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Abstract. We summarize recent work on the structure and dynamics of the Galactic bar and inner disk. 
Current work focusses on constructing a quantitative model which integrates NIR photometry, source count 
observations, gas kinematics, stellar dynamical observations, and microlensing. Some avenues for future 
research are discussed. 

1. Introduction 

There is substantial, and still growing, evidence for a bar in the inner Galaxy. This includes the NIR 
light distribution, various source counts, the atomic and molecular gas morphology and kinematics, 
and probably the large optical depth to microlensing. See Gerhard (1996) and Kuijken (1996) for 
recent reviews. 

The existence of a rotating bar in the inner ~ 3kpc of the Milky Way is therefore no longer 
controversial. This is an important development in that it changes the way in which we have to 
think about the Galaxy's evolutionary history. 

The emphasis of recent work has shifted towards determining parameters like the orientation, 
size, and pattern speed of the bar, and towards constructing a unifying quantitative model, within 
which the various observational results can be coherently explained, and which predicts the dy­
namical state of the Galactic bulge and inner disk. The purpose of this Joint Discussion Session is 
to present current work towards this goal, and to discuss the necessary next steps for arriving at 
such a model. 

To make further progress, we must answer several questions. What are the detailed shape, 
orientation, length, and pattern speed of the bar? Should a distinction be made between the barred 
bulge and the bar in the disk, between components of different age and metallicity? Do the NIR 
light, clump giants and IRAS sources trace the same component? What is the mass distribution? 
Can we understand the kinematics of the Galactic centre gas and the 3 kpc arm? Can we predict 
the locations of the Galactic spiral arms? How does the large microlensing optical depth fit in? 
Do dynamical models predict the observed stellar kinematics in Baade's window and the correct 
microlensing duration distribution? Many of these questions might be answered in the next year or 
two. 

2. Photometric structure (Ortwin Gerhard) 

The currently best models for the distribution of old stars in the inner Galaxy are based on the 
COBE/DIRBE NIR data. The COBE data have complete sky coverage, and broad-band emission 
maps are available over a large wavelength range from the NIR to the FIR. These aspects outweigh 
the disadvantages of this dataset: the relatively low spatial resolution, the residual effects of dust 
absorption, and the fact that it contains no distance information. Because extinction is important 
towards the Galactic nuclear bulge even at 2/mi, the first task is to correct (or 'clean') the DIRBE 
data for the effects of extinction. Arendt et al. (1994) did this by assuming that the dust lies in a 
foreground screen, while Spergel, Malhotra & Blitz (1997) and recently Freudenreich (1997) used 
a fully three-dimensional model of the dust distribution. 
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Figure 1. Luminosity model for the inner Galaxy obtained by Lucy-Richardson deprojection of the cleaned COBE 
L-band data for 0 = 20°. Left: Density projected along the z-axis, contours spaced by 0.1 dex. Right: Isodensity 
surfaces in the zx and zy planes, contours spaced by 0.2 dex. Axis lengths in kpc. Prom BSG. 

Dwek et al (1995) were the first to model the inner Galaxy's NIR emissivity j(r) by matching 
parametric models to the cleaned data of Arendt et al. Recently, Binney, Gerhard & Spergel (1997, 
BGS) used a Richardson-Lucy algorithm to fit a non-parametric model of j ( r ) to the cleaned 
data of Spergel et al. This algorithm has built in the assumption of eight-fold (triaxial) symmetry 
with respect to three mutually orthogonal planes of arbitrary orientation with respect to the Sun-
Galactic centre line. It exploits the fact that for such triaxially symmetric bars the perspective effects 
from the location of the Sun contain information about the bar's shape and orientation (Blitz & 
Spergel 1991). When the orientation of the symmetry planes is fixed, the recovered emissivity j(r) 
appears to be essentially unique (Binney & Gerhard 1996, Bissantz et al. 1997), but physical models 
for the COBE bar can be found for a range of bar orientation angles, 15° Ss </> < 35° (BGS). <f> 
measures the angle in the Galactic plane between the bar's major axis at / > 0 and the Sun-centre 
line. Zhao (1997b) has given an illustration of this non-uniqueness in terms of the even part of the 
bulge density distribution (see Fig. 4 below). 

