Zero-divisor Graphs of Ore Extensions Over Reversible Rings

E. Hashemi and R. Amirjan

Abstract. Let R be an associative ring with identity. First we prove some results about zero-divisor graphs of reversible rings. Then we study the zero-divisors of the skew power series ring $R[[x ; \alpha]]$, whenever R is reversible and α-compatible. Moreover, we compare the diameter and girth of the zero-divisor graphs of $\Gamma(R), \Gamma(R[x ; \alpha, \delta])$, and $\Gamma(R[[x ; \alpha]])$, when R is reversible and (α, δ)-compatible.

1 Introduction

The zero-divisor graph of a commutative ring R with identity, denoted by $\Gamma(R)$, is the graph associated with R such that its vertex set consists of all its non-zero zero-divisors and that two distinct vertices are joined by an edge if and only if the product of these two vertices is zero. This concept of zero-divisor graphs was initiated by Beck [9] when he studied the coloring problem of a commutative ring. Later, Anderson and Livingston [4] introduced and studied the zero-divisor graph whose vertices are the nonzero zero-divisors of a ring. Redmond [26] studied the zero-divisor graph of a noncommutative ring. Several papers are devoted to studying the relationship between the zero-divisor graph and algebraic properties of rings; see [1,2,4-6, 9, 23, 26, 28].

Let R be an arbitrary associative ring with identity. The zero-divisors of R, denoted by $Z(R)$, is the set of elements $a \in R$ such that there exists a non-zero element $b \in R$ with $a b=0$ or $b a=0$. The zero-divisor graph of R, denoted by $\Gamma(R)$, is the graph with vertices $Z^{*}(R)=Z(R)-\{0\}$, and for distinct $x, y \in Z^{*}(R)$, the vertices x and y are adjacent if and only if $x y=0$ or $y x=0$.

Axtell, Coykendall, and Stickles [8] examined the preservation of diameter and girth of zero-divisor graphs of commutative rings under extensions to polynomial and power series rings. Lucase [23] continued the study of the diameter of zero-divisor graphs of polynomial and power series rings over commutative rings. Moreover, Anderson and Mulay [5] studied the girth and diameter of commutative rings and investigated the girth and diameter of zero-divisor graphs of polynomial and power series rings over commutative rings. Afkhami, Khashayarmanesh, and Khorsandi [1] compared the girth and diameter of zero-divisor graphs of $R[x ; \alpha, \delta]$ and R, when R is a commutative (α, δ)-compatible ring and $R[x ; \alpha, \delta]$ is a reversible ring.

[^0]According to Cohn [11] a ring R is called reversible if $a b=0$ implies that $b a=0$ for $a, b \in R$. Anderson and Camillo [3], observing the rings whose zero products commute, used the term $Z C_{2}$ for what is called reversible, while Krempa and Niewieczerzal [20] took the term C_{0} for it. Clearly, reduced rings (i.e., rings with no non-zero nilpotent elements) and commutative rings are reversible. Kim and Lee [18] studied extensions of reversible rings and showed that polynomial rings over reversible rings need not be reversible. In view of [26, Theorem 2.3] over a reversible ring R, the graph $\Gamma(R)$ is connected with diam $(\Gamma(R)) \leq 3$, where $\operatorname{diam}(\Gamma(R))$ is the diameter of $\Gamma(R)$.

Another extension of a ring R is the Ore extension. Assume that $\alpha: R \rightarrow R$ is a ring endomorphism and $\delta: R \rightarrow R$ is an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$, for all $a, b \in R$. The Ore extension $R[x ; \alpha, \delta]$ of R is the ring obtained by giving the polynomial ring (with indeterminate x) over R with the multiplication $x a:=\alpha(a) x+\delta(a)$ for all $a \in R$. In the special case where $\alpha=I_{R}$ or $\delta=0$, we denote $R[x ; \alpha, \delta]$ by $R[x ; \delta]$ and $R[x ; \alpha]$, respectively. Also we denote the skew power series ring by $R[[x ; \alpha]$, where $\alpha: R \rightarrow R$ is an endomorphism. The skew power series ring $R[[x ; \alpha]]$ is the ring consisting of all power series of the form $\sum_{i=0}^{\infty} a_{i} x^{i}\left(a_{i} \in R\right)$, which are multiplied using the distributive law and the Ore commutation rule $x a=\alpha(a) x$, for all $a \in R$.

For two distinct vertices a and b in the graph Γ, the distance between a and b, denoted by $d(a, b)$, is the length of shortest path connecting a and b if such a path exists; otherwise, we put $d(a, b):=\infty$. Recall that the diameter of a graph Γ is defined as follows:

$$
\operatorname{diam}(\Gamma):=\sup \{d(a, b) \mid a \text { and } b \text { are distinct vertices of } \Gamma\} .
$$

The girth of a graph Γ, denoted by $g(\Gamma)$, is the length of the shortest cycle in Γ, provided Γ contains a cycle; otherwise, $g(\Gamma)=\infty$. We will use the notation $g(\Gamma(R))$ to denote the girth of the graph of $Z^{*}(R)$. A graph is said to be connected if there exists a path between any two distinct vertices, and a graph is complete if it is connected with diameter one.

For an element $a \in R$, let $\ell_{R}(a)=\{b \in R \mid b a=0\}$ and $r_{R}(a)=\{b \in R \mid a b=0\}$. Note that if R is a reversible ring and $a \in R$, then $\ell_{R}(a)=r_{R}(a)$ is an ideal of R, and we denote it by ann (a). We write $Z_{\ell}(R)$ and $Z_{r}(R)$ for the set of all left zero-divisors of R and the set of all right zero-divisors of R, respectively. Clearly, $Z(R)=Z_{\ell}(R) \cup Z_{r}(R)$.

2 Properties of $\Gamma(R)$

A ring R is called abelian if each idempotent element of R is central. Clearly, commutative rings and reduced rings are reversible. Also, reversible rings are abelian by [22, Proposition 1.3] and [27, Lemma 2.7]. But these implications are irreversible as follows: (i) There is a non-commutative non-reduced reversible ring by [3, Example II.5]. (ii) There is a non-reversible abelian ring by [18, Examples 1.5 and 1.10(3)].

Since reversible rings are abelian, one can prove the following result using a method similar to that used in the proof [4, Theorem 2.5].

Remark 2.1 Let R be a reversible ring. Then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertex if and only if either $R \cong \mathbb{Z}_{2} \times D$ where D is a domain or $Z(R)$ is an annihilator ideal.

