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Monochromatic Solutions to x + y = z2

Ben Joseph Green and Soûa Lindqvist

Abstract. Suppose thatN is 2-coloured. _en there are inûnitelymanymonochromatic solutions to
x + y = z2 . On the other hand, there is a 3-colouring of N with only ûnitely many monochromatic
solutions to this equation.

1 Introduction

In this paper we will be concerned with the Ramsey theory of the equation x + y =

z2. It was shown relatively recently by Csikvári, Gyarmati, and Sárközy [7] that this
equation is not partition regular. Indeed, a 16-colouring of N is exhibited with no
monochromatic solutions to x + y = z2 other than the trivial one x = y = z = 2. _ere
remains the question ofwhether the 16 here is optimal. Ourmain theorem completely
answers this question.

_eorem 1.1 _ere is a 3-colouring ofNwith nomonochromatic solution to x+ y = z2

other than the trivial one. On the other hand, every 2-colouring ofN has inûnitelymany
monochromatic solutions to x + y = z2.

_e proof of the ûrst statement is rather simple. It is given in Section 2. By con-
trast, the proof that every 2-colouring has inûnitely many monochromatic solutions
to x + y = z2 is complicated and involves a surprisingly large number of tools from
additive combinatorics and number theory. It occupies the remaining sections of the
paper. We outline the argument now.

If N = V ∪ W , then let us assume that there are inûnitely many N such that
∣V ∩ [N , 2N)∣ ⩾ N/2. If this is not the case, then a corresponding statement holds
for W and we can switch the roles of V and W in what follows. Suppose that there
are no solutions to x + y = z2 in either V or W . By a fairly elaborate sequence of ar-
guments involving the arithmetic regularity lemma aswell as certain Fourier-analytic
and diophantine arguments, aswell as a deep result of Lagarias,Odlyzko, and Shearer,
we use this to show that for some q ∈ N and c > 0 the set W contains the progression
P([1, 1 + c];M , q) ∶= {n ∈ Z ∶ M ⩽ n ⩽ (1 + c)M , n ≡ 0(mod q)} for inûnitely many
integers M. _e details of these arguments can be found in Sections 4 and 5, certain
preliminary results having been assembled in Section 3. _e proof is concluded in
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Section 7 by performing an iterative argument to get a collection of further progres-
sions insideW , eventually showing that all suõciently large multiples of q lie in W .
An important ingredient here is a result concerning gaps between sums of two squares
with certain constraints, proved in Section 6.

_e fact that all suõciently large multiples of q lie in W leads immediately to a
contradiction, sinceW then obviously contains inûnitelymany solutions to x+y = z2.

Wemake heavy use of smooth cutoò functions in the latter half of the paper. _e
properties and constructions of these are recalled in Appendix A.

We remark that our arguments in fact give the following, logically stronger, re-
sult: if N is large, then any 2-colouring of [N ,CN8] has amonochromatic solution to
x + y = z2. Here, C is an absolute constant that could be computed in principle, but
thatwould be astronomically large due to the application of the regularity lemma. We
have found it easier to write the paper in such a way that this result does not imme-
diately follow from our arguments as written, and we leave the interested reader to
verify this statement.

Let us remark on the nice work of Khalfallah and Szemerédi [9], which, despite its
rather similar title, concerns a somewhat diòerent problem. _ey show that any ûnite
colouring of N contains a solution to x + y = z2 with x and y having the same colour
(but not necessarily z).

We also remark that for the modular version of the problem the answer is very
diòerent. Indeed, the second author [12] has shown that if p > p0(k) is a prime and
if Z/pZ is k-coloured, then there are≫k p2 monochromatic solutions to x + y = z2.

Notation We collect here some notation used in the paper. Most of it is standard.
If X is a ûnite set, then Ex∈X means 1/∣X∣∑x∈X . For t ∈ R, we write e(t) ∶= e2πi t . We
write T = R/Z and Td = (R/Z)d . We deûne a “norm” ∥ ⋅ ∥Td ∶Td → [0, 1

2 ] by deûn-
ing ∥x∥Td = ∥x̃∥ℓ∞(Rd

)
, where x̃ is the unique element of (− 1

2 ,
1
2 ]
d , which projects

to x under the natural homomorphism from Rd to Td . _e notation X = O(Y) and
X ≪ Y both mean that X ⩽ CY for some constant C. Unless dependence on other
parameters is indicated explicitly (for example X ≪ε Y), C will be an absolute con-
stant.

_e notation f̂ always denotes Fourier transform. At various points in the paper,
f may be a function on Z, R or Td . _e deûnitions we are using are recalled in the
text when there is any danger of confusion.

It is convenient to introduce apiece ofnotation that is less standard, but veryuseful.
If Λ ⊂ N is a set of integers, then we write

√
Λ ∶= {n ∈ N ∶ n2 ∈ Λ} (this is not the

same as {
√

n ∶ n ∈ Λ}).If A ⊂ N is a set, we write 2A = A + A ∶= {a + a′ ∶ a, a′ ∈ A}.
We will sometimes use notation such as 2

√
2A, which means

√
A+ A+

√
A+ A.

Finally, as hinted above, when I ⊂ R is a closed interval we write P(I;N , q) ∶=

{n ∈ Z ∶ n
N ∈ I, q∣n}.

2 A 3-colouring

In this short section we establish the easy part of _eorem 1.1. _at is, we exhibit a
3-colouring ofN forwhich the onlymonochromatic solution to x+y = z2 is the trivial
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solution x = y = z = 2. We colour all the points in each dyadic block

A i = {n ∈ N ∶ 2i
⩽ n < 2i+1

}, i = 0, 1, 2, . . . ,

in one colour c i . We assign c0 , c1 , c2 to be distinct, and then assign the colours c i ,
i ⩾ 3, inductively in such a way that c i ∉ {c⌊i/2⌋ , c⌊i/2⌋+1}. Note that this is possible,
since ⌊i/2⌋ + 1 < i for i ⩾ 3.
Assume now that x , y, z ∈ N have the same colour and that x + y = z2. Without

loss of generality we can assume that x ⩽ y. Let i ∈ {0, 1, 2, . . .} be such that y ∈ A i .
_en 2i < x+ y < 2i+2, and hence 2i/2 < z < 2(i+2)/2. Since i/2 ⩾ ⌊i/2⌋ and (i+2)/2 ⩽
⌊i/2⌋ + 2, it follows that z ∈ A[i/2] ∪ A[i/2]+1. By construction, the only way that such
a z can have the same colour as y is if i ∈ {0, 1, 2}, in which case x ⩽ y < 8, and so
z = 2 or 3. An easy case check conûrms that x = y = z = 2.

3 Results from the Literature

_e rest of the paper is devoted to the harder part of _eorem 1.1. In this section we
assemble some basic ingredients from the literature.

We will need a version ofWeyl’s inequality, which gives a bound for exponential
sums∑n⩽N e(p(n))with p∶N→ R a polynomial. _e usual proof ofWeyl’s inequality
leads to a factor of N o(1) that renders the result worse than trivial in certain circum-
stances (the “major arcs”). _is is of no consequence in typical applications, which
concern minor arc estimates in Waring’s problem. Here, however, it is important to
have an “ε-free” result. Such results are well known to experts, but it is hard to locate
a convenient reference. Wooley [16] discusses the pure power case (that is, sums of
the form ∑n⩽N e(αnk)), and it is likely that the same methods apply in greater gen-
erality, though the veriûcation of this would involve a foray into the inner workings
of [15, Chapter 4].
A self-contained source for the purposes of this paper is [6, Lemma 4.4] (described

in that paper as a “reformulation” ofWeyl’s inequality, a slightly inaccurate statement).
Here is the statement.

Proposition 3.1 Let k ∈ N. _en there is a constant Ck such that the following is true.
Let 0 < δ < 1/2. Let g∶Z → R be a polynomial of degree k with leading coeõcient αk
(that is, g(n) = αknk + . . . ). Suppose that ∣En∈Ie(g(n))∣ ⩾ δ, where I ⊂ Z is a discrete
interval. _en there is some q ∈ N, q ⩽ δ−Ck , such that ∥qαk∥R/Z ⩽ δ−Ck ∣I∣−k .

We will need this result in the cases where k = 2 and k = 4. _e proof in the latter
case is essentially as hard as that of the general case. We remark that in [6, Lemma 4.4]
the result is stated with I = [N], but the general case follows trivially from this by
translation (which does not aòect the leading coeõcient αk).

_e following deûnition is relevant to much of the paper.

Deûnition 3.2 Suppose that θ ∈ Rd . Let N ⩾ 1 be an integer and let A > 0 be
some real parameter. We say that θ is (A,N)-irrational if whenever r ∈ Zd ∖ {0} and
∥r∥1 ⩽ A, we have ∥r ⋅ θ∥T ⩾ A/N .

