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Zero-divisor Graphs of Ore Extensions
Over Reversible Rings

E. Hashemi and R. Amirjan

Abstract. Let R be an associative ring with identity. First we prove some results about zero-divisor
graphs of reversible rings. _en we study the zero-divisors of the skew power series ring R[[x; α]],
whenever R is reversible and α-compatible. Moreover, we compare the diameter and girth of the
zero-divisor graphs of Γ(R), Γ(R[x; α, δ]), and Γ(R[[x; α]]), when R is reversible and (α, δ)-com-
patible.

1 Introduction

_e zero-divisor graph of a commutative ring R with identity, denoted by Γ(R), is the
graph associatedwithR such that its vertex set consists of all itsnon-zero zero-divisors
and that two distinct vertices are joined by an edge if and only if the product of these
two vertices is zero. _is concept of zero-divisor graphswas initiated byBeck [9]when
he studied the coloring problem of a commutative ring. Later, Anderson and Liv-
ingston [4] introduced and studied the zero-divisor graphwhose vertices are the non-
zero zero-divisors of a ring. Redmond [26] studied the zero-divisor graph of a non-
commutative ring. Several papers are devoted to studying the relationship between
the zero-divisor graph and algebraic properties of rings; see [1,2,4–6,9,23,26,28].

Let R be an arbitrary associative ringwith identity. _e zero-divisors of R, denoted
by Z(R), is the set of elements a ∈ R such that there exists a non-zero element b ∈ R
with ab = 0 or ba = 0. _e zero-divisor graph of R, denoted by Γ(R), is the graph
with vertices Z∗(R) = Z(R) − {0}, and for distinct x , y ∈ Z∗(R), the vertices x and
y are adjacent if and only if xy = 0 or yx = 0.
Axtell, Coykendall, and Stickles [8] examined the preservation of diameter and

girth of zero-divisor graphs of commutative rings under extensions to polynomial and
power series rings. Lucase [23] continued the study of the diameter of zero-divisor
graphs of polynomial and power series rings over commutative rings. Moreover, An-
derson andMulay [5] studied the girth and diameter of commutative rings and inves-
tigated the girth and diameter of zero-divisor graphs of polynomial and power series
rings over commutative rings. Afkhami, Khashayarmanesh, and Khorsandi [1] com-
pared the girth and diameter of zero-divisor graphs of R[x; α, δ] and R, when R is a
commutative (α, δ)-compatible ring and R[x; α, δ] is a reversible ring.
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According to Cohn [11] a ring R is called reversible if ab = 0 implies that ba = 0 for
a, b ∈ R. Anderson and Camillo [3], observing the rings whose zero products com-
mute, used the term ZC2 for what is called reversible, while Krempa and Niewiecz-
erzal [20] took the term C0 for it. Clearly, reduced rings (i.e., rings with no non-zero
nilpotent elements) and commutative rings are reversible. Kim and Lee [18] studied
extensions of reversible rings and showed that polynomial rings over reversible rings
need not be reversible. In view of [26,_eorem 2.3] over a reversible ring R, the graph
Γ(R) is connectedwith diam(Γ(R)) ≤ 3,where diam(Γ(R)) is the diameter of Γ(R).
Another extension of a ring R is theOre extension. Assume that α∶R → R is a ring

endomorphism and δ∶R → R is an α-derivation of R, that is, δ is an additive map
such that δ(ab) = δ(a)b + α(a)δ(b), for all a, b ∈ R. _e Ore extension R[x; α, δ]
of R is the ring obtained by giving the polynomial ring (with indeterminate x) over
R with themultiplication xa ∶= α(a)x + δ(a) for all a ∈ R. In the special case where
α = IR or δ = 0, we denote R[x; α, δ] by R[x; δ] and R[x; α], respectively. Also we
denote the skew power series ring by R[[x; α]], where α∶R → R is an endomorphism.
_e skew power series ring R[[x; α]] is the ring consisting of all power series of the
form∑∞

i=0 a ix i (a i ∈ R), which aremultiplied using the distributive law and the Ore
commutation rule xa = α(a)x, for all a ∈ R.
For two distinct vertices a and b in the graph Γ, the distance between a and b,

denoted by d(a, b), is the length of shortest path connecting a and b if such a path
exists; otherwise,we put d(a, b) ∶=∞. Recall that the diameter of a graph Γ is deûned
as follows:

diam(Γ) ∶= sup{d(a, b) ∣ a and b are distinct vertices of Γ} .