By using Remark 2.1 and a method similar to that used in the proof of [4, Theorem 2.8], one can prove the following result.

Remark 2.2 Let R be a reversible ring. Then $\Gamma(R)$ is complete if and only if either $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $x y=0$ for all $x, y \in Z(R)$.

Recall that an ideal \mathcal{P} of R is completely prime if $a b \in \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$ for $a, b \in R$.

Proposition 2.3 Let R be a reversible ring and $\mathfrak{A}=\{\operatorname{ann}(a) \mid 0 \neq a \in R\}$. If \mathcal{P} is a maximal element of \mathfrak{A}, then \mathcal{P} is a completely prime ideal of R.

Proof Let $x y \in \mathcal{P}=\operatorname{ann}(a)$ and $x \notin \mathcal{P}$. Then $x a \neq 0$ and hence $\operatorname{ann}(a x) \in \mathfrak{A}$. Since $\mathcal{P} \subseteq \operatorname{ann}(x a)$ and \mathcal{P} is a maximal element of \mathfrak{A}, so $\operatorname{ann}(a)=\mathcal{P}=\operatorname{ann}(a x)$. Since $a x y=0$, we have $a y=0$, which implies that $y \in \mathcal{P}$. Therefore, \mathcal{P} is a completely prime ideal of R.

Proposition 2.4 Let R be a reversible ring. Then $\Gamma(R)$ is connected and we have diam $(\Gamma(R)) \leq 3$. Moreover, if $\Gamma(R)$ contains a cycle, then $g(\Gamma(R)) \leq 4$.

Proof Using a similar method as in the proof of [4, Theorem 2.3], one can show that $\operatorname{diam}(\Gamma(R)) \leq 3$.

Using a similar method as in the proof of [4, Theorem 2.2] one can prove the following theorem.

Theorem 2.5 Let R be a reversible ring. Then $\Gamma(R)$ is finite if and only if either R is finite or a domain.

3 Some Properties of Zero-divisors of a Reversible Ring

Lemma 3.1 Let R be a reversible ring. Then $Z(R)$ is a union of prime ideals.
Proof Let $S=R-Z(R)$. Then S is an m-system. Let $0 \neq a \in Z(R)$. Then $a b=0$ for some $0 \neq b \in Z(R)$. Let $I=\operatorname{ann}(b)$. Then $a \in I$ and I is an ideal of R, since R is reversible. Let $\mathfrak{A}=\{J \unlhd R \mid I \subseteq J, J \cap S=\phi\}$. By Zorn's lemma, \mathfrak{A} has a maximal element, say \mathcal{P}. Then \mathcal{P} is a prime ideal of R by [21, Proposition 10.4]. Hence, $Z(R)$ is a union of prime ideals.

Hence, the collection of zero-divisors of a reversible ring R is the set-theoretic union of prime ideals. We write $Z(R)=\bigcup_{i \in \Lambda} \mathcal{P}_{i}$ with each \mathcal{P}_{i} prime. We will also assume that these primes are maximal with respect to being contained in $Z(R)$.

For a reversible ring $R, r_{R}(a)$ is an ideal of R for each $a \in R$. Hence, by a similar method to the one used in the proof of [17, Theorem 8], one can prove the following result.

Remark 3.2 Let R be a reversible and right or left Noetherian ring. Then $Z(R)=$ $\bigcup_{i \in \Lambda} \mathcal{P}_{i}$, where Λ is a finite set and each \mathcal{P}_{i} is the annihilator of a non-zero element of $Z(R)$.

Kaplansky [17, Theorem 81] proved that if R is a commutative ring and J_{1}, \ldots, J_{n} a finite number of ideals in R and S a subring of R that is contained in the set-theoretic union $J_{1} \cup \cdots \cup J_{n}$ and at least $n-2$ of the J 's are prime, then S is contained in some J_{k}. Here we have the following theorem.

Theorem 3.3 Let R be a reversible ring and $Z(R)=\bigcup_{i \in \Lambda} \mathcal{P}_{i}$. If Λ is a finite set and I an ideal of R that is contained in $Z(R)$, then $I \subseteq \mathcal{P}_{k}$, for some k.

Proof Suppose that $Z(R)=\mathcal{P}_{1} \cup \cdots \cup \mathcal{P}_{n}$ and I is an ideal of R contained in $Z(R)$. We use induction on n to show that $I \subseteq \mathcal{P}_{i}$, for some $1 \leq i \leq n$. If $n=2$, then clearly $I \subseteq \mathcal{P}_{1}$ or $I \subseteq \mathcal{P}_{2}$. Let $n \geq 3$ and for every $k, I \nsubseteq \mathcal{P}_{k}$. Since \mathcal{P}_{k} is a maximal prime ideal contained in $Z(R)$, hence $\mathcal{P}_{k}+I$ contains a regular element s_{k} for all k. Thus, $s_{k}=x_{k}+a_{k}$ for some $x_{k} \in \mathcal{P}_{k}$ and $a_{k} \in I$. Then

$$
s_{1} s_{2} \cdots s_{n}=\left(x_{1}+a_{1}\right)\left(x_{2}+a_{2}\right) \cdots\left(x_{n}+a_{n}\right)=x_{1} x_{2} \cdots x_{n}+\alpha,
$$

for some $\alpha \in I$. Since $I \subseteq Z(R)=\bigcup_{i=1}^{n} \mathcal{P}_{i}$, there exists $1 \leq j \leq n$ such that $\alpha \in \mathcal{P}_{j}$. But since $x_{1} x_{2} \cdots x_{n} \in \bigcap_{i=1}^{n} \mathcal{P}_{i}$, this means that $s_{1} s_{2} \cdots s_{n}=x_{1} x_{2} \cdots x_{n}+\alpha \in \mathcal{P}_{j}$, which is a contradiction. Therefore, $I \subseteq \mathcal{P}_{k}$, for some $1 \leq k \leq n$.

Note that Remark 3.2 shows that any left or right Noetherian ring satisfies the hypothesis of Theorem 3.3.

Corollary 3.4 Let R be a reversible and left or right Noetherian ring. Let \mathcal{P} be a prime ideal of R maximal with respect to being contained in $Z(R)$. Then \mathcal{P} is completely prime and $\mathcal{P}=\operatorname{ann}(a)$, for some $a \in R$.

Proof This follows from Remark 3.2 and Theorem 3.3.
By a slight modification of the proof of [8, Corollary 3.5], in conjunction with Theorem 3.3, we have the following result.