581

https://doi.org/10.4153/CJM-2017-036-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-036-1


B. J. Green and S. Lindqvist

We record a corollary of Proposition 3.1, phrased in the language of this deûnition.
_is corollary is the variant ofWeyl’s inequality that we have found to bemost useful
in this paper.

Corollary 3.3 Let k,N ∈ N. Suppose that I ⊂ Z is a (discrete) interval of length
⩽ N 1/k . Suppose that θ ∈ Rd is (A,N)-irrational, and suppose that r ∈ Zd ∖ {0}. _en

∣∑
n∈I
e(r ⋅ θnk

+ ⋅ ⋅ ⋅ )∣ ⩽ N 1/k
∥r∥1A−1/Ck .

Here, ⋅ ⋅ ⋅ denotes polynomial terms in n of degree k − 1 or lower, and the estimate is
uniform in the choice of these terms.

Proof Suppose that the sum is ⩾ δ∣I∣. _en, by Proposition 3.1 there is some q ∈ N,
q ⩽ δ−Ck , such that ∥qr ⋅ θ∥R/Z ⩽ δ−Ck ∣I∣−k . Since θ is (A,N)-irrational, we have
either (1) q∥r∥1 ⩾ A or (2) δ−Ck ∣I∣−k ⩾ A/N . In case (1), the bound on q implies
that δ−Ck∥r∥1 ⩾ A. In case (2), we have δ−Ck ⩾ A. Hence, in either case we have
δ−Ck∥r∥1 ⩾ A, and hence δ ⩽ (∥r∥1/A)1/Ck . _e result follows (in fact, with ∥r∥1

replaced by the smaller quantity ∥r∥1/Ck
1 ).

Turning to a diòerent type of ingredient of the paper, we require the following
estimate.

Proposition 3.4 Let S ⊂ {1, . . . ,N} be any set of squares. For t ∈ R/Z, write 1̂S(t) ∶=
∑n∈S e(tn). _en ∫

1
0 ∣ 1̂S(t)∣6dt ≪ N2.

Proof It is easy to see that the integral is∑x⩽3N r3,S(x)2, where r3,S(x) is the num-
ber of ways of writing x as n1 + n2 + n3 with n1 , n2 , n3 ∈ S. _is quantity is obviously
largest when S is the set of all squares ⩽ N . In this case, the stated bound is a well-
known consequence of theHardy–Littlewoodmethod.

Remark Using more advanced methods of harmonic analysis (related to the
Tomas–Stein restriction theorem) one can show a bound ∫

1
0 ∣ 1̂S(t)∣q ≪q N q/2−1 for

any q > 4.

Finally,wewill also use the following result of Lagarias,Odlyzko, and Shearer [10].

Proposition 3.5 Suppose that S ⊂ Z/qZ, where q is a positive integer, and that ∣S∣ >
11
32 q. _en S + S contains a quadratic residuemodulo q.

Remarks _e 11
32 in this theorem is sharp. For our purposes, 11

32 could be replaced
by any constant less than 1

2 . A simpler proof of such a statement could probably be
extracted from [10] or the companion paper [11], butwe do not know of any argument
that could be described as in any way routine.

Instead of the result of Lagarias,Odlyzko, and Shearer, it would suõce to have the
following statement: there is some ηk > 0 such that if (1 − ηk)q of the elements of
Z/qZ are k-coloured then there are x , y of the same colour with x + y a square. We
believe that such a statement can be established relatively painlessly using a simpliûed
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version of the arguments ofKhalfallah and Szemerédi [9]. _e second author provides
an account of this in an unpublished note [13,_eorem 1.2].

4 Capturing Most of the Squares in a Bohr Set

_is section contains the technical heart of the paper. Our aim is to prove the fol-
lowing result. Here, and in what follows,S(b, q) denotes the number of solutions to
x2 ≡ b(mod q) with x ∈ Z/qZ.

Proposition 4.1 Let η > 0, and let Ω∶N3 → N be a function (which may depend on
η), nondecreasing in each variable. Suppose that N > N0(Ω, η) is suõciently large, and
let A ⊂ [N , 2N] be a set of size at least N/2. _en there are q, d = Oη ,Ω(1), ε ≫η ,Ω 1,
b ∈ Z/qZ, x ∈ [2, 4], and θ , z ∈ Rd such that
(i) b is a quadratic residuemodulo q;
(ii) θ is (Ω(q, d , 1/ε),N)-irrational;
(iii) A + A contains all but at most ηS(b, q)(2ε)d+1q−1N 1/2 of the squares in the set

{n ∈ N ∶ n ≡ b(mod q), ∣ nN − x∣, ∥θn − z∥Td ⩽ ε}.

Remarks _e assumption ∣A∣ ⩾ N/2 could be weakened to ∣A∣ ⩾ cN for any
c > 11/32, using essentially the same proof. We do not record this explicitly as Propo-
sition 4.1 seems unlikely to be of independent interest. In our applications, η will be
an absolute constant that could be speciûed explicitly if desired (η = 10−10 should
certainly be admissible).

_e key tool in the proof of Proposition 4.1will be the arithmetic regularity lemma,
introduced in [4]. _e formulation we use here, in amore general guise, is themain
result of [5]. _at paper is long and quite diõcult, but only Sections 1 and 2 of it are
relevant to us. Furthermore, that paper establishes a regularity lemma for theGowers
U s+1-norm for general s, whereas we only need the case s = 1. _is means that the
notion of anilsequence, beyond the abelian case, isnot relevanthere. Acomplete, self-
contained proof of the arithmetic regularity lemma in the form we need it here can
be written up in less than 10 pages. Conveniently, such a writeup has been provided
by Eberhard [2].

Here is the arithmetic regularity lemma in the form in which we will need it.

Proposition 4.2 Suppose we are given δ > 0 and an increasing function F∶N → R+.
_en there exists Mmax ≪δ ,F 1 such that for any function f ∶ [N , . . . , 2N) → [0, 1]
there is an M ⩽ Mmax and a decomposition f = ftor + fsml + funf into functions
taking values in [−1, 1], where ∑N⩽n<2N ∣ fsml(n)∣ ⩽ δN , ∥ f̂unf∥∞ ⩽ N/F(M) and
ftor(n) = F(n(mod q), n/N , θn) for some q, d ⩽ M and some function F∶Z/qZ ×

[1, 2] × Td → [0, 1] with Lipschitz constant at most M. Furthermore, θ can be taken to
be (F(M),N)-irrational.

We remark that in the works previously cited the function funf was controlled in
terms of the Gowers U2-norm, rather than in terms of the supremum norm of the
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Fourier transform, deûned by

f̂unf(t) ∶= ∑
N⩽n<2N

funf(n)e(−tn),

where e(x) = e2πix . However, it is well known (and easy to prove) that for bounded
functions, these norms are essentially equivalent.

Moreover, fsml is traditionally controlled in the ℓ2-norm, rather than the ℓ1-norm
as we have here. However, since fsml is bounded by 1, these two norms are equivalent
too. _us, Proposition 4.2 is equivalent to the arithmetic regularity lemma as usually
stated.

Let us now begin the proof of Proposition 4.1 in earnest. Apply Proposition 4.2
with f = 1A, δ < η some small constant (δ = 10−100 would be permissible), and
the function F to be speciûed later (it will depend on Ω and η). _is gives integers
q, d ⩽ M, θ ∈ Rd , and F∶Z/qZ × [1, 2] × Td → [0, 1] and a decomposition

1A = ftor + fsml + funf

with the properties described in the statement of Proposition 4.2 just given.

Lemma 4.3 Suppose that δ is suõciently small and that F grows suõciently rapidly.
_en ∫ Fdµ > 9

20 , where µ denotes the natural1 measure on Z/qZ ×R × Td .

Remark Here, 9
20 is simply a convenient fraction less than 1

2 . In fact, ∫ Fdµ can be
made as close to 1

2 as one wishes by reducing δ and increasing F(M).

Proof We begin by noting that, by assumption,

(4.1) EN⩽n<2N 1A(n) ⩾
1
2
.

If δ < 1
100 , then

(4.2) ∣EN⩽n<2N fsml(n)∣ <
1

100
.

Also, introducing a smooth majorant ψ for [N , 2N) with ψ(n) = 1 for N ⩽ n < 2N ,
we have

∣EN⩽n<2N funf(n)∣ = ∣
1
N ∑

n
ψ(n) funf(n)∣

= ∣
1
N ∫

1

0
ψ̂(t) f̂unf(t)dt∣ ⩽

∥ψ̂∥1

F(M)
.

With an appropriate choice of ψ (see Lemma A.1 for details) we have ∥ψ̂∥1 = O(1),
and so if F(M) is suõciently large, it follows that

(4.3) ∣EN⩽n<2N funf(n)∣ <
1

100
.

1_e product of the uniform probabilitymeasure on Z/qZ, Lebesguemeasure on R and normalised
Lebesguemeasure on Td .
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We also have

EN⩽n<2N ftor(n) = EN⩽n<2NF(n(mod q),
n
N
, θn) .