_e girth of a graph Γ, denoted by g(Γ), is the length of the shortest cycle in Γ,
provided Γ contains a cycle; otherwise, g(Γ) =∞. We will use the notation g(Γ(R))
to denote the girth of the graph of Z∗(R). A graph is said to be connected if there exists
a path between any two distinct vertices, and a graph is complete if it is connectedwith
diameter one.
For an element a ∈ R, let ℓR(a) = {b ∈ R∣ba = 0} and rR(a) = {b ∈ R∣ab = 0}.

Note that if R is a reversible ring and a ∈ R, then ℓR(a) = rR(a) is an ideal of R, andwe
denote it by ann(a). Wewrite Zℓ(R) and Zr(R) for the set of all le� zero-divisors of R
and the set of all right zero-divisors of R, respectively. Clearly, Z(R) = Zℓ(R)∪Zr(R).

2 Properties of Γ(R)
A ring R is called abelian if each idempotent element of R is central. Clearly, com-
mutative rings and reduced rings are reversible. Also, reversible rings are abelian by
[22, Proposition 1.3] and [27, Lemma 2.7]. But these implications are irreversible as
follows: (i) _ere is a non-commutative non-reduced reversible ring by [3, Exam-
ple II.5]. (ii) _ere is a non-reversible abelian ring by [18, Examples 1.5 and 1.10(3)].

Since reversible rings are abelian, one canprove the following result using amethod
similar to that used in the proof [4,_eorem 2.5].
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Remark 2.1 Let R be a reversible ring. _en there is a vertex of Γ(R) which is
adjacent to every other vertex if and only if either R ≅ Z2 ×D where D is a domain or
Z(R) is an annihilator ideal.

By using Remark 2.1 and amethod similar to that used in the proof of [4,_eorem
2.8], one can prove the following result.

Remark 2.2 Let R be a reversible ring. _en Γ(R) is complete if and only if either
R ≅ Z2 ×Z2 or xy = 0 for all x , y ∈ Z(R).

Recall that an ideal P of R is completely prime if ab ∈ P implies a ∈ P or b ∈ P for
a, b ∈ R.

Proposition 2.3 Let R be a reversible ring and A = {ann(a)∣0 /= a ∈ R}. If P is a
maximal element of A, then P is a completely prime ideal of R.

Proof Let xy ∈ P = ann(a) and x ∉ P. _en xa /= 0 and hence ann(ax) ∈ A. Since
P ⊆ ann(xa) and P is a maximal element of A, so ann(a) = P = ann(ax). Since
axy = 0,we have ay = 0,which implies that y ∈ P. _erefore, P is a completely prime
ideal of R.

Proposition 2.4 Let R be a reversible ring. _en Γ(R) is connected and we have
diam(Γ(R)) ≤ 3. Moreover, if Γ(R) contains a cycle, then g(Γ(R)) ≤ 4.

Proof Using a similar method as in the proof of [4,_eorem 2.3], one can show that
diam(Γ(R)) ≤ 3.

Using a similar method as in the proof of [4,_eorem 2.2] one can prove the fol-
lowing theorem.

_eorem 2.5 Let R be a reversible ring. _en Γ(R) is ûnite if and only if either R is
ûnite or a domain.

3 Some Properties of Zero-divisors of a Reversible Ring

Lemma 3.1 Let R be a reversible ring. _en Z(R) is a union of prime ideals.

Proof Let S = R − Z(R). _en S is an m-system. Let 0 /= a ∈ Z(R). _en ab = 0
for some 0 /= b ∈ Z(R). Let I = ann(b). _en a ∈ I and I is an ideal of R, since R
is reversible. Let A = {J ⊴ R∣I ⊆ J , J ∩ S = ϕ}. By Zorn’s lemma, A has a maximal
element, say P. _en P is a prime ideal of R by [21, Proposition 10.4]. Hence, Z(R) is
a union of prime ideals.

Hence, the collection of zero-divisors of a reversible ring R is the set-theoretic
union of prime ideals. We write Z(R) = ⋃i∈Λ Pi with each Pi prime. We will also
assume that these primes aremaximal with respect to being contained in Z(R).
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For a reversible ring R, rR(a) is an ideal of R for each a ∈ R. Hence, by a similar
method to the one used in the proof of [17,_eorem 8], one can prove the following
result.

Remark 3.2 Let R be a reversible and right or le� Noetherian ring. _en Z(R) =
⋃i∈Λ Pi , where Λ is a ûnite set and each Pi is the annihilator of a non-zero element
of Z(R).

Kaplansky [17,_eorem 81] proved that if R is a commutative ring and J1 , . . . , Jn a
ûnite number of ideals in R and S a subring of R that is contained in the set-theoretic
union J1 ∪ ⋅ ⋅ ⋅ ∪ Jn and at least n − 2 of the J’s are prime, then S is contained in some
Jk . Here we have the following theorem.