Corollary 3.5 Let R be a reversible ring with $\operatorname{diam}(\Gamma(R)) \leq 2$ and $Z(R)=\bigcup_{i \in \Lambda} \mathcal{P}_{i}$. If Λ is a finite set, then $|\Lambda| \leq 2$.

Proposition 3.6 Let R be a reversible ring with $\operatorname{diam}(\Gamma(R))=2$. Let $Z(R)=\mathcal{P}_{1} \cup \mathcal{P}_{2}$ such that \mathcal{P}_{1} and \mathcal{P}_{2} are distinct maximal primes in $Z(R)$. Then
(i) $\mathcal{P}_{1} \cap \mathcal{P}_{2}=\{0\}$ (in particular, for all $x \in \mathcal{P}_{1}$ and $y \in \mathcal{P}_{2}, x y=0$);
(ii) \mathcal{P}_{1} and \mathcal{P}_{2} are completely prime ideals of R.

Proof (i) This can be proved using a method similar to that used to prove [8, Proposition 3.6].
(ii) Since $\mathcal{P}_{1} \cap \mathcal{P}_{2}=0$, hence $\mathcal{P}_{1}=\operatorname{ann}(x)$ and $\mathcal{P}_{2}=\operatorname{ann}(y)$, for each $0 \neq x \in \mathcal{P}_{2}$ and $0 \neq y \in \mathcal{P}_{1}$. Let $a b \in \mathcal{P}_{1}$ and $a \notin \mathcal{P}_{1}$. Then $x a \neq 0$ for some $0 \neq x \in \mathcal{P}_{2}$. Hence $b \in \operatorname{ann}(x a)=\operatorname{ann}(x)=\mathcal{P}_{1}$.

4 Diameter and Girth of $\Gamma(R), \Gamma(R \llbracket x ; \alpha])$ and $\Gamma(R[x ; \alpha, \delta])$

According to Krempa [19], an endomorphism α of a ring R is said to be rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. A ring R is said to be α-rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism and α-rigid rings are reduced by Hong, Kim and Kwak [16]. Properties of α-rigid rings have been studied in Krempa [19], Hirano [15], and Hong, Kim, and Kwak [16].

Assume that $\alpha: R \rightarrow R$ is a ring endomorphism and $\delta: R \rightarrow R$ is an α-derivation of R. Following [14], we say that R is α-compatible if for each $a, b \in R, a b=0 \Leftrightarrow$ $a \alpha(b)=0$. Moreover, R is said to be δ-compatible if for each $a, b \in R, a b=0 \mathrm{im}$ plies that $a \delta(b)=0$. If R is both α-compatible and δ-compatible, we say that R is (α, δ)-compatible. In this case, clearly the endomorphism α is injective. In [14, Lemma 2.2], the authors proved that R is α-rigid if and only if R is α-compatible and reduced.

Lemma 4.1 ([14, Lemmas 2.1 and 2.3]) Let R be an (α, δ)-compatible ring. Then we have the following:
(i) If $a b=0$, then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$ for any positive integer n.
(ii) If $\alpha^{k}(a) b=0$ for some positive integer k, then $a b=0$.
(iii) If $a b=0$, then $\alpha^{n}(a) \delta^{m}(b)=0=\delta^{m}(a) \alpha^{n}(b)$ for any positive integers m, n.
(iv) If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in R[x ; \alpha, \delta]$ and $r \in R$, then $f(x) r=0$ if and only if $a_{i} r=0$ for each i.

Let R be an α-compatible ring and $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[[x ; \alpha]$ and $r \in R$. Then by using Lemma 4.1 one can show that $f(x) r=0$ if and only if $a_{i} r=0$ for each i.

Note that polynomial rings over reversible rings need not be reversible in general by [18, Example 2.1]. Hence, power series rings over reversible rings need not be reversible in general.

Proposition 4.2 Let R be a reversible and α-compatible ring. If R is Noetherian with $\operatorname{diam}(\Gamma(R))=2$ and α is surjective, then $\operatorname{diam}(\Gamma(R[[x ; \alpha]]))=2$.

Proof By Corollary 3.5, either $Z(R)=\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is the union of precisely two maximal prime ideals of $Z(R)$, or $Z(R)=\mathcal{P}$ is a prime ideal.

Assume that $Z(R)=\mathcal{P}$ is a prime ideal. Since R is reversible and right Noetherian, $\mathcal{P}=\operatorname{ann}(a)$ for some $a \in R$, by Corollary 3.4. By Lemma 4.1, $\alpha(\mathcal{P}) \subseteq \mathcal{P}$, which implies that $\mathcal{P}[[x ; \alpha]]$ is an ideal of $R[[x ; \alpha]]$. We show that $Z(R[[x ; \alpha]])=\mathcal{P}[[x ; \alpha]]$.

Since $R[[x ; \alpha]$ is a Noetherian ring,

$$
Z\left(R[[x ; \alpha])=\left[\bigcup_{\lambda \in \Lambda_{1}} r_{R \llbracket x ; \alpha \rrbracket}\left(f_{\lambda}(x)\right)\right] \cup\left[\bigcup_{\lambda \in \Lambda_{2}} \ell_{R[[x ; \alpha \rrbracket}\left(g_{\lambda}(x)\right)\right],\right.
$$

where for each $\lambda \in \Lambda_{1}, r_{R[x ; \alpha]]}\left(f_{\lambda}(x)\right)$ is a maximal right ideal contained in $Z_{r}(R[[x ; \alpha]])$ and for each $\lambda \in \Lambda_{2}, \ell_{R[[x ; \alpha]]}\left(g_{\lambda}(x)\right)$ is a maximal left ideal contained in $Z_{\ell}(R[[x ; \alpha]])$. Let $f_{\lambda}(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{\infty} b_{j} x^{j} \in r_{R \llbracket x ; \alpha \rrbracket}\left(f_{\lambda}(x)\right)$ such that $b_{0} \neq 0$. Then

$$
\begin{align*}
a_{0} b_{0} & =0 \tag{4.1}\\
a_{0} b_{1}+a_{1} \alpha\left(b_{0}\right) & =0 \tag{4.2}\\
a_{0} b_{2}+a_{1} \alpha\left(b_{1}\right)+a_{2} \alpha^{2}\left(b_{0}\right) & =0 \tag{4.3}
\end{align*}
$$