However, it was proven2 in [3, Lemma A.4] that, if F grows suõciently rapidly and if
N is big enough,

(4.4) ∣EN⩽n<2NF(n(mod q),
n
N
, θn) − ∫ Fdµ∣ <

1
100

.

Combining (4.1)–(4.4) concludes the proof.

Now let U ⊂ Z/qZ be the set of all u ∈ Z/qZ for which

(4.5) ∫

2

1
∫

Td
F(u, x , z)dzdx ⩾

1
20

and for which

(4.6) ∑
N⩽n<2N

n≡u(mod q)

∣ fsml(n)∣ ⩽
20δ
q

N .

One should think, informally, of these being the residue classes (mod q) on which A
has “signiûcant mass”.

Lemma 4.4 Suppose that δ is suõciently small and that F grows suõciently rapidly.
_ere are elements u, u′ ∈ U such that u + u′ is a quadratic residuemodulo q.

Proof Let U1 ⊂ Z/qZ be the set of all u for which (4.5) fails, and let U2 be the set of
all u for which (4.6) fails. Since∑N⩽n<2N ∣ fsml(n)∣ ⩽ δN , we have ∣U2∣ ⩽

q
20 .

Furthermore, by Lemma 4.3 we have

9
20

< ∫ Fdµ =
1
q ∑

u∈Z/qZ
∫

2

1
∫

Td
F(u, x , z)dzdx ⩽

1
20

+
1
q
∣(Z/qZ) ∖U1∣.

It follows that

∣U ∣ ⩾ ∣(Z/qZ) ∖U1∣ − ∣U2∣ ⩾ (
9
20

−
1
20

−
1
20

)q >
11q
32

.

_e result now follows from Proposition 3.5.

Henceforth, wewill ûx two residue classes u, u′ ∈ U forwhich u+u′ is a quadratic
residuemodulo q. Deûne parameters ε > ε′ > 0 by

(4.7) ε ∶=
δ
M

and

(4.8) ε′ ∶=
δ
dq

(2ε)d+1 .

2_is is not an especially diõcult argument; roughly, one approximates F by a function with ûnite
Fourier support, then uses the irrationality of θ in estimating the resulting exponential sums.
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Note that since q, d ⩽ M, we have

(4.9) ε′ ⩾
δ

M2 (
2δ
M

)
M+1

≫δ ,M 1.

(_e precise form of this bound is unimportant; what matters is that there is a lower
bound depending only on δ and M.)
For x , x′ ∈ [1, 2] and z, z′ ∈ Td , deûne

Ex ,z ∶= ∑
N⩽n<2N

n≡u(mod q)
∣
n
N −x ∣⩽ε

∥θn−z∥Td ⩽ε

∣ fsml(n)∣ and E′x′ ,z′ ∶= ∑
N⩽n<2N

n≡u′(mod q)
∣
n
N −x

′
∣⩽ε′

∥θn−z′∥Td ⩽ε
′

∣ fsml(n)∣.

We have

∫

2

1
∫

Td
Ex ,zdzdx = ∑

N⩽n<2N
n≡u(mod q)

∣ fsml(n)∣∫
2

1
1∣ nN −x ∣⩽εdx ∫Td

1∥θn−z∥Td ⩽εdz

⩽ (2ε)d+1
∑

N⩽n<2N
n≡u(mod q)

∣ fsml(n)∣ ⩽ (2ε)d+1 20δ
q

N ,

the last step being a consequence of (4.6). It follows from this and (4.5) that

∫

2

1
∫

Td
(F(u, x , z) −

q
800Nδ(2ε)d+1 Ex ,z)dzdx ⩾

1
40
,

and so there are speciûc choices of x , z such that

F(u, x , z) −
q

800Nδ(2ε)d+1 Ex ,z ⩾
1
40
,

which implies that

(4.10) F(u, x , z) ⩾
1
40

and Ex ,z ⩽
800δN

q
(2ε)d+1 .

Similarly, there are x′ , z′ such that

(4.11) F(u′ , x′ , z′) ⩾
1
40

and Ex′ ,z′ ⩽
800δN

q
(2ε′)d+1 .

From now on, we ûx these speciûc choices of x , z, x′ , z′ and set

X ∶= {n ∈ N ∶ n ≡ u(mod q), ∣
n
N
− x∣ , ∥θn − z∥Td ⩽ ε} ,(4.12)

X′
∶= {n ∈ N ∶ n ≡ u′(mod q), ∣

n
N
− x′∣ , ∥θn − z′∥Td ⩽ ε′} ,(4.13)

and

(4.14) Y ∶= {n ∈ N ∶ n ≡ u + u′(mod q), ∣
n
N
− (x + x′)∣ , ∥θn − (z + z′)∥Td ⩽ ε} .

Note that with this notation (4.10) and (4.11) imply

(4.15) ∑
n∈X

∣ fsml(n)∣ ≪ δ(2ε)d+1q−1N , ∑
n∈X′

∣ fsml(n)∣ ≪ δ(2ε′)d+1q−1N .
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Lemma 4.5 Suppose that F grows suõciently rapidly, and that N is suõciently large
in terms of δ,M. _en the number of squares in Y is≪ (2ε)d+1q−1S(u + u′ , q)N 1/2.

Proof Let A be the set of all a ∈ Z/qZ for which a2 ≡ u + u′(mod q). _us, ∣A ∣ =

S(u + u′ , q). An upper bound for the number of squares in Y is then

∑
a∈A

∑
n∈I

1n≡a(mod q)ψ+ε (θn
2
− z − z′),

where I = [(x + x′ − ε)1/2N 1/2 , (x + x′ + ε)1/2N 1/2] and ψ+ε is the majorant for the
characteristic function of the ball Bε(0) in Td constructed in Lemma A.2. Fourier
expanding

1n≡a(mod q) =
1
q ∑

r(mod q)
e(−

ra
q
) e(

rn
q

) ,

ψ+ε (t) = ∑
r∈Zd

ψ̂+ε (r)e(r ⋅ t),

this can be written as

(4.16) ∑
a∈A

1
q ∑

r(mod q)
e(−

ra
q
) ∑

r∈Zd
ψ̂+ε (r)e(−r ⋅ (z + z′))∑

n∈I
e(r ⋅ θn2

+
rn
q

) .

_e contribution from r = 0 is
1
q
(∫ ψ+ε ) ∑

a∈A
∑

r(mod q)
e(−

ra
q
)∑

n∈I
e(

rn
q

) .

If r /= 0, the inner sum over n is at most q in magnitude, since the sum of e(rn/q)
over any interval of length q is zero. _e total contribution from these terms is thus
bounded independently of N , and so can be ignored if N is large enough. _e contri-
bution from r = 0 is 1

qS(u +u′ , q)(∫ ψ+ε )∣I∣, which is≪ (2ε)d+1q−1S(u +u′ , q)N 1/2

by Lemma A.2(i) and the bound ∣I∣ ≪ εN 1/2. _e contribution to (4.16) from r /= 0 is
bounded above by

S(u + u′ , q) ∑
r∈Zd

∖{0}
∣ψ̂+ε (r)∣ sup

r(mod q)
∣∑
n∈I
e(r ⋅ θn2

+
r
q
n) ∣ .

By Corollary 3.3 and Lemma A.2(ii), this is

≪ qN 1/2F(M)
−1/C2 ∑

r∈Zd
∖{0}

∣ψ̂+ε (r)∣∥r∥1 ≪δ ,M N 1/2F(M)
−1/C2 .

(Lemma A.2(ii) gives an implied constant depending on d , ε, but we have d ⩽ M and
ε = δ/M.) Hence if F is chosen to be suõciently rapidly-growing, this is smaller than
( 2δ

M )M+1M−1N 1/2, which is at most N 1/2(2ε)d+1q−1N 1/2.

We will also need the following fact, proved using very similar techniques.

Lemma 4.6 Suppose that F grows suõciently rapidly, and that N is suõciently large
in terms of δ,M. Suppose that n ∈ X. _en the number of n′ ∈ X′ for which n + n′ is a
square is≪ (2ε′)d+1q−1S(u + u′ , q)N 1/2, uniformly in n.
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Proof Once again, write A for the set of square roots of u + u′ in Z/qZ. Writing
m2 = n + n′, an upper bound for the quantity in question is

∑
a∈A

∑
m∈J

1m≡a(mod q)ψ+ε′(θm
2
− θn − z′),

where J = [(n+(x′−ε′)N)1/2 , (n+(x′+ε′)N)1/2] andψ+ε′ is themajorant constructed
in Lemma A.2 (but now with the smaller parameter ε′). Expanding in Fourier series
much as before, this can be written as

∑
a∈A

1
q ∑

r(mod q)
e(−

ra
q
) ∑

r∈Zd
ψ̂+ε′(r)e(−r ⋅ θ(n + z′)) ∑

m∈J
e(r ⋅ θm2

+
rm
q

) .