_eorem 3.3 Let R be a reversible ring and Z(R) = ⋃i∈Λ Pi . If Λ is a ûnite set and
I an ideal of R that is contained in Z(R), then I ⊆ Pk , for some k.

Proof Suppose that Z(R) = P1 ∪ ⋅ ⋅ ⋅ ∪ Pn and I is an ideal of R contained in Z(R).
We use induction on n to show that I ⊆ Pi , for some 1 ≤ i ≤ n. If n = 2, then clearly
I ⊆ P1 or I ⊆ P2. Let n ≥ 3 and for every k, I /⊆ Pk . Since Pk is a maximal prime
ideal contained in Z(R), hence Pk + I contains a regular element sk for all k. _us,
sk = xk + ak for some xk ∈ Pk and ak ∈ I. _en

s1s2 ⋅ ⋅ ⋅ sn = (x1 + a1)(x2 + a2) ⋅ ⋅ ⋅ (xn + an) = x1x2 ⋅ ⋅ ⋅ xn + α,

for some α ∈ I. Since I ⊆ Z(R) = ⋃n
i=1 Pi , there exists 1 ≤ j ≤ n such that α ∈ P j . But

since x1x2 ⋅ ⋅ ⋅ xn ∈ ⋂n
i=1 Pi , this means that s1s2 ⋅ ⋅ ⋅ sn = x1x2 ⋅ ⋅ ⋅ xn + α ∈ P j , which is a

contradiction. _erefore, I ⊆ Pk , for some 1 ≤ k ≤ n.

Note that Remark 3.2 shows that any le� or right Noetherian ring satisûes the hy-
pothesis of_eorem 3.3.

Corollary 3.4 Let R be a reversible and le� or rightNoetherian ring. LetP be a prime
ideal of R maximalwith respect to being contained in Z(R). _enP is completely prime
and P = ann(a), for some a ∈ R.

Proof _is follows from Remark 3.2 and_eorem 3.3.

By a slightmodiûcation of the proof of [8, Corollary 3.5], in conjunctionwith_e-
orem 3.3, we have the following result.

Corollary 3.5 Let R be a reversible ring with diam(Γ(R)) ≤ 2 and Z(R) = ⋃i∈Λ Pi .
If Λ is a ûnite set, then ∣Λ∣ ≤ 2.

Proposition 3.6 Let R be a reversible ringwith diam(Γ(R)) = 2. Let Z(R) = P1∪P2
such that P1 and P2 are distinct maximal primes in Z(R). _en
(i) P1 ∩P2 = {0} (in particular, for all x ∈ P1 and y ∈ P2, xy = 0);
(ii) P1 and P2 are completely prime ideals of R.
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Proof (i)_is can be proved using amethod similar to that used to prove [8, Propo-
sition 3.6].

(ii) Since P1 ∩ P2 = 0, hence P1 = ann(x) and P2 = ann(y), for each 0 /= x ∈ P2
and 0 /= y ∈ P1. Let ab ∈ P1 and a ∉ P1. _en xa /= 0 for some 0 /= x ∈ P2. Hence
b ∈ ann(xa) = ann(x) = P1.

4 Diameter and Girth of Γ(R), Γ(R[[x; α]]) and Γ(R[x; α, δ])
According to Krempa [19], an endomorphism α of a ring R is said to be rigid if
aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be α-rigid if there exists a rigid
endomorphism α of R. Note that any rigid endomorphism of a ring is a monomor-
phism and α-rigid rings are reduced by Hong, Kim and Kwak [16]. Properties of
α-rigid rings have been studied in Krempa [19], Hirano [15], and Hong, Kim, and
Kwak [16].
Assume that α∶R → R is a ring endomorphism and δ∶R → R is an α-derivation

of R. Following [14], we say that R is α-compatible if for each a, b ∈ R, ab = 0 ⇔
aα(b) = 0. Moreover, R is said to be δ-compatible if for each a, b ∈ R, ab = 0 im-
plies that aδ(b) = 0. If R is both α-compatible and δ-compatible, we say that R
is (α, δ)-compatible. In this case, clearly the endomorphism α is injective. In [14,
Lemma 2.2], the authors proved that R is α-rigid if and only if R is α-compatible and
reduced.