Multiplying equation (4.2) by b_{0} on the left-hand side and using Lemma 4.1 and the reversibility of R, we have $a_{1} b_{0}^{2}=0=b_{0}^{2} a_{1}$. Multiplying equation (4.3) by b_{0}^{2} on the left-hand side and using Lemma 4.1 and the reversibility of R, we have $a_{2} b_{0}^{3}=0=$ $b_{0}^{3} a_{2}$. By a similar argument one can show that $b_{0}^{n} a_{n-1}=0=a_{n-1} b_{0}^{n}$, for each $n \geq 2$. Since $\operatorname{ann}\left(b_{0}\right) \subseteq \operatorname{ann}\left(b_{0}^{2}\right) \subseteq \operatorname{ann}\left(b_{0}^{3}\right) \subseteq \operatorname{ann}\left(b_{0}^{4}\right) \subseteq \cdots$ and R is right Noetherian, there exists $k>0$ such that $\operatorname{ann}\left(b_{0}^{k}\right)=\operatorname{ann}\left(b_{0}^{t}\right)$, for each $t \geq k$. Hence, $b_{0}^{k} a_{i}=0=a_{i} b_{0}^{k}$, for each i, which implies that $b_{0}^{k} f_{\lambda}(x)=0$. We can assume that k is the smallest positive integer such that $b_{0}^{k} f_{\lambda}(x)=0$. If $k>1$, then $b_{0}^{k-1} f_{\lambda}(x) \neq 0$. Since $r_{R[[x ; \alpha]]}\left(f_{\lambda}(x)\right) \subseteq$ $r_{R[x ; \alpha]]}\left(b_{0}^{k-1} f_{\lambda}(x)\right)$, we have

$$
r_{R[[x]]}\left(f_{\lambda}(x)\right)=r_{R[\lfloor x ; \alpha]]}\left(b_{0}^{k-1} f_{\lambda}(x)\right),
$$

since $r_{R[[x ; \alpha]}\left(f_{\lambda}(x)\right)$ is a maximal right ideal contained in $Z_{r}(R[[x ; \alpha]])$. Since R is reversible and α-compatible and $b_{0}^{k} f_{\lambda}(x)=0$, we have $b_{0}^{k-1} f_{\lambda}(x) b_{0}=0$, and so $f_{\lambda}(x) b_{0}=0$, which is a contradiction. Therefore, $k=1$ and so $f_{\lambda}(x) b_{0}=0=b_{0} f_{\lambda}(x)$. By a similar argument one can show that $f_{\lambda}(x) b_{j}=0$ for each $j \geq 0$. Hence, all coefficients of $g(x)$ and $f_{\lambda}(x)$ are zero-divisors, and so $f_{\lambda}(x), g(x) \in \mathcal{P}[[x ; \alpha]]$, which implies that $Z_{r}(R[[x ; \alpha]]) \subseteq \mathcal{P}[[x ; \alpha]]$. By a similar argument one can show that $Z_{\ell}(R[[x ; \alpha]]) \subseteq \mathcal{P}[[x ; \alpha]$, which implies that $Z(R[[x ; \alpha]) \subseteq \mathcal{P}[[x ; \alpha]]$. Since $\mathcal{P}=\operatorname{ann}(a)$, we have $\mathcal{P}[[x ; \alpha] \subseteq Z(R[[x ; \alpha]])$, which implies that $Z(R[[x ; \alpha]])=$ $\mathcal{P}[[x ; \alpha]]=r_{R[[x ; \alpha]]}(a)$. Therefore, $\operatorname{diam}(\Gamma(R[[x ; \alpha]))=2$.

Now assume that $Z(R)=\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is the union of precisely two maximal primes in $Z(R)$. Since by Proposition 3.6, \mathcal{P}_{1} and \mathcal{P}_{2} are completely prime and $\mathcal{P}_{1} \cap \mathcal{P}_{2}=0$, R is reduced. Thus, R is α-rigid, by [14, Lemma 2.2]. Therefore $R[[x ; \alpha]]$ is a reduced ring by [16, Proposition 17]. Now by using [16, Proposition 17] one can show that $Z(R[[x ; \alpha]])=\mathcal{P}_{1}[[x ; \alpha]] \cup \mathcal{P}_{2}[[x ; \alpha]]$, which implies that $\operatorname{diam}(\Gamma(R[[x ; \alpha]))=2$.

Corollary 4.3 Let R be a reversible and Noetherian ring. If $\operatorname{diam}(\Gamma(R))=2$, then $\operatorname{diam}(\Gamma(R[[x]]))=2$.

Lemma 4.4 Let R be a reversible and α-compatible ring and let $f=\sum_{i=0}^{\infty} a_{i} x^{i} \in$ $R[[x ; \alpha]]$. If for some natural number k, a_{k} is regular in R while a_{i} is nilpotent for $0 \leq i \leq k-1$, then f is regular in $R[[x ; \alpha]$.

Proof Assume that $f g=0$ for some non-zero $g \in R[[x ; \alpha]]$. We can assume that $g=\sum_{j=0}^{\infty} b_{j} x^{j}$ and $a_{i} g \neq 0$, for each $0 \leq i \leq k-1$. Since a_{0} is nilpotent and $a_{0} g \neq 0$, there exists $t_{0} \geq 1$ such that $a_{0}^{t_{0}} g \neq 0$ and $a_{0}^{t_{0}+1} g=0$. Hence, $g a_{0}^{t_{0}} \neq 0$ and $g a_{0}^{t_{0}+1}=0$, since R is reversible and α-compatible. Let $f_{0}=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g_{0}=g a_{0}^{t_{0}}$. Since $g a_{0}^{t_{0}+1}=0$ and R is reversible and α-compatible, we have $f_{0} g_{0}=0$. By continuing this process we can find non-negative integers t_{1}, \ldots, t_{k-1} such that $g a_{0}^{t_{0}} a_{1}^{t_{1}} \cdots a_{k-1}^{t_{k-1}} \neq 0$ and $a_{i}\left(g a_{0}^{t_{0}} a_{1}^{t_{1}} \cdots a_{k-1}^{t_{k-1}}\right)=0=\left(g a_{0}^{t_{0}} a_{1}^{t_{1}} \cdots a_{k-1}^{t_{k-1}}\right) a_{i}$, for each $0 \leq i \leq k-1$. Hence,

$$
0=f g a_{0}^{t_{0}} a_{1}^{t_{1}} \cdots a_{k-1}^{t_{k-1}}=\left(\sum_{i=k}^{\infty} a_{i} x^{i}\right)\left(g a_{0}^{t_{0}} a_{1}^{t_{1}} \cdots a_{k-1}^{t_{k-1}}\right)
$$

Since a_{k} is a regular element of R, we have $g a_{0}^{t_{0}} a_{1}^{t_{1}} \cdots a_{k-1}^{t_{k-1}}=0$, which is a contradiction. Therefore, f is regular in $R[\llbracket x ; \alpha]$.