Arguing in an essentially identical fashion to the proof of Lemma 4.5, we see that this
is bounded by amain termof size≪ (2ε′)d+1q−1S(u+u′ , q)N 1/2 plus an error of size
≪δ ,M N 1/2F(M)−1/C2 . Choosing F to be suõciently rapidly-growing, and recalling
from (4.9) that ε′ ≫δ ,M 1, this can bemade≪ (2ε′)d+1q−1S(u + u′ , q)N 1/2.

Finally, we need yet another fact with a similar proof. Deûne the set Y− ⊂ Y to be

(4.17) {n ∈ N ∶ n ≡ u + u′(mod q), ∣
n
N
− (x + x′)∣ , ∥θn − (z + z′)∥Td ⩽ ε − 2ε′} .

Lemma 4.7 Suppose that F grows suõciently rapidly. _en the number of squares in
Y ∖ Y− is≪ δ(2ε)d+1q−1N 1/2.

Proof If n ∈ Y ∖ Y−, then either

ε − 2ε′ < ∣
n
N
− (x + x′)∣ < ε(4.18)

or

ε − 2ε′ < ∥θ in − (z i + z′i)∥Td < ε(4.19)

for some i ∈ {1, . . . , d}. _e number of squares satisfying (4.18) is elementarily seen
to be O(ε′N 1/2), which3 is bounded as desired because of the choice of ε′ (cf. (4.8)).

We now obtain an upper bound for the number of squares satisfying (4.19). By
translating the function ψ+ε constructed in Lemma A.2 (with d = 1 in that lemma) we
can obtain a smoothmajorant ψ for the interval {t ∈ T ∶ ε−2ε′ < ∥t−(z i + z′i)∥T < ε}
such that

(4.20) ∫ ψ ≪ ε′ , ∑
r
∣ψ̂(r)∣∣r∣ ≪ε′ 1.

_en the number of squares satisfying (4.19) is bounded above by

∑
n⩽2N 1/2

ψ(θ in2
) =∑

r∈Z
ψ̂(r) ∑

n⩽2N 1/2
e(rθ in2

).

3Obviously this bound is rather crude, as we have completely ignored the fact that additionally
n ≡ u + u′(mod q) and ∥θn − (z + z′)∥Td ⩽ ε; but this is of little consequence in the grand scheme of
the argument.
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_e term with r = 0 is 2N 1/2(∫ ψ) ≪ ε′N 1/2. By Corollary 3.3 (applied with d = 1),
the contribution from the terms with r /= 0 is

≪ N 1/2F(M)
−1/C2 ∑

r/=0
∣ψ̂(r)∣∣r∣.

By (4.20) this is ≪ε′ N 1/2F(M)−1/C2 , which, in view of (4.9), is O(ε′N 1/2) provided
F(M) grows suõciently rapidly. _us, the total number of n satisfying (4.19) for some
i ∈ {1, . . . , d} is O(ε′dN 1/2), which is bounded as claimed by the choice of ε′.

To complete the proof of Proposition 4.1 it suõces to show that A+ A contains all
but ≪ δ(2ε)d+1q−1S(u + u′ , q)N 1/2 of the squares in Y . Indeed, if δ is chosen small
enough, then this will be ⩽ η(2ε)d+1q−1S(u + u′ , q)N 1/2, the bound claimed. Let
S ⊂ Y be the set of all squares in Y that are not in A + A; thus, it suõces to establish
the bound

(4.21) ∣S∣ ≪ δ(2ε)d+1q−1S(u + u′ , q)N 1/2 .

Recall the deûnitions (4.12), (4.13) of X , X′. We will need to introduce smoothed
approximants χ, χ′ to the characteristic functions of X , X′, respectively, with the fol-
lowing properties:
(a) χ is aminorant for X, that is to say 0 ⩽ χ(n) ⩽ 1X(n) for all n;
(b) χ′ is aminorant for X′, that is to say 0 ⩽ χ′(n) ⩽ 1X(n) for all n;
(c) χ(n) = 1 on the set {n ∈ N ∶ n ≡ u(mod q), ∣ nN − x∣, ∥θn − z∥Td ⩽ ε − ε′};
(d) ∫

1
0 ∣ χ̂(t)∣dt, ∫

1
0 ∣ χ̂′(t)∣dt = OM(1);

(e) ∑n χ′(n) ≫ (2ε′)d+1q−1N .
Such a function is constructed in Lemma A.3 (whichmust be applied twice, oncewith
parameter ε and once with parameter ε′).

In particular, it follows from (4.15) that

(4.22) ∑
n

∣ fsml χ(n)∣ ≪ δ(2ε)d+1q−1N , ∑
n

∣ fsml χ′(n)∣ ≪ δ(2ε′)d+1q−1N .

Our assumption that A+ A is disjoint from S implies that

(4.23) ∑
n∈S

(1Aχ ∗ 1Aχ′)(n) = 0.

To investigate this expression, we use the decomposition from the regularity lemma,

1A = ftor + fsml + funf .

_e le�-hand side of (4.23) can then be expanded as a sum of 9 terms

T●,●′ ∶=∑
n∈S

( f●χ ∗ f●′ χ′)(n),

where ●, ●′ ∈ {tor, sml, unf}. _us

(4.24) ∣Ttor,tor∣ ⩽ ∑
(●,●′)/=(tor,tor)

∣T●,●′ ∣.

We analyse these 9 terms T●,●′ separately, beginning with the “main term” Ttor,tor.
Writing

ftor(n) = F(n(mod q),
n
N
, θn) ,
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we can expand Ttor,tor as

∑
n∈S
∑
m
F(m(mod q),

m
N
, θm) χ(m)

× F(n −m(mod q),
n −m

N
, θ(n −m)) χ′(n −m).

Since χ(m) is supportedwherem ≡ u(mod q) and ∣mN −x∣, ∥θm−z∥Td ⩽ ε, and since
F is M-Lipschitz, using (4.10), we have that

F(m(mod q),
m
N
, θm) χ(m) = (F(u, x , z) + O(Mε)) χ(m) ⩾

1
80
χ(m)

if δ is suõciently small (note, recalling the deûnition (4.7) of ε, thatMε = δ). Similarly,

F(n −m(mod q),
n −m

N
, θ(n −m)) χ′(n −m) ⩾

1
80
χ′(n −m).

It follows that

Ttor,tor ≫∑
n∈S
∑
m
χ(m)χ′(n −m) =∑

n∈S
∑
m
χ(n −m)χ′(m).(4.25)

Recall the deûnition (4.17) of Y− ⊂ Y . If n ∈ Y− and m ∈ Supp(χ′) ⊂ X′ then n −m ≡

u(mod q) and ∣ n−m
N − x∣, ∥θ(n−m)− z∥Td ⩽ ε− ε′, and therefore by property (c) of χ

we have χ(n −m) = 1. It follows from these observations, (4.25) and point (e) of the
properties of χ, χ′ that

Ttor,tor ≫ ∑
n∈S∩Y−

∑
m
χ′(n −m)χ′(m) ≫ ∣S ∩ Y−∣∑

m
χ′(m)(4.26)

≫ ∣S ∩ Y−∣(2ε′)d+1q−1N .

We set this estimate aside for later use.
Next we look at the terms T●,●′ in which ●′ = sml. Here we require the a priori

bound

(4.27) ∣S∣ ≪ (2ε)d+1q−1S(u + u′ , q)N 1/2 .

_is is, of course, weaker than the result we are trying to prove, but it follows imme-
diately from Lemma 4.5. All of these terms T●,sml have the form

T●,sml =∑
n∈S

(g ∗ fsml χ′)(n) =∑
n∈S
∑
m

g(n −m) fsml χ′(m),

where g is some function bounded pointwise by 1. _us,

∣T●,sml∣ ⩽ ∣S∣∑
m

∣ fsml χ′(m)∣,

and so, by (4.27) and (4.22),

(4.28) T●,sml ≪ δ(4εε′)d+1q−2S(u + u′ , q)N3/2 .

Next we turn to the bounding of

Tsml,tor =∑
n∈S

( fsml χ ∗ ftor χ′)(n).

_is expands as

∑
n∈S
∑
m
fsml χ(n −m)F(m(mod q),

m
N
, θm) χ′(m).
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By the Lipschitz property of F and the fact that χ′ is supported on X′, this is

F(u′ , x′ , z′)∑
m

n∈S

fsml χ(n −m)χ′(m) + O(ε′M)∑
m

n∈S

∣ fsml χ(n −m)∣χ′(m).

Since ε′ < ε < 1/M, it follows that

Tsml,tor ≪∑
n∈S
∑
m

∣ fsml χ(n −m)∣χ′(m) = ∑
n′ ,m

∣ fsml χ(n′)∣χ′(m)1S(n′ +m).