Lemma 4.1 ([14, Lemmas 2.1 and 2.3]) Let R be an (α, δ)-compatible ring. _en we
have the following:
(i) If ab = 0, then aαn(b) = αn(a)b = 0 for any positive integer n.
(ii) If αk(a)b = 0 for some positive integer k, then ab = 0.
(iii) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b) for any positive integers m, n.
(iv) If f (x) = a0 + a1x + ⋅ ⋅ ⋅ + anxn ∈ R[x; α, δ] and r ∈ R, then f (x)r = 0 if and only

if a ir = 0 for each i.

Let R be an α-compatible ring and f (x) = ∑∞
i=0 a ix i ∈ R[[x; α]] and r ∈ R. _en

by using Lemma 4.1 one can show that f (x)r = 0 if and only if a ir = 0 for each i.
Note that polynomial rings over reversible rings need not be reversible in general

by [18, Example 2.1]. Hence, power series rings over reversible rings need not be re-
versible in general.

Proposition 4.2 Let R be a reversible and α-compatible ring. If R is Noetherian with
diam(Γ(R)) = 2 and α is surjective, then diam(Γ(R[[x; α]])) = 2.

Proof ByCorollary 3.5, either Z(R) = P1∪P2 is the union of precisely twomaximal
prime ideals of Z(R), or Z(R) = P is a prime ideal.
Assume that Z(R) = P is a prime ideal. Since R is reversible and right Noetherian,

P = ann(a) for some a ∈ R, by Corollary 3.4. By Lemma 4.1, α(P) ⊆ P, which
implies that P[[x; α]] is an ideal of R[[x; α]]. We show that Z(R[[x; α]]) = P[[x; α]].
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Since R[[x; α]] is a Noetherian ring,

Z(R[[x; α]]) = [ ⋃
λ∈Λ1

rR[[x ;α]]( fλ(x))] ∪ [ ⋃
λ∈Λ2

ℓR[[x ;α]](gλ(x))] ,

where for each λ ∈ Λ1, rR[[x ;α]]( fλ(x)) is a maximal right ideal contained in
Zr(R[[x; α]]) and for each λ ∈ Λ2, ℓR[[x ;α]](gλ(x)) is a maximal le� ideal contained
in Zℓ(R[[x; α]]). Let fλ(x) = ∑∞

i=0 a ix i and g(x) = ∑∞
j=0 b jx j ∈ rR[[x ;α]]( fλ(x)) such

that b0 /= 0. _en

a0b0 = 0,(4.1)
a0b1 + a1α(b0) = 0,(4.2)

a0b2 + a1α(b1) + a2α2(b0) = 0,(4.3)
⋮

Multiplying equation (4.2) by b0 on the le�-hand side and using Lemma 4.1 and the
reversibility of R, we have a1b2

0 = 0 = b2
0a1. Multiplying equation (4.3) by b2

0 on the
le�-hand side and using Lemma 4.1 and the reversibility of R, we have a2b3

0 = 0 =
b3
0a2. By a similar argument one can show that bn

0 an−1 = 0 = an−1bn
0 , for each n ≥ 2.

Since ann(b0) ⊆ ann(b2
0) ⊆ ann(b3

0) ⊆ ann(b4
0) ⊆ ⋅ ⋅ ⋅ and R is rightNoetherian, there

exists k > 0 such that ann(bk
0) = ann(bt

0), for each t ≥ k. Hence, bk
0a i = 0 = a ibk

0 , for
each i, which implies that bk

0 fλ(x) = 0. We can assume that k is the smallest positive
integer such that bk

0 fλ(x) = 0. If k > 1, then bk−1
0 fλ(x) /= 0. Since rR[[x ;α]]( fλ(x)) ⊆

rR[[x ;α]](bk−1
0 fλ(x)), we have

rR[[x]]( fλ(x)) = rR[[x ;α]](bk−1
0 fλ(x)),

since rR[[x ;α]]( fλ(x)) is a maximal right ideal contained in Zr(R[[x; α]]). Since R
is reversible and α-compatible and bk

0 fλ(x) = 0, we have bk−1
0 fλ(x)b0 = 0, and so

fλ(x)b0 = 0,which is a contradiction. _erefore, k = 1 and so fλ(x)b0 = 0 = b0 fλ(x).
By a similar argument one can show that fλ(x)b j = 0 for each j ≥ 0. Hence,
all coeõcients of g(x) and fλ(x) are zero-divisors, and so fλ(x), g(x) ∈ P[[x; α]],
which implies that Zr(R[[x; α]]) ⊆ P[[x; α]]. By a similar argument one can show
that Zℓ(R[[x; α]]) ⊆ P[[x; α]], which implies that Z(R[[x; α]]) ⊆ P[[x; α]]. Since
P = ann(a), we have P[[x; α]] ⊆ Z(R[[x; α]]), which implies that Z(R[[x; α]]) =
P[[x; α]] = rR[[x ;α]](a). _erefore, diam(Γ(R[[x; α]])) = 2.