Theorem 4.5 Let R be a reversible and α-compatible ring in which each zero-divisor is nilpotent and let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[[x ; \alpha]]$. If some a_{i} is regular in R, then $f(x)$ is regular in $R[[x ; \alpha]$.

Proof This follows from Lemma 4.4.
The following corollary is a generalization of [12, Theorem 3], when R is a reversible ring.

Corollary 4.6 Let R be a reversible ring in which each zero-divisor is nilpotent and let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[[x]]$. If some a_{i} is regular in R, then $f(x)$ is regular in $R[[x]$.

According to [10], a ring R is called semi-commutative if $a b=0$ implies $a R b=0$ for $a, b \in R$. Clearly, reversible rings are semi-commutative, but this implication is irreversible by [18, Examples 1.5 and 1.10(3)]. If R is a semi-commutative ring, then by [13, Lemma 2.5] the set of all nilpotent elements of R is an ideal.

Corollary 4.7 Let R be a reversible and α-compatible ring in which each zero-divisor is nilpotent. If the set of nilpotent elements of R is nilpotent, then in $R[[x ; \alpha]$ each zerodivisor is nilpotent.

Proof Let N be the set of nilpotent elements of R. Since N is nilpotent, $N^{k}=0$ for some $k \geq 2$. Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[\llbracket x ; \alpha]$ be a zero-divisor. By Theorem 4.5, $a_{i} \in N$ for each $i \geq 0$. Clearly, for each $n \geq 0$, the coefficient of x^{n} in $(f(x))^{k}$ is a sum of such elements $a_{i_{1}} \alpha^{i_{1}}\left(a_{i_{2}}\right) \cdots \alpha^{i_{1}+i_{2}+\cdots+i_{k-1}}\left(a_{i_{k}}\right)$, where $i_{1}+\cdots+i_{k}=n$. Hence, by Lemma 4.1, $(f(x))^{k}=0$.

Proposition $4.8 \quad$ Let R be a reversible and (α, δ)-compatible ring for which $\operatorname{diam}(\Gamma(R))=2$. If $Z(R)=\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is the union of precisely two maximal primes in $Z(R)$, then $Z(R[x ; \alpha, \delta])=\mathcal{P}_{1}[x ; \alpha, \delta] \cup \mathcal{P}_{2}[x ; \alpha, \delta]$ and $\operatorname{diam}(\Gamma(R[x ; \alpha, \delta]))=2$.

Proof Since by Proposition 3.6, \mathcal{P}_{1} and \mathcal{P}_{2} are completely prime and $\mathcal{P}_{1} \cap \mathcal{P}_{2}=0, R$ is reduced. Thus, R is α-rigid, by [14, Lemma 2.2]. Therefore, $R[x ; \alpha, \delta]$ is a reduced ring by [16, Proposition 6]. Let $0 \neq b \in \mathcal{P}_{1}$ and $0 \neq a \in \mathcal{P}_{2}$. Then $\operatorname{ann}(a)=\mathcal{P}_{1}$
and $\operatorname{ann}(b)=\mathcal{P}_{2}$ by Proposition 3.6. By Lemma 4.1, $\alpha\left(\mathcal{P}_{i}\right) \subseteq \mathcal{P}_{i}$ and $\delta\left(\mathcal{P}_{i}\right) \subseteq \mathcal{P}_{i}$, for $i=1,2$. Thus, $\mathcal{P}_{i}[x ; \alpha, \delta]$ is an ideal of $R[x ; \alpha, \delta]$, for $i=1$, 2. Let $f(x) \in Z(R[x ; \alpha, \delta])$. Then $f(x) g(x)=0$, for some $0 \neq g(x) \in R[x ; \alpha, \delta]$. Hence, $f(x) c=0$, where c is the leading coefficient of $g(x)$ by [16, Proposition 6]. Then $f(x) \in \mathcal{P}_{1}[x ; \alpha, \delta]$ or $f(x) \in$ $\mathcal{P}_{2}[x ; \alpha, \delta]$, which implies that $Z(R[x ; \alpha, \delta]) \subseteq \mathcal{P}_{1}[x ; \alpha, \delta] \cup \mathcal{P}_{2}[x ; \alpha, \delta]$. Since $\mathcal{P}_{1} \mathcal{P}_{2}=$ $0=\mathcal{P}_{2} \mathcal{P}_{1}$, we have $\mathcal{P}_{1}[x ; \alpha, \delta] \cup \mathcal{P}_{2}[x ; \alpha, \delta] \subseteq Z(R[x ; \alpha, \delta])$, by Lemma 4.1. Therefore, $Z(R[x ; \alpha, \delta])=\mathcal{P}_{1}[x ; \alpha, \delta] \cup \mathcal{P}_{2}[x ; \alpha, \delta]$, which implies that diam $(\Gamma(R[x ; \alpha, \delta]))=2$.

It is often taught in an elementary algebra course that if R is a commutative ring and $f(x)$ is a zero-divisor in $R[x]$, then there is a non-zero element $r \in R$ with $f(x) r=0$. This was first proved by McCoy [24, Theorem 2]. Based on this result, Nielsen [25] called a ring R right McCoy when the equation $f(x) g(x)=0$ implies $f(x) c=0$ for some non-zero $c \in R$, where $f(x), g(x)$ are non-zero polynomials in $R[x]$. Left McCoy rings are defined similarly. If a ring is both left and right McCoy, then it is called a McCoy ring. Afkhami et al. [1, Theorem 2.4] proved that if R is a reversible and (α, δ)-compatible ring and $f(x) g(x)=0$ for some $f(x), g(x) \in R[x ; \alpha, \delta]$, then there exist non-zero $a, b \in R$ such that $f(x) a=0=b g(x)$.

Proposition 4.9 Let R be a reversible and (α, δ)-compatible ring. If $Z(R)=\mathcal{P}$ is a prime ideal and R is a right or left Noetherian ring with $\operatorname{diam}(\Gamma(R))=2$, then $Z(R[x ; \alpha, \delta])=\mathcal{P}[x ; \alpha, \delta]$ and $\operatorname{diam}(\Gamma(R[x ; \alpha, \delta]))=2$.