By (4.22), this is

≪ δ(2ε)d+1q−1N sup
n′∈Supp χ

∑
m
χ′(m)1S(n′ +m).

By Lemma 4.6 and the fact that Supp χ ⊂ X, Supp χ′ ⊂ X′, we conclude that

(4.29) Tsml,tor ≪ δ(4εε′)d+1q−2S(u + u′ , q)N3/2 .

In all of the remaining terms T●,●′ that we have yet to bound, at least one of ●, ●′ is
unf . If ● = unf , then such a term has the form

Tunf ,●′ =∑
n∈S

( funf χ ∗ g)(n),

where g is some function bounded pointwise by 1. _is can bewritten in Fourier space
as

∫

1

0
f̂unf χ(t)ĝ(t)̂1S(t)dt,

where g is a bounded function. By Hölder’s inequality, the right-hand side here is
bounded above by

(4.30) ∥ f̂unf χ∥1/3
∞

( ∫

1

0
∣ f̂unf χ∣2)

1/3
( ∫

1

0
∣ĝ∣2)

1/2
( ∫

1

0
∣ 1̂S ∣6)

1/6
.

By Parseval’s identity and the boundedness of funf , g , χ, we have

∫

1

0
∣ f̂unf χ∣2 ,∫

1

0
∣ĝ∣2 ≪ N ,

and Proposition 3.4 tells us that

∫

1

0
∣ 1̂S(t)∣6dt ≪ N2 .

Finally, we note that

f̂unf χ(t) = ∫
1

0
f̂unf(t′) χ̂(t − t′)dt′ ,

and so by property (d) of χ we have

∥ f̂unf χ∥∞ ⩽ ∥ f̂unf∥∞∥ χ̂∥1 ≪M NF(M)
−1 .

Combining all these estimates together gives

Tunf ,●′ =∑
n
( funf χ ∗ g)(n)1S(n) ≪M N3/2F(M)

−1/3 .
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If the growth of F is suõciently rapid, we obtain in view of the fact that d , q ⩽ M,
ε = δ/M and (4.9) that

(4.31) Tunf ,●′ ≪ δ(4εε′)d+1q−2N3/2 .

An almost identical argument (relying instead on the bound ∥χ′∥1 = OM(1)) yields

(4.32) T●,unf ≪ δ(4εε′)d+1q−2N3/2 .

Combining (4.26), (4.28), (4.29), (4.31), and (4.32) with (4.24), we obtain

∣S ∩ Y−∣(2ε′)d+1q−1N ≪ δ(4εε′)d+1q−2S(u + u′ , q)N3/2 ,

and therefore
∣S ∩ Y−∣ ≪ δ(2ε)d+1q−1S(u + u′ , q)N 1/2 .

Lemma 4.7 provides the bound

∣S ∩ (Y ∖ Y−)∣ ≪ δ(2ε)d+1q−1S(u + u′ , q)N 1/2 .

Combining this with the preceding yields

∣S∣ ≪ δ(2ε)d+1q−1S(u + u′ , q)N 1/2 ,

which is exactly (4.21). _is completes the proof of Proposition 4.1.

5 The Square-root of a Bohr Set

Suppose that N is partitioned into two colour classes V andW , neither of which has
amonochromatic solution to x + y = z2. _emain result of the last section, Proposi-
tion 4.1, shows that if V ∩ [N , 2N) has size at least N/2, then V + V contains almost
all of the squares in a “Bohr set” Λ ∶= {n ∈ N ∶ n ≡ b(mod q), ∣ nN −x∣, ∥θn−z∥Td ⩽ ε}.
_is means that most of

√
Λ must lie in W . In this section we examine the additive

properties of such square roots
√

Λ. (Recall that
√

Λ is by deûnition the set of integers
n such that n2 ∈ Λ.)

Here is themain result of the section.

Proposition 5.1 Let η > 0. _en there is a function Ω∶N3 → R+ with the following
property. Suppose we have q, d ∈ N, ε > 0, x ∈ [0, 3], θ , z ∈ Td , and N ∈ N. Suppose
that θ is (Ω(q, d , 1/ε),N)-irrational. Suppose that b is a squaremodulo q and set

Y ∶= {n ∈ N ∶ n ≡ b(mod q), ∣
n
N
− x∣ , ∥θn − z∥Td ⩽ ε} .

Let Y ′ ⊂ Y be a set containing all but at most η(2ε)d+1q−1S(b, q)N 1/2 of the squares
in Y . _en, for all but at most O(ηεq−1N 1/4) of the elements t ∈ Q, where

Q ∶= P([(2x)1/4
−
ε

100
, (2x)1/4

+
ε

100
] ;N 1/4 , q) ,

we have t2 ∈
√
Y ′ +

√
Y ′.

(Recall that P(I;N , q) ∶= {n ∈ Z ∶ n/N ∈ I, q∣n}.)
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_e proof of this is a little complicated, sowe break it down into a few lemmas. We
have

√
Y = ⋃a∈A Za

+
∪ Za

−
, where

(5.1) Za
±
∶= {n ∈ N ∶ n ≡ ±a(mod q), (x − ε)1/2N 1/2

⩽ n ⩽ (x + ε)1/2N 1/2 ,

∥θn2
− z∥Td ⩽ ε} ,

andA is the set of square roots of b in Z/qZ. Deûne

Z̃a
±
∶=

√
Y ′ ∩ Za

±
;

then
∑
a∈A

∣Za
±
∖ Z̃a

±
∣ ≪ η(2ε)d+1q−1S(b, q)N 1/2 ,

by assumption. It follows that there is some a ∈ A such that

(5.2) ∣Za
±
∖ Z̃a

±
∣ ≪ η(2ε)d+1q−1N 1/2 .

Henceforth, we ûx this value of a and write Z± = Za
±
for brevity. To orient ourselves

we remark that, if Ω grows suõciently rapidly, then one could prove that

∣Z±∣ ∼ (2ε)d+1q−1N 1/2

(here we are using ∼ somewhat informally). We will not need to explicitly prove any
statement of this kind separately.

Lemma 5.2 Suppose that n+ ∈ Z+. _en

#{n− ∈ Z− ∶ n− + n+ = q2m2 for some m ∈ Z} ≪ (2ε)d+1q−1N 1/4 ,

the implied constant being uniform in n+ and independent of a (recall that Z± depends
on a). Similarly, if n− ∈ Z−, then

#{n+ ∈ Z+ ∶ n− + n+ = q2m2 for some m ∈ Z} ≪ (2ε)d+1q−1N 1/4 ,

the implied constant being uniform in n− and in a.

Proof _e quantity we are interested in can be written as

∑
m∈I(n+)

1∥θ(q2m2
−n+)2−z∥Td ⩽ε ,

where I(n+) is the interval
1
q
((x − ε)1/2N 1/2

+ n+)
1/2

⩽ m ⩽
1
q
((x + ε)1/2N 1/2

+ n+)
1/2
,

the cardinality of which satisûes

(5.3) ∣I(n+)∣ ≪ εq−1N 1/4

uniformly in n+. To bound this above, take amajorant ψ+ε to the unit ball Bε(0) ⊂ Td ,
as in Lemma A.2. _en our quantity is at most

∑
m∈I(n+)

ψ+ε (θ(q
2m2

− n+)2
− z) .
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Fourier expanding ψ+ε , this is

∑
r∈Zd

ψ̂+ε (r) ∑
m∈I(n+)

e(q4r ⋅ θm4
+ ⋅ ⋅ ⋅),

where the dots denote terms of degree at most 2 in m (which can depend on
r, n+ , θ , z, q). _e contribution from r = 0 is ∣I(n+)∣(∫ ψ+ε ), which, by (5.3) and
Lemma A.2(i), is ≪ (2ε)d+1q−1N 1/4. By Corollary 3.3 (and since ∣I(n+)∣ ⩽ N 1/4),
we have

∣ ∑
m∈I(n+)

e(q4r ⋅ θm4
+ ⋅ ⋅ ⋅)∣ ⩽ N 1/4(

q4∥r∥1

Ω(q, d , 1/ε)
)

1/C4 .

By Lemma A.2(ii), the contribution from r /= 0 is therefore

≪ N 1/4(
q4

Ω(q, d , 1/ε)
)

1/C4
∑

r∈Zd
∖{0}

∣ψ̂+ε (r)∣∥r∥1

≪ε ,d N 1/4(
q4

Ω(q, d , 1/ε)
)

1/C4 ,

which is also≪ (2ε)d+1q−1N 1/4 if Ω is chosen appropriately.

Deûne progressions P+ , P− by

(5.4) P± ∶= {n ∈ N ∶ n ≡ ±a(mod q), (x − ε)1/2N 1/2
⩽ n ⩽ (x + ε)1/2N 1/2} ,

and recall from the statement of Proposition 5.1 the deûnition of Q, viz.