Fig. 1 shows the resulting deprojected luminosity distribution for <j> = 20°. This shows an 
elongated bulge with axis ratios 10:6:4 and semi-major axis ~ 2 kpc, surrounded by an elliptical 
disk that extends to ~ 3.5 kpc on the major axis and ~ 2 kpc on the minor axis. There is a maximum 
in the NIR emissivity ~ 3 kpc down the minor axis, which is probably due to incorrectly deprojected 
strong spiral arms (see below), and which corresponds to the ring-like structure discussed by Kent, 
Dame & Fazio (1991). We favour the 4> = 20° model because the dynamics of the large gas velocities 
in the Galactic centre (Binney et al. 1991) and the distribution of clump giants in the OGLE fields 
(Stanek et al. 1997) point towards a near-end-on bar. 

The largest point-source catalogue used for analysing the structure of the Galactic bulge is 
that of the clump giant stars identified in the OGLE colour-magitude diagrams (Stanek et al. 
1997). These stars have a small intrinsic luminosity spread (~ 0.2 — 0.3 mag); thus their apparent-
magnitude distributions contain significant distance information. They are visible throughout the 
inner Galaxy, and reddening corrections can be made. The drawback of the present samples is that 
only a small number of lines-of-sight have been observed. Stanek et al. (1997) fitted a number of 
parametric models from Dwek et al. (1995) to their data. Their best bulge model is one with an 
exponential density distribution, axial ratios 10:4:3, and a bar angle of <j> = 20 — 30°. This model 
does not have a disk component, whereas the COBE data imply that the foreground disk contains 
~ 30% of the light even in Baade's window. The Stanek et al. model must thus approximate the 
bulge and disk luminosities along the 12 fitted lines-of-sight. Because the number of lines-of-sight 
is small, and the fitted density models contain only few parameters, systematic errors in the derived 
parameter values are likely. 

Nikolaev & Weinberg (1997) have reanalyzed the IRAS variable population. This sample has 
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a large spatial coverage near the plane and distance information from the known range of AGB 
star luminosities, but suffers from selection effects and incompleteness. Reconstructing the density 
with a likelihood approach from about 5500 stars that satisfied their selection criteria, Nikolaev & 
Weinberg (1997) find a barred distribution (again, including the disk bar) with length ~ 3.5 kpc, 
axial ratio in the plane 10:4, and orientation ~ 21°. 

While this combined work shows that the bar angle (j> is probably close to (j> = 20°, there is 
less agreement in the axis ratios of the bar. The work of BGS shows that the disk contribution in 
the central few kpc is large. A simple bulge-disk decomposition will not be possible. Clearly then, 
the next step is to combine the area coverage of the COBE data with the distance information in 
the clump giant samples, and perhaps later add the IRAS source population, in a non-parametric 
approach. Work along these lines has begun. This may constrain the shape parameters and the 
orientation of the bar much more tightly if all works out, or it may tell us that different tracers of 
the Galactic bulge and inner disk represent components with different spatial distributions. Both 
would be interesting. 

3. Gas dynamics (Ortwin Gerhard) 

It has long been suspected that the non-circular and forbidden velocities in the HI and CO (l,v)-
diagrams are caused by a non-axisymmetric component of the gravitational potential in the inner 
Galaxy (for references see Gerhard 1996). With quantitative models of the old stellar mass dis­
tribution now becoming available, we can make detailed models of the Galactic gas flow, and ask 
whether prominent structures in the observed (I, u)-diagrams such as the 3 kpc arm, the 4 kpc ring, 
the Galactic centre parallelogram, etc, can be obtained. 

In a first attempt Englmaier & Gerhard (1997) have used the luminosity distribution derived by 
BGS from the cleaned COBE L-band data of Spergel et al. (1997) for various (j> = 10-30°. With the 
assumption that the NIR light traces mass, i.e., constant M/LL, models for the mass distribution 
and gravitational potential of the inner Galaxy were constructed. The main uncertainties in these 
models concern the inner disk, because the details of the in-plane dust distribution are uncertain, 
and because the Richardson-Lucy deprojection algorithm is unable to reliably deproject spiral arms 
(BGS). 