Proof Since R is right Noetherian and $Z(R)=\mathcal{P}, \mathcal{P}=\operatorname{ann}(a)$ for some $a \in R$ by Corollary 3.4. By Lemma 4.1, $\alpha(\mathcal{P}) \subseteq \mathcal{P}$ and $\delta(\mathcal{P}) \subseteq \mathcal{P}$, implying that $\mathcal{P}[x ; \alpha, \delta]$ is an ideal of $R[x ; \alpha, \delta]$ and $\mathcal{P}[x ; \alpha, \delta] \subseteq Z(R[x ; \alpha, \delta])$. Let $f(x)$ be a zero-divisor of $R[x ; \alpha, \delta]$. Since R is reversible and (α, δ)-compatible, there exists $0 \neq b \in R$ such that $f(x) b=0=b f(x)$, implying that $f(x) \in \mathcal{P}[x ; \alpha, \delta]$. Therefore, $Z(R[x ; \alpha, \delta])=$ $\mathcal{P}[x ; \alpha, \delta]$.

Now, let $f(x), g(x)$ be zero-divisors of $R[x ; \alpha, \delta]$. If $f(x) g(x)=0$ or $g(x) f(x)=$ 0 , we are done. If $f(x) g(x) \neq 0 \neq g(x) f(x)$, then neither $f(x)$ nor $g(x)$ is a, and so a is a mutual annihilator of $f(x)$ and $g(x)$. Therefore, $\operatorname{diam}(\Gamma(R[x ; \alpha, \delta]))=2$.

Corollary 4.10 Let R be a reversible and (α, δ)-compatible ring. If R is a right or left Noetherian ring with $\operatorname{diam}(\Gamma(R))=2$, then $\operatorname{diam}(\Gamma(R[x ; \alpha, \delta]))=2$.

Proof This follows from Corollary 3.5 and Propositions 4.8 and 4.9.
The following example shows that there is a commutative (α, δ)-compatible ring R such that $R[x ; \alpha, \delta]$ is not reversible. Hence, Corollary 4.10 does not follow from [1, Theorems 3.2 and 3.4].

Example 4.11 ([7, Example 11]) Let $R=\mathbb{Z}_{2}[t] /\left(t^{2}\right)$ with the derivation δ such $\delta(\bar{t})=1$, where $\bar{t}=t+\left(t^{2}\right)$ in R and $\mathbb{Z}_{2}[t]$ is the polynomial ring over the field \mathbb{Z}_{2} of two elements. Let $\alpha=I_{R}$. Clearly, R is a commutative (α, δ)-compatible ring. Armendariz et al. [7] showed that $R[x ; \delta] \cong M_{2}\left(\mathbb{Z}_{2}\right)[y]$, where $M_{2}\left(\mathbb{Z}_{2}\right)[y]$ is the
polynomial ring over 2×2 matrix ring over \mathbb{Z}_{2}. Since $M_{2}\left(\mathbb{Z}_{2}\right)$ is not reversible, neither is $R[x ; \delta]$.

Now, by using Lemma 4.4 and Remark 2.2 and a method similar to that used in the proof of [8, Proposition 3.12], one can prove the following proposition.

Proposition 4.12 Let R be a reversible and (α, δ)-compatible ring. If $\Gamma(R)$ is not complete and $(Z(R))^{n}=0$, for some integer $n \geq 2$, then

$$
\operatorname{diam}(\Gamma(R[[x ; \alpha]))=\operatorname{diam}(\Gamma(R[x ; \alpha, \delta]))=\operatorname{diam}(\Gamma(R))=2
$$

Theorem 4.13 Let R be a reversible and ($\alpha, \delta)$-compatible ring that is not isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then the following are equivalent:
(i) $\Gamma(R[[x ; \alpha]])$ is complete;
(ii) $\Gamma(R[x ; \alpha, \delta])$ is complete;
(iii) $\Gamma(R)$ is complete.

Proof Clearly, (i) \Rightarrow (iii) and (ii) \Rightarrow (iii). For (iii) \Rightarrow (i), since $R \not \not \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, we have $x y=0$ for each $x, y \in Z^{*}(R)$, by Remark 2.2. Therefore, $\Gamma(R)$ complete implies $(Z(R))^{2}=0$. Let $f, g \in Z^{*}(R[[x ; \alpha])$. By Lemma 4.4, all coefficients of f and g are zero-divisors in R. Since $\Gamma(R)$ is complete and R is α-compatible, we have $f g=0$, and hence $\Gamma(R[[x ; \alpha]])$ is complete.
(iii) \Rightarrow (ii). Since $R \not \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, we have $a b=0$ for each $a, b \in Z^{*}(R)$ by Remark 2.2. Therefore, $\Gamma(R)$ complete implies $(Z(R))^{2}=0$. Let $f, g \in Z^{*}(R[x ; \alpha, \delta])$. Since R is reversible and (α, δ)-compatible, there exist $0 \neq a, b \in R$ such that $f(x) b=0$ and $g(x) a=0$, implying that all coefficients of f and g are zero-divisors in R. Since $\Gamma(R)$ is complete and R is (α, δ)-compatible, we have $f g=0$, and hence $\Gamma(R[x ; \alpha, \delta])$ is complete.

Theorem 4.14 Let $R \nsubseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ be a reversible and (α, δ)-compatible ring. If α is surjective and R is a Noetherian ring with non-trivial zero-divisors, then the following are equivalent:
(i) $\operatorname{diam}(\Gamma(R))=2$;
(ii) $\operatorname{diam}(\Gamma(R[x ; \alpha, \delta]))=2$;
(iii) $\operatorname{diam}(\Gamma(R[[x ; \alpha]]))=2$;
(iv) $Z(R)$ is either the union of two primes with intersection $\{0\}$, or $Z(R)$ is prime and $(Z(R))^{2} \neq 0$.

Proof (i) \Rightarrow (ii) was proved in Corollary 4.10.
(i) \Rightarrow (iii) was proved in Proposition 4.2.
(i) \Rightarrow (iv) follows from Corollaries 3.4 and 3.5 and Proposition 3.6.

We will show that $(\mathrm{ii}) \Rightarrow(\mathrm{i}),(\mathrm{iii}) \Rightarrow(\mathrm{i})$, and $(\mathrm{iv}) \Rightarrow(\mathrm{i})$. For $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ and $(\mathrm{iii}) \Rightarrow(\mathrm{i})$, assume that $\operatorname{diam}(\Gamma(R)) \neq 2$. By Theorem 4.13, if $\operatorname{diam}(\Gamma(R))=1$, then $\operatorname{diam}(\Gamma(R[x ; \alpha, \delta]))=1$, since $R \not \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(iv) \Rightarrow (i). One can prove this using Proposition 3.6 and a method similar to that used in the proof of [8, Theorem $3.11((5) \rightarrow(1))]$.

