$ satisfying

$$
\begin{equation*}
q^{*}(r)=-k r^{-a} \quad \text { for } \quad \frac{1}{2} r_{1} \leqq r<\infty . \tag{2.2}
\end{equation*}
$$

but being otherwise at present undefined, except that it must continue to satisfy the general conditions (i)-(iv) of § 1 . It should be remarked that with this definition r_{1} is unaltered by the change in $q(r)$, so that there is no danger of confusion as to which value of r_{1} is meant in (2.2).

Then the integral on the right-hand side of (2.1) is unaltered by the change in $q(r)$, and so whether the right-hand side or left-hand side is altered depends upon whether $\omega(R)$ is altered.

Now the general solution of the equation

$$
\frac{d^{2} \psi}{d r^{2}}-\left\{q^{*}(r)+\frac{l(l+1)}{r^{2}}\right\} \psi=0
$$

for $\frac{1}{2} r_{1} \leqq r<\infty$ is (as in (1), §6)

$$
A r^{\frac{1}{2}} J_{\beta}(\xi)+B r^{\frac{1}{2}} J_{-\beta}(\xi),
$$

where A, B are arbitrary constants and

$$
\beta=(2 l+1) /(2-a), \quad \xi=2 k^{\frac{1}{2}} r^{1-\frac{1}{2} a} /(2-a) .
$$

We can certainly arrange the uncommitted part of $q^{*}(r)$ so that the solution $V_{1}(r)$ which vanishes at $r=0$ satisfies the condition $B \neq 0$. This will be as far as we need define $q^{*}(r)$.

Then, as $r \rightarrow \infty$, we have from the well-known asymptotic formula for Bessel functions that for some A, B, with $B \neq 0$,

$$
\begin{aligned}
V_{1}(r)=A r^{\frac{1}{2}}\left(\frac{2}{\pi \xi}\right)^{\frac{1}{2}}\left[\cos \left(\xi-\frac{1}{2} \beta \pi-\frac{1}{4} \pi\right)\right. & \left.+O\left(\xi^{-1}\right)\right]+ \\
& +B r^{\frac{1}{2}}\left(\frac{2}{\pi \xi}\right)^{\frac{1}{2}}\left[\cos \left(\xi+\frac{1}{2} \beta \pi-\frac{1}{4} \pi\right)+O\left(\xi^{-1}\right)\right]
\end{aligned}
$$

with a corresponding formula for $V_{1}^{\prime}(r)$ which is obtained from the above by formal differentiation. To simplify the resulting arithmetic, let us suppose specifically that $l=0, a=\frac{4}{3}, \beta=\frac{3}{2}$. Then, if we substitute the expressions for $V_{1}(r), V_{1}^{\prime}(r)$ in the definition of $\omega(r)$ in $\S 1$, we obtain that

$$
\omega(r)=\tan ^{-1}\left\{-\frac{[-V(r)]^{\frac{1}{2}}\left[-A \cos \xi-B \sin \xi+O\left(\xi^{-1}\right)\right]}{k^{\frac{1}{2}} r^{-\frac{1}{2} a}\left[-A \sin \xi+B \cos \xi+O\left(\xi^{-1}\right)\right]}\right\} .
$$

Let us sufficiently put $A=\cos \eta, B=\sin \eta$, so that

$$
\begin{aligned}
\omega(r) & =\tan ^{-1}\left\{-\frac{[-V(r)]^{\frac{1}{2}}\left[\cos (\xi-\eta)+O\left(\xi^{-1}\right)\right]}{k^{\frac{1}{2}} r^{-\frac{1}{2} a}\left[\sin (\xi-\eta)+O\left(\xi^{-1}\right)\right]}\right\} \\
& =\xi-\eta+\frac{1}{2} \pi \pm m \pi+o(1), \quad \text { as } r \rightarrow \infty
\end{aligned}
$$

where m is some positive integer or zero.
If $B=0$, which occurs when $q(r)=-k r^{-a}$ for all r, we have

$$
\omega(r)=\xi+\frac{1}{2} \pi \pm m^{\prime} \pi+o(1), \text { as } r \rightarrow \infty
$$

where m^{\prime} is also some positive integer or zero. Hence the change in $\omega(R)$ in (2.1), when we change $q(r)$ from $-k r^{-a}$ to $q^{*}(r)$, is, as $R \rightarrow \infty$,

$$
\pm\left(m^{\prime}-m\right) \pi+\eta+o(1)
$$

Since $B \neq 0$ for $q^{*}(r), \eta$ is not a multiple of π, and so there will be a nonzero change in the right-hand side of (2.1), and so also in the left-hand side.

This completes the construction of the necessary example.

REFERENCE

(1) J. B. McLeod, The distribution of the eigenvalues for the hydrogen atom and similar cases, Proc. London Math. Soc. (3), 11 (1961), 139-158.

Wadham College
Oxford