Now assume that Z(R) = P1 ∪ P2 is the union of precisely two maximal primes
in Z(R). Since by Proposition 3.6, P1 and P2 are completely prime and P1 ∩ P2 = 0,
R is reduced. _us, R is α-rigid, by [14, Lemma 2.2]. _erefore R[[x; α]] is a reduced
ring by [16, Proposition 17]. Now by using [16, Proposition 17] one can show that
Z(R[[x; α]]) = P1[[x; α]]∪P2[[x; α]],which implies that diam(Γ(R[[x; α]])) = 2.

Corollary 4.3 Let R be a reversible and Noetherian ring. If diam(Γ(R)) = 2, then
diam(Γ(R[[x]])) = 2.

Lemma 4.4 Let R be a reversible and α-compatible ring and let f = ∑∞
i=0 a ix i ∈

R[[x; α]]. If for some natural number k, ak is regular in R while a i is nilpotent for
0 ≤ i ≤ k − 1, then f is regular in R[[x; α]].

https://doi.org/10.4153/CMB-2016-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-039-2


800 E. Hashemi and R. Amirjan

Proof Assume that f g = 0 for some non-zero g ∈ R[[x; α]]. We can assume that
g = ∑∞

j=0 b jx j and a i g /= 0, for each 0 ≤ i ≤ k − 1. Since a0 is nilpotent and a0g /= 0,
there exists t0 ≥ 1 such that at0

0 g /= 0 and at0+1
0 g = 0. Hence, gat0

0 /= 0 and gat0+1
0 = 0,

since R is reversible and α-compatible. Let f0 = ∑∞
i=1 a ix i and g0 = gat0

0 . Since
gat0+1

0 = 0 and R is reversible and α-compatible, we have f0g0 = 0. By continuing this
process we can ûnd non-negative integers t1 , . . . , tk−1 such that gat0

0 a
t1
1 ⋅ ⋅ ⋅ a

tk−1
k−1 /= 0

and a i(gat0
0 a

t1
1 ⋅ ⋅ ⋅ a

tk−1
k−1 ) = 0 = (gat0

0 a
t1
1 ⋅ ⋅ ⋅ a

tk−1
k−1 )a i , for each 0 ≤ i ≤ k − 1. Hence,

0 = f gat0
0 a

t1
1 ⋅ ⋅ ⋅ a

tk−1
k−1 = (

∞
∑
i=k
a ix i)(gat0

0 a
t1
1 ⋅ ⋅ ⋅ a

tk−1
k−1 ).

Since ak is a regular element of R, we have gat0
0 a

t1
1 ⋅ ⋅ ⋅ a

tk−1
k−1 = 0, which is a contradic-

tion. _erefore, f is regular in R[[x; α]].

_eorem 4.5 Let R be a reversible and α-compatible ring in which each zero-divisor
is nilpotent and let f (x) = ∑∞

i=0 a ix i ∈ R[[x; α]]. If some a i is regular in R, then f (x)
is regular in R[[x; α]].

Proof _is follows from Lemma 4.4.

_e following corollary is a generalization of [12,_eorem 3],when R is a reversible
ring.

Corollary 4.6 Let R be a reversible ring in which each zero-divisor is nilpotent and
let f (x) = ∑∞

i=0 a ix i ∈ R[[x]]. If some a i is regular in R, then f (x) is regular in R[[x]].

According to [10], a ring R is called semi-commutative if ab = 0 implies aRb = 0
for a, b ∈ R. Clearly, reversible rings are semi-commutative, but this implication is
irreversible by [18, Examples 1.5 and 1.10(3)]. If R is a semi-commutative ring, then by
[13, Lemma 2.5] the set of all nilpotent elements of R is an ideal.

Corollary 4.7 Let R be a reversible and α-compatible ring in which each zero-divisor
is nilpotent. If the set of nilpotent elements of R is nilpotent, then in R[[x; α]] each zero-
divisor is nilpotent.

Proof Let N be the set of nilpotent elements of R. Since N is nilpotent, N k = 0 for
some k ≥ 2. Let f (x) = ∑∞

i=0 a ix i ∈ R[[x; α]] be a zero-divisor. By _eorem 4.5,
a i ∈ N for each i ≥ 0. Clearly, for each n ≥ 0, the coeõcient of xn in ( f (x))k is a sum
of such elements a i1α i1(a i2) ⋅ ⋅ ⋅ α i1+i2+⋅⋅⋅+ik−1(a ik), where i1 + ⋅ ⋅ ⋅ + ik = n. Hence, by
Lemma 4.1, ( f (x))k = 0.