Q ∶= P([(2x)1/4
−
ε

100
, (2x)1/4

+
ε

100
] ;N 1/4 , q) .

Observe that if t ∈ Q then t2 is a sum p+ + p− in≫ εq−1N 1/2 ways. Indeed

((2x)1/2
−
ε
10

)N 1/2
< t2 < ((2x)1/2

+
ε
10

)N 1/2

and t2 ≡ 0(mod q), hence for any of the≫ εq−1N 1/2 values of p+ with

(x 1/2
−
ε
10

)N 1/2
< p+ < (x 1/2

+
ε
10

)N 1/2

and p+ ≡ a(mod q) we have t2 − p+ ∈ P−.
Note that from (5.1) and (5.4) we have

(5.5) Z± = {n ∈ P± ∶ ∥θn2
− z∥Td ⩽ ε}.

_is suggests the intuition behind the arguments that follow,which is that Z± behaves
like a “pseudorandom” subset of P± of density (2ε)d . _us, it is reasonable to expect
that a typical t2, t ∈ Q, will have≫ (2ε)2d+1q−1N 1/2 representations as z+ + z− with
z+ ∈ Z+, z− ∈ Z−.

Lemma 5.3 Suppose that Ω grows suõciently rapidly. Write r(n) for the number of
representations of n as z+ + z− with z± ∈ Z±. Suppose that Ω grows fast enough. _en
all but at most ηεq−1N 1/4 of elements t ∈ Q, have r(t2) ≫ (2ε)2d+1q−1N 1/2.
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Proof If the lemma is false, then for any absolute constant c (which wemay specify
later) there is a set T ⊂ Q, ∣T ∣ ⩾ ηεq−1N 1/4, such that

(5.6) ∑
t∈T

r(t2) ⩽ c(2ε)2d+1q−1
∣T ∣N 1/2 .

We ûrst introduce a smoothed variant of r, deûned by r̃(n) = f+ ∗ f−(n), where

f±(n) = 1P±(n)ψ
−

ε (θn
2
− z),

where ψ−ε is a suitable minorant to Bε(0), as constructed in Lemma A.2. From (5.5)
we see that 1Z± ⩾ f± pointwise, and so r(n) ⩾ r̃(n) pointwise. Deûne

g±(n) = 1P±(n)(ψ
−

ε (θn
2
− z) − ∫ ψ−ε ) .

Fourier expanding ψ−ε , we see that

ĝ±(t) = ∑
r∈Zd

∖{0}
ψ̂−ε (r) ∑

n∈P+
e(r ⋅ θn2

+ nt − r ⋅ z).

Parametrising n ∈ P+ as n = qm + b for m in some interval I with ∣I∣ = ∣P+∣ < N 1/2, it
follows from Corollary 3.3 that the inner sum is≪ N 1/2Ω(q, d , 1/ε)−1/C2∥r∥1. _ere-
fore, by Lemma A.2(ii), we have

∥ĝ±∥∞ ≪ N 1/2Ω(q, d , 1/ε)−1/C2 ∑
r∈Zd

∣ψ̂−ε (r)∣∥r∥1(5.7)

≪ε ,d N 1/2Ω(q, d , 1/ε)−1/C2 .

Now, writing

f± = 1P± ∫ ψ−ε + g± ,

wemay expand∑t∈T r̃(t2) as a sum of four terms. _e “main term” is

Emain = (∫ ψ−ε )
2
∑
t∈T

1P+ ∗ 1P−(t
2
).

_e three error terms each have the shape

Eerror =∑
t∈T

g± ∗ h∓(t2),

where h∓ is bounded pointwise by 1 and supported on P∓.
We have already remarked that if t ∈ Q, then t2 has≫ εq−1N 1/2 representations as

p+ + p−, and therefore

(5.8) Emain ≫ (2ε)2d
⋅ ∣T ∣ ⋅ εq−1N 1/2

≫ η(2ε)2d+2q−2N3/4 .

On the other hand,

Eerror = ∫
1

0
ĝ±(θ)ĥ∓(θ)1̂T2(θ)dθ ,

where T2 ∶= {t2 ∶ t ∈ T}. Using the same application of Hölder’s inequality as in
(4.30),

Eerror ≪ ∥ĝ±∥1/3
∞

( ∫

1

0
∣ĝ±∣2)

1/3
( ∫

1

0
∣ĥ∓∣2)

1/2
( ∫

1

0
∣ 1̂T2 ∣

6)
1/6

.

595

https://doi.org/10.4153/CJM-2017-036-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-036-1


B. J. Green and S. Lindqvist

By Parseval and the crude bound ∣P±∣ ≪ N 1/2, we have

∫

1

0
∣ĝ±∣2 ,∫

1

0
∣ĥ∓∣2 ≪ N 1/2 .

Proposition 3.4 tells us that

∫

1

0
∣ 1̂T2 ∣

6
≪ N .

Putting this together with (5.7) gives

Eerror ≪ Ω(q, d , 1/ε)−1/3C2N3/4 .

Choosing Ω to grow suõciently quickly, we see from (5.8) that this can bemade less
than 1

10 of Emain. It follows from (5.8) that

∑
t∈T

r̃(t2) ⩾ Emain − 3Eerror >
1
2
Emain ≫ (2ε)2d+1q−1

∣T ∣N 1/2 ,

contrary to (5.6) if c was chosen small enough.

Finally we put Lemmas 5.2 and 5.3 together to establish Proposition 5.1. It is cer-
tainly enough (in view of the deûnitions of Z̃±) to show that Z̃+ + Z̃− contains t2 for
all but at most O(ηεq−1N 1/4) of the elements t ∈ Q. By Lemma 5.3, all but at most
ηεq−1N 1/4 elements t ∈ Q are such that t2 is well-represented in Z+ + Z−, by which
we mean that r(t2) ≫ (2ε)2d+1q−1N 1/2, where r(t2) is the number of representa-
tions of t2 as z+ + z−. Suppose now that we pass from Z± to Z̃±. _e number of pairs
(z+ , z−) with z+ + z− the square of an element in Q that are lost in this way is, by
Lemma 5.2, bounded above by≪ ∣Z± ∖ Z̃±∣(2ε)d+1q−1N 1/4. By (5.2), this is bounded
by≪ η(2ε)2d+2q−2N3/4. _e number of t for which t2 is well-represented but does
not lie in Z̃+ + Z̃− is therefore bounded above by

≪
η(2ε)2d+2q−2N3/4

(2ε)2d+1q−1N 1/2 = O(ηεq−1N 1/4
).

_is completes the proof of Proposition 5.1.

6 Gaps Between Sums of Two Squares

In this sectionwe prove a result, Proposition 6.1, thatwewill need in the next section.
It seems possible that such a result appears in the literature already, but we do not
know a reference. We prove a slightlymore general result thanwe actually need, since
this is plausibly of independent interest.

Proposition 6.1 Let α1 , β1 , γ1 , α2 , β2 , γ2 be nonnegative reals with α1 < β1, α2 < β2,
α2

1 + α2
2 < γ1 < γ2 < β2

1 + β2
2 . Let q ∈ N and set Pi ∶= P([α i , β i];N , q) for i = 1, 2.

Suppose that γ1 ⩽ n/N2 ⩽ γ2. _en there are n1 ∈ P1, n2 ∈ P2 such that

∣n2
1 + n2

2 − n∣ ≪
√

N .

_e implied constant may depend on α i , β i , γ i , q but is independent of n and N.
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Remark A well-studied case is that in which P1 = P2 = {1, . . . ,N}. _en it is well
known that there is a sum of two squares n2

1 + n2
2 within O(N 1/2) of any n ⩽ N2. One

argument to prove this is very simple: take n1 = ⌊
√

n⌋, noting that ∣n − n2
1 ∣ ≪ N ,

and then set n2 ∶= ⌊
√

n − n2
1 ⌋. No bound of the form o(N 1/2) is known, a problem

Montgomery [14, Problem 64, p. 208] attributes to Littlewood. _e argument just
sketched does not adapt to our case, since the n2 produced is necessarily very small.
However, there is another type of argument giving a similar bound and allowing us
to take n1 ≈ n2. _e idea here is to take

n1(k) = ⌊
√

n/2⌋ + k, n2(k) = ⌊
√

n/2⌋ − k,

where k ∈ Z is to be speciûed later. Observe that

n1(k)2
+ n2(k)2

= 2⌊
√

n/2⌋2 + 2k2 ,

and so, in particular,
n1(0)2

+ n2(0)2
⩽ n,

n1(k)2
+ n2(k)2

⩾ n − 2
√

n + 2k2
> n

for k = ⌈
√

n⌉ and

(n1(k + 1)2
+ n2(k + 1)2

) − (n1(k)2
− n2(k))2

= 4k + 2 ≪
√

n

uniformly for k ⩽ ⌈
√

n⌉. It follows from the “discrete intermediate value theorem”
that there is some k for which ∣n1(k)2 + n2(k)2 − n∣ ≪

√
n.