Lemma 4.15 Let R be a reversible ring and $n>0$. If f, g are non-zero elements of $R\left[x_{1}, \cdots, x_{n}\right]$ and $f g=0$, then there exist non-zero $a, b \in R$ such that $f a=0=b g$.

Proof That $n=1$ follows from [25, Theorem 2]. It is enough we prove it for $n=2$. Suppose that $n=2$ and $f\left(x_{2}\right), g\left(x_{2}\right) \in Z\left(R\left[x_{1}\right]\left[x_{2}\right]\right)$ such that $f\left(x_{2}\right) g\left(x_{2}\right)=0$. Write $f\left(x_{2}\right)=f_{0}+f_{1} x_{2}+\cdots+f_{m} x_{2}^{m}, g\left(x_{2}\right)=g_{0}+g_{1} x_{2}+\cdots+g_{n} x_{2}^{n}$, where $f_{i}, g_{j} \in R\left[x_{1}\right]$ for each i, j. Let $k=\operatorname{deg}\left(f_{0}\right)+\cdots+\operatorname{deg}\left(f_{m}\right)+\operatorname{deg}\left(g_{0}\right)+\cdots+\operatorname{deg}\left(g_{n}\right)$, where the degree is as polynomials in x_{1} and the degree of the zero polynomial is taken to be 0 . Then $f\left(x_{1}^{k}\right)=f_{0}+f_{1} x_{1}^{k}+\cdots+f_{m} x_{1}^{k m}, g\left(x_{1}^{k}\right)=g_{0}+g_{1} x_{1}^{k}+\cdots+g_{n} x^{n k} \in R\left[x_{1}\right]$, and the set of coefficients of the f_{i} 's (resp., g_{j} 's) equals the set of coefficients of $f\left(x_{1}^{k}\right)$ (resp., $g\left(x_{1}^{k}\right)$). Since $f\left(x_{2}\right) g\left(x_{2}\right)=0$ and x_{1} commutes with elements of R, we have $f\left(x_{1}^{k}\right) g\left(x_{1}^{k}\right)=0$. Hence, there exist non-zero elements $a, b \in R$ such that $f\left(x_{1}^{k}\right) a=$ $0=b g\left(x_{1}^{k}\right)$, implying that $f\left(x_{2}\right) a=0=b g\left(x_{2}\right)$.

Note that since polynomial rings over reversible rings need not be reversible in general by [18, Example 2.1], Lemma 4.15 does not follow from [25, Theorem 2] for $n \geq 2$.

Corollary 4.16 Let $R \not \not \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ be a reversible and Noetherian ring with non-trivial zero-divisors. The following conditions are equivalent:
(i) $\operatorname{diam}(\Gamma(R))=2$;
(ii) $\operatorname{diam}(\Gamma(R[x]))=2$;
(iii) $\operatorname{diam}\left(\Gamma\left(R\left[x_{1}, \ldots, x_{n}\right]\right)\right)=2$ for all $n>0$;
(iv) $\operatorname{diam}(\Gamma(R[\llbracket x]))=2$;
(v) $Z(R)$ is either the union of two primes with intersection $\{0\}$, or $Z(R)$ is prime and $(Z(R))^{2} \neq 0$.

Proof By Theorem 4.14, (i), (ii), (iv), and (v) are equivalent.
(iii) \Rightarrow (ii) is trivial.
(ii) \Rightarrow (iii). It is enough we prove for $n=2$. Suppose that $n=2$ and $f\left(x_{2}\right), g\left(x_{2}\right) \in$ $Z\left(R\left[x_{1}\right]\left[x_{2}\right]\right)$. If $f\left(x_{2}\right) g\left(x_{2}\right)=0$ or $g\left(x_{2}\right) f\left(x_{2}\right)=0$, then $d(f, g)=1$. So suppose that $f\left(x_{2}\right) g\left(x_{2}\right) \neq 0 \neq g\left(x_{2}\right) f\left(x_{2}\right)$. Write $f\left(x_{2}\right)=f_{0}+f_{1} x_{2}+\cdots+f_{m} x_{2}^{m}, g\left(x_{2}\right)=$ $g_{0}+g_{1} x_{2}+\cdots+g_{n} x_{2}^{n}$, where $f_{i}, g_{j} \in R\left[x_{1}\right]$ for each i, j. Let $k=\operatorname{deg}\left(f_{0}\right)+\cdots+$ $\operatorname{deg}\left(f_{m}\right)+\operatorname{deg}\left(g_{0}\right)+\cdots+\operatorname{deg}\left(g_{n}\right)$. Then by the proof of Lemma 4.15, $f\left(x_{1}^{k}\right), g\left(x_{1}^{k}\right) \in$ $Z\left(R\left[x_{1}\right]\right)$ and $f\left(x_{1}^{k}\right) g\left(x_{1}^{k}\right) \neq 0 \neq g\left(x_{1}^{k}\right) f\left(x_{1}^{k}\right)$. Since $\operatorname{diam}\left(\Gamma\left(R\left[x_{1}\right]\right)\right)=2$, there exists $h \in R\left[x_{1}\right]$, which annihilates $f\left(x_{1}^{k}\right)$ and $g\left(x_{1}^{k}\right)$. Hence, h annihilates $f\left(x_{2}\right)$ and $g\left(x_{2}\right)$, implying that $d(f, g)=2$.

Proposition 4.17 Let R be a reversible and (α, δ)-compatible ring. If $f, g \in$ $Z^{*}(R[x ; \alpha, \delta])$ are distinct non-constant polynomials with $f g=0$, then there exist $a, b \in Z^{*}(R)$ such that $a-f-g-b-a$ is a cycle in $\Gamma(R[x ; \alpha, \delta])$, or $b-f-g-b$ is a cycle in $\Gamma(R[x ; \alpha, \delta])$.

Proof If $f, g \in Z^{*}(R[x ; \alpha, \delta])$, then there exist $a, b \in Z^{*}(R)$ such that $a f=f a=$ $0=b g=g b$. Now, using a method similar to that used in the proof of $[8$, Proposition 4.1] completes the proof.