Proposition 4.8 Let R be a reversible and (α, δ)-compatible ring for which
diam(Γ(R)) = 2. If Z(R) = P1 ∪ P2 is the union of precisely two maximal primes
in Z(R), then Z(R[x; α, δ]) = P1[x; α, δ]∪P2[x; α, δ] and diam(Γ(R[x; α, δ])) = 2.

Proof Since by Proposition 3.6, P1 and P2 are completely prime and P1 ∩P2 = 0, R
is reduced. _us, R is α-rigid, by [14, Lemma 2.2]. _erefore, R[x; α, δ] is a reduced
ring by [16, Proposition 6]. Let 0 /= b ∈ P1 and 0 /= a ∈ P2. _en ann(a) = P1
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and ann(b) = P2 by Proposition 3.6. By Lemma 4.1, α(Pi) ⊆ Pi and δ(Pi) ⊆ Pi , for
i = 1, 2. _us,Pi[x; α, δ] is an ideal ofR[x; α, δ], for i = 1, 2. Let f (x) ∈ Z(R[x; α, δ]).
_en f (x)g(x) = 0, for some 0 /= g(x) ∈ R[x; α, δ]. Hence, f (x)c = 0, where c is the
leading coeõcient of g(x) by [16, Proposition 6]. _en f (x) ∈ P1[x; α, δ] or f (x) ∈
P2[x; α, δ],which implies that Z(R[x; α, δ]) ⊆ P1[x; α, δ]∪P2[x; α, δ]. SinceP1P2 =
0 = P2P1,we haveP1[x; α, δ]∪P2[x; α, δ] ⊆ Z(R[x; α, δ]), by Lemma 4.1. _erefore,
Z(R[x; α, δ]) = P1[x; α, δ]∪P2[x; α, δ],which implies that diam(Γ(R[x; α, δ])) = 2.

It is o�en taught in an elementary algebra course that ifR is a commutative ring and
f (x) is a zero-divisor in R[x], then there is a non-zero element r ∈ R with f (x)r = 0.
_is was ûrst proved by McCoy [24, _eorem 2]. Based on this result, Nielsen [25]
called a ring R right McCoy when the equation f (x)g(x) = 0 implies f (x)c = 0
for some non-zero c ∈ R, where f (x), g(x) are non-zero polynomials in R[x]. Le�
McCoy rings are deûned similarly. If a ring is both le� and right McCoy, then it is
called a McCoy ring. Afkhami et al. [1, _eorem 2.4] proved that if R is a reversible
and (α, δ)-compatible ring and f (x)g(x) = 0 for some f (x), g(x) ∈ R[x; α, δ], then
there exist non-zero a, b ∈ R such that f (x)a = 0 = bg(x).

Proposition 4.9 Let R be a reversible and (α, δ)-compatible ring. If Z(R) = P

is a prime ideal and R is a right or le� Noetherian ring with diam(Γ(R)) = 2, then
Z(R[x; α, δ]) = P[x; α, δ] and diam(Γ(R[x; α, δ])) = 2.

Proof Since R is right Noetherian and Z(R) = P, P = ann(a) for some a ∈ R by
Corollary 3.4. By Lemma 4.1, α(P) ⊆ P and δ(P) ⊆ P, implying that P[x; α, δ] is
an ideal of R[x; α, δ] and P[x; α, δ] ⊆ Z(R[x; α, δ]). Let f (x) be a zero-divisor of
R[x; α, δ]. Since R is reversible and (α, δ)-compatible, there exists 0 /= b ∈ R such
that f (x)b = 0 = b f (x), implying that f (x) ∈ P[x; α, δ]. _erefore, Z(R[x; α, δ]) =
P[x; α, δ].

Now, let f (x), g(x) be zero-divisors of R[x; α, δ]. If f (x)g(x) = 0 or g(x) f (x) =
0, we are done. If f (x)g(x) /= 0 /= g(x) f (x), then neither f (x) nor g(x) is a, and so
a is amutual annihilator of f (x) and g(x). _erefore, diam(Γ(R[x; α, δ])) = 2.

Corollary 4.10 Let R be a reversible and (α, δ)-compatible ring. If R is a right or le�
Noetherian ring with diam(Γ(R)) = 2, then diam(Γ(R[x; α, δ])) = 2.

Proof _is follows from Corollary 3.5 and Propositions 4.8 and 4.9.

_e following example shows that there is a commutative (α, δ)-compatible ring
R such that R[x; α, δ] is not reversible. Hence, Corollary 4.10 does not follow from
[1,_eorems 3.2 and 3.4].