In the resulting gravitational potentials, quasi-equilibrium gas flow models were computed, 
using an effective 20000 SPH particles in two dimensions, and assuming point symmetry with 
respect to the Galactic centre. The most important parameter to be determined is the pattern 
speed; this is restricted by the requirement that the 3 kpc arm must lie inside corotation and the 
4 kpc ring (actually, a pair of spiral arms) at or beyond corotation. The best current models have 
?̂corot = 3.4 kpc for a pattern speed Op = 55km/s/kpc. 

These models clearly show a four-armed spiral structure outside corotation, as indicated by 
observations (Vallee 1995). They also show that the luminosity concentrations along the bar's 
minor axis at ~ 3 kpc central distance must be at least partially real; removing these from the mass 
model results in an unstructured gas disk outside 4 kpc, rather unlike observations. Most likely, 
these concentrations represent the NIR light from stellar spiral arms near-coincident with the gas 
arms. Inside corotation the 3 kpc arm is one of the arms emanating from the nearby end of the 
bar. The transition between xi and xi orbit flow in these models is highly dynamical; thus in these 
models, the molecular parallelogram is non-stationary and not well-resolved. 

The current best model includes a dark component with asympototic circular velocity vc = 
200 km s - 1 . With a galactocentric solar radius of RQ = 8 kpc, a bar angle and corotation radius 
of <f> = 20° and i?Corot = 3.4 kpc, this does a rather good job at reproducing the observed spiral 
arm tangents as seen from the Sun (Fig. 2). The bar angle is not very well-constrained; <j> = 25° 
is equally possible. From fitting grid-based hydrodynamic models in analytic Galaxy potentials to 
the low-column density contours in the HI (/, u)-diagram, Weiner & Sellwood (1997) favour bar 
angles around ~ 30°. The low-density regions are not well-resolved in the SPH models, so no direct 
comparison is currently possible. 

Fux (1997) has computed a large number of combined N-body and SPH models from a grid 
of initial conditions, and has fitted these to the COBE NIR surface brightness contours and the 
observed (I, ̂ -d iagrams. These models appear to be similar to those of Englmaier & Gerhard (1997) 
in several respects; they too reproduce a number of features in the observed gas morphology and 
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Figure 2. (Left panel) Gas flow in the inner Galaxy. The SPH particle distribution is plotted to trace the spiral arm 
shocks. The solid lines from the position of the Sun denote tangent point directions of Galactic spiral arms, located 
approximately at 1 = 48°, J = 30°, ( = -21° (the '3kpc arm'), Z = -31°, / = -52° . From Englmaier & Gerhard (1997). 
Stars denote the positions of HII regions from Georgelin & Georgelin (1976). 

Figure 3. (Right panel) Two models of the inner Galaxy projected from z = 300 pc vertically upwards. The dashed 
contours are for the BGS photometric model while the full contours are for a preliminary dynamical model that was 
designed to fit the BGS model. 

kinematics. While they cannot be exactly made-to-measure, they include effects from asymmetries 
(well-known to be of some importance in the Galactic centre molecular gas) and are not necessarily 
stationary. 

With this recent work we may be close to understanding the gross structure of the inner Galactic 
gas flow. Comparing the results from the two approaches, ab-initio versus model-inferred-from-
observations, and comparing results obtained with different hydrodynamical techniques, will be 
particularly helpful in isolating the model-independent results. 

4. Dynamical Models of the Galactic Bulge (James Binney) 

While the inner Galaxy is now generally agreed to be barred, the orientation, length and pattern 
speed of this bar remain controversial. Since dynamics must connect these parameters, the obvious 
next step is to upgrade photometric models of the inner Galaxy to fully dynamical models. 

We believe that the photometric model of BGS is the best available because (i) it is based 
on COBE/DIRBE data cleaned with a fully three-dimensional model of the dust distribution, 
and (ii) because their non-parametric technique fits the cleaned data more exactly than does the 
previous parametric approach of Dwek et al. (1995). Zhao (1996) matched a dynamical model to 
the photometric model of Dwek et al. In Oxford we have used an extended version of the fitting 
technique introduced by Zhao to do the same thing for the photometric model of BGS. This 
work is still in progress (Hafner et al. in preparation) so we show only a few preliminary results, 
concentrating on our methodological innovations. 