It turns out that this argument does generalise to allow us to prove Proposition 6.1.

Proof For the duration of this proof, the implied constant in the O() and ≪,≫
notations may depend on α i , β i , γ i , q. We can clearly assume that N is suõciently
large.
For each γ ∈ [γ1 , γ2], deûne Iγ to be the set of all λ ∈ R for which there exist

t1 , t2 ∈ R with α1 ⩽ t1 ⩽ α2, β1 ⩽ t2 ⩽ β2, t1/t2 = λ and t21 + t22 = γ. Let Ĩγ be the
middle half of Iγ . It is easy to see that Iγ is a closed interval whose length is positive
and varies continuously as a function of γ, and is therefore bounded below uniformly
in γ. _e same is true for Ĩγ . _is implies that

(a) _ere is an absolute ε≫ 1 such that if λ ∈ Ĩγ , thenwemay ûnd t1 , t2 with t1/t2 = λ
and

(6.1) α i + ε ⩽ t i ⩽ β i − ε;

(b) Ĩγ contains a rational a(γ)/b(γ) with a(γ), b(γ) = O(1) and neither a(γ) nor
b(γ) zero.

Now suppose that n is given satisfying γ1 ⩽ n/N2 ⩽ γ2. Set γ ∶= n/N2, and select
rationals a = a(γ), b = b(γ), not both zero, as in (b) above. According to (a), there
are t1 , t2 with t21 + t22 = γ, t1/t2 = a/b and such that (6.1) is satisûed.

Now set

n1(k) ∶= q⌊
t1N
q

⌋ + qkb, n2(k) ∶= q⌊
t2N
q

⌋ − qka.
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Evidently, q∣n1(k), n2(k). Moreover, from (6.1), it follows that α i ⩽ n i(k)/N ⩽ β i
provided ∣k∣ ⩽ cN for suitably small c ≫ 1. _erefore, for k in this range we have
n i(k) ∈ Pi . Observe that

n1(0)2
+ n2(0)2

⩽ (t21 + t22)N
2
= n.

Also,

n1(k)2
+ n2(k)2(6.2)

= q2
(⌊

t1N
q

⌋
2
+ ⌊

t2N
q

⌋
2
+ 2k(a{

t2N
q

} − b{
t1N
q

}) + k2
(a2

+ b2
))

⩾ n − O(N) − O(k) + q2k2
(a2

+ b2
),

and in particular
n1(k)2

+ n2(k)2
> n

for some k = O(
√

N).
Moreover, from (6.2) again we have

∣ (n1(k + 1)2
+ n2(k + 1)2

) − (n1(k)2
− n2(k))2∣ = O(k).

It follows from these properties and a discrete intermediate value argument that there
is some k = O(

√
N) for which ∣n1(k)2 + n2(k)2 − n∣ ≪

√
N . _e result follows.

7 Proof of the Main Theorem

In Proposition 7.2 we will synthesise the main results of Sections 4 and 5, together
with the following small (and well-known) lemma.

Lemma 7.1 Let Q ⊂ N be a ûnite arithmetic progression of size at least 100, and
suppose that S ⊂ Q is a set of size at least 9

10 ∣Q∣. _en S + S contains a subprogression
of Q + Q of size at least ∣Q∣ with the same common diòerence as Q.

Proof By translating we can assume that Q = {1, . . . ,m}. Suppose that x ⩽ m.
_en the pairs { j, x − j}, 1 ⩽ j < x/2, are disjoint. If S + S does not contain x,
then S cannot contain both elements of any such pair, and hence ∣Q ∖ S∣ ⩽ ⌊x/2⌋.
_erefore, ⌊x/2⌋ ⩽ m

10 , and so x ⩽ m
5 + 2. A similar argument holds for x ⩾ m, with

the conclusion now being that 2m − x ⩽ m
5 + 2. _us, S + S contains the progression

m
5 + 2 < x < 2m − m

5 − 2. _is is more than m elements if m ⩾ 100.

Proposition 7.2 Suppose that A ⊂ [N , 2N) is a set of size at least N/2. _en
√

2
√

2
√

2A

contains a progression P(I;N 1/8 , q) for some interval I ⊂ [0.1, 10] with ∣I∣ ≫ 1 and for
some q = O(1).

Proof Let η > 0 be a quantity to be speciûed later. Let Ω∶N3 → R+ be the
growth function appearing in the statement of Proposition 5.1. Apply Proposition 4.1
with this function. Let q, d , ε, θ , z, b be as in the conclusion of that proposition.
Taking Y as in the statement of Proposition 5.1, Proposition 4.1 then tells us that
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Y ′ ∶= (A+ A) ∩ Y = 2A∩ Y satisûes the hypotheses of Proposition 5.1. It follows that
2
√
Y ′, and hence 2

√
2A, contains t2 for all but at most O(ηεq−1N 1/4) values of

t ∈ Q = P([(2x)1/4 − ε
100 , (2x)

1/4 + ε
100 ];N

1/4 , q). _erefore,
√

2
√

2A contains all
but at most O(ηεq−1N 1/4), and therefore at least (1−Cη)∣Q∣, of the elements of Q. If
η is chosen suitably, this is at least 9

10 ∣Q∣ elements of Q, and so by Lemma 7.1 we see

that 2
√

2
√

2A contains a subprogression Q′ ⊂ Q of the form Q′ = P(I;N 1/4 , q) with
∣I∣ ≫ ε. Finally, note that

√
Q′ contains a progression of the form P(I′;N 1/8 , q) for

some I′ ⊂ [0.1, 10] with ∣I∣ ≫ ε.

We are ûnally ready to complete the proof of _eorem 1.1. Suppose we have a
2-colouring V ∪W of all suõciently large positive integers, with no monochromatic
solution to x + y = z2. Without loss of generality, there are inûnitely many N such
that ∣V ∩ [N , 2N)∣ ⩾ N

2 . _en we have the following chain of inclusions:
√

2V ⊂W ,
√

2
√

2V ⊂
√

2W ⊂ V ,
√

2
√

2
√

2V ⊂
√

2V ⊂W .

It follows from Proposition 7.2 that W contains , for inûnitelymany N , a progression
P(IN ;N 1/8 , qN), where IN ⊂ [0.1, 10], ∣IN ∣ ≫ 1 and qN = O(1), both of these uni-
formly in N . By pigeonholing in the value of qN , we can assume that qN = q does
not depend on N . Moreover, taking M = ⌈10/ inf ∣IN ∣⌉, we see that every IN contains
one of the ûnite collection of intervals [ i

M ,
i+1
M ], M/10 ⩽ i ⩽ 10M. _erefore, we can

pigeonhole in the choice of interval as well and assume that IN = I does not depend
on N . _us,W contains P(I;N 1/8 , q) for some I ⊂ [0, 1, 10] and for inûnitely many
N . Rescaling N , we see that W contains P([1, 1 + c];N , q) for inûnitely many N and
for some c > 0.
Fromnow on, this is the only consequence of the elaborate techniques of the earlier

parts of the paper that we will require.
Using Proposition 6.1 as a tool, we ûnd longer and longer progressions insideW .

_e following lemma formalizes this process.

Lemma 7.3 Let P1 = P([α1 , β1];N , q) and P2 = P([α2 , β2],N , q). Suppose that
γ1 >

√
α2

1 + α2
2 and that γ2 <

√
β2
1 + β2

2 . _en if N is large enough (depending on
α i , β i , γ i , q), we have

P([γ1 , γ2];N , q) ⊂
√

P2
1 + P2

2 − P1 − P2 .

Remark Here and in what follows, A2 means {a2 ∶ a ∈ A} and not a ⋅ a′ ∶ a, a′ ∈ A
as onemight ûnd in other literature.

Proof Fix γ̃1, γ̃2 with γ1 > γ̃1 >
√
α2

1 + α2
2 and γ2 < γ̃2 <

√
β2
1 + β2

2 . By Proposi-
tion 6.1, P2

1 +P2
2 has a pointwithin O(

√
N) of every point of P([γ̃2

1 , γ̃2
2];N2 , q). _en

P1 + P2 is a progression of length≫ N consisting ofmultiples of q, and so it is easy to
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see that P2
1 +P2

2 −P1 −P2 contains all of P([γ̃2
1 , γ̃2

2];N2 , q)with the possible exception
of points within O(N) of the endpoints, and hence it contains P([γ1 , γ2];N2 , q).

Starting from the fact that

(7.1) P([1, 1 + c];N , q) ⊂W for inûnitely many N ,

we apply Lemma 7.3 iteratively. Observe that if n1 , n2 , n3 , n4 ∈ W , then n2
1 − n3 ∈

V , n2
2 − n4 ∈ V , and hence (if it is an integer)

√

n2
1 + n2

2 − n3 − n4 ∈W .