Example 4.11 ([7, Example 11]) Let R = Z2[t]/(t2) with the derivation δ such
δ(t) = 1, where t = t + (t2) in R and Z2[t] is the polynomial ring over the ûeld Z2
of two elements. Let α = IR . Clearly, R is a commutative (α, δ)-compatible ring.
Armendariz et al. [7] showed that R[x; δ] ≅ M2(Z2)[y], where M2(Z2)[y] is the
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polynomial ring over 2×2matrix ring overZ2. SinceM2(Z2) is not reversible, neither
is R[x; δ].

Now, by using Lemma 4.4 and Remark 2.2 and a method similar to that used in
the proof of [8, Proposition 3.12], one can prove the following proposition.

Proposition 4.12 Let R be a reversible and (α, δ)-compatible ring. If Γ(R) is not
complete and (Z(R))n = 0, for some integer n ≥ 2, then

diam(Γ(R[[x; α]])) = diam(Γ(R[x; α, δ])) = diam(Γ(R)) = 2.

_eorem 4.13 Let R be a reversible and (α, δ)-compatible ring that is not isomorphic
to Z2 ×Z2. _en the following are equivalent:
(i) Γ(R[[x; α]]) is complete;
(ii) Γ(R[x; α, δ]) is complete;
(iii) Γ(R) is complete.

Proof Clearly, (i) ⇒ (iii) and (ii) ⇒ (iii). For (iii) ⇒ (i), since R /≅ Z2 × Z2, we
have xy = 0 for each x , y ∈ Z∗(R), by Remark 2.2. _erefore, Γ(R) complete implies
(Z(R))2 = 0. Let f , g ∈ Z∗(R[[x; α]]). By Lemma 4.4, all coeõcients of f and g are
zero-divisors in R. Since Γ(R) is complete and R is α-compatible, we have f g = 0,
and hence Γ(R[[x; α]]) is complete.

(iii)⇒ (ii). Since R /≅ Z2×Z2,we have ab = 0 for each a, b ∈ Z∗(R) byRemark 2.2.
_erefore, Γ(R) complete implies (Z(R))2 = 0. Let f , g ∈ Z∗(R[x; α, δ]). Since R
is reversible and (α, δ)-compatible, there exist 0 /= a, b ∈ R such that f (x)b = 0 and
g(x)a = 0, implying that all coeõcients of f and g are zero-divisors in R. Since Γ(R)
is complete and R is (α, δ)-compatible, we have f g = 0, and hence Γ(R[x; α, δ]) is
complete.

_eorem 4.14 Let R /≅ Z2 × Z2 be a reversible and (α, δ)-compatible ring. If α is
surjective and R is a Noetherian ring with non-trivial zero-divisors, then the following
are equivalent:
(i) diam(Γ(R)) = 2;
(ii) diam(Γ(R[x; α, δ])) = 2;
(iii) diam(Γ(R[[x; α]])) = 2;
(iv) Z(R) is either the union of two primes with intersection {0}, or Z(R) is prime

and (Z(R))2 /= 0.

Proof (i)⇒(ii) was proved in Corollary 4.10.
(i)⇒(iii) was proved in Proposition 4.2.
(i)⇒(iv) follows from Corollaries 3.4 and 3.5 and Proposition 3.6.
We will show that (ii)⇒(i), (iii)⇒(i), and (iv)⇒(i). For (ii)⇒(i) and (iii)⇒(i),

assume that diam(Γ(R)) /= 2. By _eorem 4.13, if diam(Γ(R)) = 1, then
diam(Γ(R[x; α, δ])) = 1, since R /≅ Z2 ×Z2.

(iv)⇒(i). One can prove this using Proposition 3.6 and a method similar to that
used in the proof of [8,_eorem 3.11 ((5)→ (1))].
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Lemma 4.15 Let R be a reversible ring and n > 0. If f , g are non-zero elements of
R[x1 , ⋅ ⋅ ⋅ , xn] and f g = 0, then there exist non-zero a, b ∈ R such that f a = 0 = bg.