Like Zhao we start by choosing a pattern speed Qp and use an enhanced version of Schwarzschild's 
technique. Hence, we calculate orbits in an assumed potential and then populate them so that the 
sum of the densities contributed by every orbit in our orbit library reproduces the originally assumed 
density distribution. 

Schwarzschild was primarily concerned with the case in which all relevant orbits are regular -
that is, have three effective isolating integrals. Much of the phase space of a rapidly rotating bar 
is not occupied by such orbits, but by stochastic orbits. Stochastic orbits are liable to evolve on 
long timescales. Consequently, they can be included in the orbit library only after they have been 
followed for a Hubble time. When they are followed for so long, one finds that all stochastic orbits 
of a given energy closely resemble one another. This being so one can eliminate stochastic orbits 
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from the library completely if one (a) includes for each energy a 'composite orbit' and (b) permits 
the weights of regular orbits to become negative in certain cases. 

The concept of a composite orbit was introduced by Zhao (1996). It is the phase-space distri­
bution that is produced by a distribution function / that is a (5-function in the Hamiltonian H. A 
stochastic orbit is formed by subtracting from the composite orbit of the same energy appropriate 
amounts of every regular orbit of that energy. Hence we can replace stochastic orbits with compos­
ite orbits provided we permit the weights of regular orbits to be negative. The only snag is that 
we must not permit these weights to be so negative that the overall phase-space density becomes 
negative anywhere in phase space. 

While Zhao replaced stochastic orbits with composite orbits, he did not allow weights to be 
negative because he had no way of determining the overall phase-space density / . Our technique 
for determining / is as follows. We choose a sampling density F(r ,p) = J2i=i Pi(l)'ii(p) that we 
believe lies close to the final phase-space density in regular regions of phase space. F is normalized 
such that its integral throughout phase space evaluates to unity. Then each orbit in the library 
is launched from the phase-space volume d3rd3p with probability i ?d3rd3p, and, as the orbit is 
integrated, we evaluate the time average F of F along the orbit. If a given orbit is subsequently 
assigned weight w, one may show that along this orbit the final phase-space density in the model 
is / = wF + wci where wc is the weight assigned to the composite orbit of the same energy. 

We used Liapunov exponents to select ~ 20 000 regular orbits from ~ 250 000 initial conditions 
in the potential that one obtains by assigning some mass-to-light ratio T to the photometric model 
of Binney et al. A Richardson-Lucy algorithm was then used to assign weights to both these orbits 
and 2000 composite orbits. 

As we saw above, the BGS photometric model contains structures at \z\ < 300 pc that are 
probably incorrectly deprojected spiral arms. We would not expect to be able to reproduce such 
structures with the present technique. Therefore in Fig. 3 we compare the projection from z = 300 pc 
upwards for (a) our final dynamical model (full contours) and (b) the BGS photometric model 
(dashed contours). While the two contour sets resemble each other in many respects, they do not 
agree precisely. This disagreement is not unexpected because the original mapping from the COBE 
data to a photometric model is surely not unique and one does not expect to be able to model an 
arbitrary density distribution dynamically. Therefore our next step will be to calculate orbits in the 
potential of our dynamical model and to populate them so as to optimally reproduce the COBE 
brightness distribution on the sky. We anticipate obtaining a good fit, which we shall be able to 
improve by calculating orbits in the potential of the new dynamical model and again fitting to the 
COBE data. 