Corollary 4.18 Let R be a reversible and (α, δ)-compatible ring and let $f \in$ $Z^{*}(R[x ; \alpha, \delta])$ a non-constant polynomial. Then there exists a cycle of length 3 or 4 in $\Gamma(R[x ; \alpha, \delta])$ with f as one vertex and some $a \in Z^{*}(R)$ as another.

The following theorem is a generalization of [8, Theorem 4.3], when R is a reversible ring.

Theorem 4.19 Let R be a reversible and α-compatible ring. Then

$$
g(\Gamma(R)) \geq g(\Gamma(R[x ; \alpha])) \geq g(\Gamma(R[\llbracket x ; \alpha]))
$$

In addition, if R is a reduced ring and $\Gamma(R)$ contains a cycle, then

$$
g(\Gamma(R))=g(\Gamma(R[x ; \alpha]))=g(\Gamma(R[\llbracket x ; \alpha]))
$$

Proof Using Corollary 4.18 and a method similar to that used in the proof of [8, Theorem 4.3] completes the proof.

Corollary $4.20 \quad$ Let R be an α-rigid ring and let $g(\Gamma(R[x ; \alpha, \delta]))=3$. Then $g(\Gamma(R))=3$.

Acknowledgments The authors thank the referee for his/her valuable comments and suggestions. This research is supported by the Shahrood University of Technology at Iran.

References

[1] M. Afkhami, K. Khashayarmanesh, and M. R. Khorsandi, Zero-divisor graphs of Ore extension rings. J. Algebra Appl. 10(2011), no. 6, 1309-1317. http://dx.doi.org/10.1142/S0219498811005191
[2] S. Akbari and A. Mohammadian, Zero-divisor graphs of non-commutative rings. J. Algebra 296(2006), no. 2, 462-479. http://dx.doi.org/10.1016/j.jalgebra.2005.07.007
[3] D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute. Comm. Algebra 27(1999), no. 6, 2847-2852. http://dx.doi.org/10.1080/00927879908826596
[4] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring. J. Algebra 217(1999), no. 2, 434-447. http://dx.doi.org/10.1006/jabr. 1998.7840
[5] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210(2007), no. 2, 543-550. http://dx.doi.org/10.1016/j.jpaa.2006.10.007
[6] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring. J. Algebra 159(1993), no. 2, 500-514. http://dx.doi.org/10.1006/jabr.1993.1171
[7] E. P. Armendariz, H. K. Koo, and J. K. Park, Isomorphic Ore extensions. Comm. Algebra 15(1987), no. 12, 2633-2652. http://dx.doi.org/10.1080/00927878708823556
[8] M. Axtel, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings. Comm. Algebra 33(2005), no. 6, 2043-2050. http://dx.doi.org/10.1081/AGB-200063357
[9] I. Beck, Coloring of commutative rings. J. Algebra 116(1988), no. 1, 208-226. http://dx.doi.org/10.1016/0021-8693(88)90202-5
[10] H. E. Bell, Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc. 2(1970), 363-368. http://dx.doi.org/10.1017/S0004972700042052
[11] P. M. Cohn, Reversible rings. Bull. London Math. Soc. 31(1999), no. 6, 641-648. http://dx.doi.org/10.1112/S0024609399006116
[12] D. E. Fields, Zero divisors and nilpotent elements in power series rings. Proc. Amer. Math. Soc. 27(1971), 427-433. http://dx.doi.org/10.1090/S0002-9939-1971-0271100-6
[13] E. Hashemi, On ideals which have the weakly insertion of factors property. J. Sci. Islam. Repub. Iran 19(2008), no. 2, 145-152, 190.
[14] Polynomial extensions of quasi-Baer rings. Acta Math. Hungar. 107(2005), no. 3, 207-224. http://dx.doi.org/10.1007/s10474-005-0191-1
[15] Y. Hirano, On the uniqueness of rings of coefficients in skew polynomial rings. Publ. Math. Debrecen 54(1999), no. 3-4, 489-495.
[16] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra 151(2000), no. 3, 215-226. http://dx.doi.org/10.1016/S0022-4049(99)00020-1
[17] I. Kaplansky, Commutative rings. Revised ed., University of Chicago Press, Chicago, Ill.-London, 1974.
[18] N. K. Kim and Y. Lee, Extensions of reversible rings. J. Pure Appl. Algebra 185(2003), no. 1-3, 207-223. http://dx.doi.org/10.1016/S0022-4049(03)00109-9
[19] J. Krempa, Some examples of reduced rings. Algebra Colloq. 3(1996), no. 4, 289-300.
[20] J. Krempa and D. Niewieczerzal, Rings in which annihilators are ideals and their application to semigroup rings. Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 25(1977), no. 9, 851-856.
[21] T. Y. Lam, A first course in noncommutative rings. Graduate Text in Mathematics, 131, Springer-Verlag, New York, 1991. http://dx.doi.org/10.1007/978-1-4684-0406-7
[22] J. Lambek, On the representation of modules by sheaves of factor modules. Canad. Math. Bull. 14(1971), 359-368. http://dx.doi.org/10.4153/CMB-1971-065-1
[23] T. Lucas, The diameter of a zero divisor graph. J. Algebra 301(2006), no. 1, 174-193. http://dx.doi.org/10.1016/j.jalgebra.2006.01.019
[24] N. H. McCoy, Annihilators in polynomial rings. Amer. Math. Monthly 64(1957), 28-29. http://dx.doi.org/10.2307/2309082
[25] P. P. Nielsen, Semi-commutativity and the McCoy condition. J. Algebra 298(2006), no. 1, 134-141. http://dx.doi.org/10.1016/j.jalgebra.2005.10.008
[26] S. P. Redmond, The zero-divisor graph of a non-commutative ring. In: Commutative rings, Nova Sci. Publ., Hauppauge, NY, 2002, pp. 39-47.
[27] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric rings. Trans. Amer. Math. Soc. 184(1973), 43-60. http://dx.doi.org/10.1090/S0002-9947-1973-0338058-9
[28] S. E. Wright, Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups. Comm. Algebra 35(2007), no. 6, 1987-1991. http://dx.doi.org/10.1080/00927870701247146

Department of Mathematics, Shahrood University of Technology,, P.O. Box: 316-3619995161, Shahrood, Iran
e-mail: eb_hashemi@yahoo.com

[^0]: Received by the editors June 7, 2014; revised June 2, 2016.
 Published electronically July 18, 2016.
 AMS subject classification: 13B25, 05C12, 16S36.
 Keywords: zero-divisor graphs, reversible rings, McCoy rings, polynomial rings, power series rings.