Proof _at n = 1 follows from [25, _eorem 2]. It is enough we prove it for n = 2.
Suppose that n = 2 and f (x2), g(x2) ∈ Z(R[x1][x2]) such that f (x2)g(x2) = 0. Write
f (x2) = f0 + f1x2 + ⋅ ⋅ ⋅ + fmxm

2 , g(x2) = g0 + g1x2 + ⋅ ⋅ ⋅ + gnxn
2 , where f i , g j ∈ R[x1]

for each i , j. Let k = deg( f0) + ⋅ ⋅ ⋅ + deg( fm) + deg(g0) + ⋅ ⋅ ⋅ + deg(gn), where the
degree is as polynomials in x1 and the degree of the zero polynomial is taken to be
0. _en f (xk

1 ) = f0 + f1xk
1 + ⋅ ⋅ ⋅ + fmxkm

1 , g(xk
1 ) = g0 + g1xk

1 + ⋅ ⋅ ⋅ + gnxnk ∈ R[x1],
and the set of coeõcients of the f i ’s (resp., g j ’s) equals the set of coeõcients of f (xk

1 )
(resp., g(xk

1 )). Since f (x2)g(x2) = 0 and x1 commutes with elements of R, we have
f (xk

1 )g(xk
1 ) = 0. Hence, there exist non-zero elements a, b ∈ R such that f (xk

1 )a =
0 = bg(xk

1 ), implying that f (x2)a = 0 = bg(x2).

Note that since polynomial rings over reversible rings need not be reversible in
general by [18, Example 2.1], Lemma 4.15 does not follow from [25, _eorem 2] for
n ≥ 2.

Corollary 4.16 Let R /≅ Z2 ×Z2 be a reversible and Noetherian ring with non-trivial
zero-divisors. _e following conditions are equivalent:
(i) diam(Γ(R)) = 2;
(ii) diam(Γ(R[x])) = 2;
(iii) diam(Γ(R[x1 , . . . , xn])) = 2 for all n > 0;
(iv) diam(Γ(R[[x]])) = 2;
(v) Z(R) is either the union of two primes with intersection {0}, or Z(R) is prime

and (Z(R))2 /= 0.

Proof By _eorem 4.14, (i), (ii), (iv), and (v) are equivalent.
(iii)⇒(ii) is trivial.
(ii)⇒(iii). It is enough we prove for n = 2. Suppose that n = 2 and f (x2), g(x2) ∈

Z(R[x1][x2]). If f (x2)g(x2) = 0 or g(x2) f (x2) = 0, then d( f , g) = 1. So suppose
that f (x2)g(x2) /= 0 /= g(x2) f (x2). Write f (x2) = f0 + f1x2 + ⋅ ⋅ ⋅ + fmxm

2 , g(x2) =
g0 + g1x2 + ⋅ ⋅ ⋅ + gnxn

2 , where f i , g j ∈ R[x1] for each i , j. Let k = deg( f0) + ⋅ ⋅ ⋅ +
deg( fm)+deg(g0)+ ⋅ ⋅ ⋅ +deg(gn). _en by the proof of Lemma 4.15, f (xk

1 ), g(xk
1 ) ∈

Z(R[x1]) and f (xk
1 )g(xk

1 ) /= 0 /= g(xk
1 ) f (xk

1 ). Since diam(Γ(R[x1])) = 2, there
exists h ∈ R[x1], which annihilates f (xk

1 ) and g(xk
1 ). Hence, h annihilates f (x2) and

g(x2), implying that d( f , g) = 2.

Proposition 4.17 Let R be a reversible and (α, δ)-compatible ring. If f , g ∈
Z∗(R[x; α, δ]) are distinct non-constant polynomials with f g = 0, then there exist
a, b ∈ Z∗(R) such that a − f − g − b − a is a cycle in Γ(R[x; α, δ]), or b − f − g − b is
a cycle in Γ(R[x; α, δ]).

Proof If f , g ∈ Z∗(R[x; α, δ]), then there exist a, b ∈ Z∗(R) such that a f = f a =
0 = bg = gb. Now, using amethod similar to that used in the proof of [8, Proposition
4.1] completes the proof.
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Corollary 4.18 Let R be a reversible and (α, δ)-compatible ring and let f ∈
Z∗(R[x; α, δ]) a non-constant polynomial. _en there exists a cycle of length 3 or 4
in Γ(R[x; α, δ]) with f as one vertex and some a ∈ Z∗(R) as another.

_e following theorem is a generalization of [8, _eorem 4.3], when R is a re-
versible ring.

_eorem 4.19 Let R be a reversible and α-compatible ring. _en

g(Γ(R)) ≥ g(Γ(R[x; α])) ≥ g(Γ(R[[x; α]])).

In addition, if R is a reduced ring and Γ(R) contains a cycle, then

g(Γ(R)) = g(Γ(R[x; α])) = g(Γ(R[[x; α]])).

Proof Using Corollary 4.18 and a method similar to that used in the proof of [8,
_eorem 4.3] completes the proof.

Corollary 4.20 Let R be an α-rigid ring and let g(Γ(R[x; α, δ])) = 3. _en
g(Γ(R)) = 3.
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