5. Microlenses towards the Galactic Bulge /Bar (HongSheng Zhao) 

Galactic microlensing started out as a unique technique of detecting the Galactic dark matter 
when in the form of compact baryonic dark objects (such as brown dwarfs in the Galactic disc, and 
Machos in the Galactic halo) by obtaining light curves of 106~7 of stars towards the LMC/SMC 
and the Galactic bulge and searching for occasional transient gravitational amplification of light by 
these dark objects (see review of Paczyriski 1996). While more than 200 microlenses towards the 
bulge and about a dozen towards the LMC have been detected so far (Udalski et al. 1994, Alcock 
et al. 1997a,b), it is still unclear whether they are the baryonic dark matter which we have been 
searching for or simply ordinary faint, low-mass stars. Towards the LMC, some non-conventional 
models predict that the Magellanic Clouds are shrouded with a common faint stellar halo created 
by tidal interaction of the binary in their recent close encounter and these stellar tidal debris in the 
near/far side can significantly microlens or be microlensed by stars in the LMC (Zhao 1997a and 
references therein) with an optical depth comparable to the observed value of T0\,S ~ ( 3 ± l ) x l 0 ~ 7 

(Alcock et al. 1997b). These predictions need to be tested observationally before one can draw 
conclusions of any Machos in the halo, and the ratio of baryonic to non-baryonic dark matter. 
Towards the Galactic bulge/bar, microlensing by low-mass stars in the near side of the bar is 
expected to dominate the lenses in the disc (Zhao, Spergel & Rich 1995), and brown dwarfs should 
not make up most of the mass in the bar and the disc (Zhao, Rich & Spergel 1996). However, 
as I will point out, previous models which try to bring together the microlensing data with the 
COBE/DIRBE maps of the bar still suffer two serious problems. 
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Figure 4- Equatorial slices through two triaxial bar models that have identical surface brightness maps from the 
Sun's perspective: an extended boxy bar at a = 25° (thick dashed contours) and a more centrally concentrated and 
rounder bar at a = 50° (thin solid contours). The former should be more efficient in microlensing than the latter as 
the optimal geometry for microlensing is a nearly homogeneous and rectangular bar oriented with the line of sight 
passing through its diagonal line (Zhao & Mao 1996); such a geometry would put a high density of lenses well in front 
of the sources, hence increase the optical depth r oc p(Da — Di)2. Moreover, the boxy, less centrally concentrated bar 
also predicts a shallower potential well hence less massive lenses because m decreases with decreasing velocity and 
increasing size of the bar. Bars with the same 3D density distribution but different pattern speed are yet another 
source of non-uniqueness. 

First, we have seen that the 3D distribution of the bar cannot be uniquely recovered from 
the COBE/DIRBE maps (BGS, Zhao 1997b). Moreover, with Schwarzschild's method one can 
probably generate photometrically acceptable and dynamically consistent bars with a range of 
different pattern speeds and streaming-velocity fields. Consequently, the potential of the bar and 
the velocity distribution of stars in the bar will be non-unique (cf Fig. 4). This non-uniqueness 
propagates to the predicted lens masses m because m oc (fis — fi{) t ^ j 1 ® p , where //; and £); are 
the proper motion and distance of the lens, and fj,s and Ds are that of the source. For the same data 
of the event duration distribution, the predicted lens masses could differ in some cases by as much 
as a factor of 2 in different models of the bar (Zhao fe de Zeeuw 1997). This renders it meaningless 
to derive details of the mass spectrum using lensing data without first lifting the degeneracy in the 
dynamical models. 

Second, current theoretical models of the bar and the disc cannot fully account for the very 
high optical depth observed towards the bulge. As shown in Zhao & Mao (1996), even when the 
geometry of the bar is artificially tailored to enhance microlensing (cf. Fig. 4), the maximum optical 
depth is still lower than the observed by at least la. More physical bar models that fit either the 
star-count data for bulge red clump giants (Stanek et al. 1997) or the COBE/DIRBE infrared 
surface-brightness distribution (Bissantz et al. 1997), yield r ~ (0.8 — 1.2) x 10~6, which is about 
(2 — 3)<7 smaller than the value determined from observations of bulge red-clump giants (Alcock et 
al. 1997a) Tobs ~ (4 ± 1.2) x 10~6. 

While there is every prospect of breaking the degeneracy in the first problem by integrating 
microlensing data with star-count data for bulge red-clump giants and data for the gas/stellar 
kinematics, the implied extra lenses of the second problem are puzzling. Models that go beyond the 
standard COBE bar-plus-disc model would seem inevitable if the high optical depth derived by the 
experimental teams holds up over the next years as the number of microlensing events increases 
and our understanding of the experimental efficiency improves. 
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