_us, if P1 , P2 ⊂ W , then
√

P2
1 + P2

2 − P1 − P2 ⊂ W . Using this observation and
repeated applications of Lemma 7.3, we see that for any ûnite k and any choice of
closed intervals I i ⊂ (

√
i , (1 + c)

√
i) there is an inûnite sequence of Ns such that

P(I i ;N , q) ⊂W for i = 1, 2, . . . , k.
We claim that there is some k = k(c) and some choice of I1 , . . . , Ik such that

⋃
k
i=1 I i contains an interval of the form [x , 3x]. First note that if i > 1/2c, then

(1 + c)
√

i >
√

i + 1, and so the intervals (
√

i , (1 + c)
√

i) and (
√

i + 1, (1 + c)
√

i + 1)
overlap. _us, if we set i0 ∶= ⌈1/2c⌉ and i1 ∶= 9i0, then ⋃i0⩽i⩽i1(

√
i , (1 + c)

√
i) is an

interval containing a subinterval of the form [x , 3x].
_us,W contains P([x , 3x];N , q) for inûnitely many N , and hence (replacing N

by ⌊1.1xN⌋) we see that we have bootstrapped (7.1) to the stronger statement that

P([1, 2];N , q) ⊂W for inûnitely many N .

Pick one such N = N0, suõciently large. _us,

(7.2) P([1, 2];N0 , q) ⊂W .

By Lemma 7.3 oncemore (and the inequalities
√

2 < 3
2 <

5
2 <

√
8) we have

P([
3
2
,
5
2
] ;N0 , q) ⊂W .

Together with (7.2), this implies that

P([1, 2];N0 + 1, q) ⊂W .

Continuing inductively, we obtain

⋃
N⩾N0

P([1, 2];N , q) ⊂W .

_is implies that all suõciently largemultiples of q lie in W . But there are arbitrarily
largemultiples x , y, z of q satisfying x+y = z2, and so at lastwe obtain a contradiction.

A Some Smooth Cutoff Functions

In themain body of the paper we required various smooth cutoò functions to (char-
acteristic functions of) discrete intervals, balls in the torus Td , and Bohr sets. In this
appendix we prove the existence of functions with required properties.

It is convenient to have a C∞-function f ∶R → [0, 1] with Supp( f ) ⊂ [−1, 1] and
∫ f (x)dx = 1. Such a function can be constructedwith a “trick”, for example deûning
f (x) = C exp( 1

x2
−1 ) for an appropriate constant C (for a very elegant analysis of this,
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see [1, Lemma 9]), or by convolving an inûnite sequence of normalised characteristic
functions of intervals [−ℓ j , ℓ j] with∑ j ℓ j ⩽ 1.

Let g∶R → R be any compactly supported C∞ function (for example, f ). _en,
since the M-th derivative g(M) is continuous and supported on [−1, 1], we have the
bound ∥g(M)∥∞ = OM(1). By integration by parts this leads to the standard bound

(A.1) ∣ĝ(ξ)∣ ≪M min(1, ∣ξ∣−M
)

for ξ ∈ R, where ĝ(ξ) = ∫R g(x)e(−ξx)dx.

Lemma A.1 Let N ∈ N. _ere is a function ψ = ψN ∶N → [0,∞) with ψ(n) = 1 for
N ⩽ n < 2N and ∥ψ̂∥1 = O(1) (uniformly in N), where the Fourier transform ψ̂(t) is
deûned to be∑n ψ(n)e(−tn) for t ∈ T.

Sketch of the proof Deûne ûrst a function g∶R → R via g = 1[0,3] ∗ f . It is easy to
check that g is C∞, compactly supported, and that g(x) = 1 for x ∈ [1, 2]. We can
then deûne ψ(n) ∶= g(n/N). By the Poisson summation formula we have

ψ̂(θ) = N ∑
k∈Z

ĝ(N(k + θ)),

and so
∥ψ̂∥1 ⩽ N ∫

∞

∞

∣ĝ(Nu)∣du = ∥ĝ∥1 ,

where the ℓ1 norm on the right is taken on R. _e bound ∥ĝ∥1 = O(1) follows quickly
by taking M = 2 in (A.1).
Alternatively, one can takeψ to be a de laVallée Poussin type kernel as in the ûgure

and proceed quite explicitly using the fact that this is a diòerence of two Fejér kernels.
Details can be found in [8, Section 1.2].

N 2N 3N

1

Figure 1: de la Vallée Poussin kernel.

Suppose now that ε > 0 and that d ∈ N. Let us deûne fε ∶Td → [0,∞) by fε(x) =
(2ε)−d∏d

i=1 f (x̃ i/ε), where x̃ is the unique element of (− 1
2 ,

1
2 ]
d mapping to x under

the natural projection. Note that ∫Td fε(x)dx = 1.

Lemma A.2 _ere is a majorant ψ+ε and a minorant ψ−ε to the ball Bε(0) in Td
satisfying
(i) 1

2 ⩽ (2ε)−d ∫Td ψ±ε (t)dt ⩽ 2 and
(ii) ∑r∈Zd

∖{0} ∣ψ̂±ε (r)∣∥r∥1 = Oε ,d(1).
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Proof We construct ψ+ε . _e construction of ψ−ε is very similar and is le� to the
reader. Set ε′ ∶= ε/10d. For x ∈ Td , set

ψ+є (x) = 1Bє+ε′(0) ∗ fє′(x) = ∫Td
fє′(x − y)1Bє+ε′(0)(y)dy.

Since fε′ is supported on Bε′(0), ψ+ε (x) = 1 for x ∈ Bε(0), and in particular ψ+ε is a
majorant to the ball Bε(0).

Moreover, ψε is bounded pointwise by 1 and is supported on Bε+ε′(0), whence

∫
Td

ψ+ε (t)dt ⩽ µTd (Bε+ε′(0)) = (1 +
ε′

ε
)
d
(2ε)d ⩽ 2(2ε)d .

_us (i) is satisûed.
Next we turn to point (ii). Suppose that r ∈ Zd ∖ {0}. Write r = (r1 , . . . , rd), and

assume without loss of generality that ∣r1∣ = ∥r∥∞. Performing M integration by parts
in the integral

ψ̂+ε (r) = ∫
Td

ψ+ε (x)e(−x ⋅ r)dx

with respect to x1, to get that

ψ̂+ε (r) =
1

(−2πir1)M ∫
∂Mψ+ε (x)

∂xM
1

e(−x ⋅ r)dx ≪є ,d ,M ∥r∥−M
∞

for any M ∈ N (this is essentially the same bound as (A.1)). _e ℓ1 and ℓ∞ norms of r
are comparable up to factors of Od(1), and hence

∑
r∈Zd

∖{0}
∣ψ̂+ε (r)∣∥r∥1 ≪ε ,d ,M ∑

r∈Zd
∖{0}

∥r∥1−M
1 .

Taking M = d + 2, it is easy to see that the sum on the right converges and is bounded
by Od(1).

Finally, we turn to themost complicated of our constructions, a smooth approxi-
mant for the Bohr-type set X considered in Section 5.

Lemma A.3 Let 0 < ε′ < ε < 1, d , q ∈ N, x ∈ R, and θ , z ∈ Td . _en there is an
A = A(ε, ε′ , d , q) with the following property. Suppose that N is suõciently large in
terms of ε, ε′ , d , q,A. Set

X = {n ∈ N ∶ n ≡ u(mod q), ∣
n
N
− x∣ , ∥θn − z∥Td ⩽ ε} ,

X− = {n ∈ N ∶ n ≡ u(mod q), ∣
n
N
− x∣ , ∥θn − z∥Td ⩽ ε − ε′} .

Suppose that ε′ < ε/10d and θ is (A,N)-irrational. _en there exists a function χ
satisfying
(i) 1X−(n) ⩽ χ(n) ⩽ 1X(n) for all n;
(ii) ∥ χ̂∥1 = Oε ,ε′ ,q ,d(1);
(iii) ∑n χ(n) ⩾ 1

2 (2ε)
d+1q−1N.

Proof Let g∶R→ [0,∞) be aC∞ functionwith g(t) = 1 for ∣t−x∣ ⩽ ε−ε′ and g(t) =
0 for ∣t − x∣ > ε. Such a function can be obtained by convolving the characteristic
function of the interval {t ∶ ∣t − x∣ ⩽ ε − 1

2 ε
′} with the function 2

ε′ f (
2t
ε′ ).
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Deûne a function h∶Td → [0,∞) by h ∶= fε′/2 ∗ 1Bε−ε′/2(z) .
Now deûne

χ(n) ∶= g(
n
N

)h(θn)1n≡u(mod q) .

_e relevant support properties (i) can be easily checked. Turning to point (ii), we
begin by noting the expansion

1n≡u(mod q) = q−1
∑

s∈Z/qZ
e(

(n − u)s
q

) .

_is implies that

(A.2) χ̂(t) = q−1
∑

s∈Z/qZ
e(−

us
q
)

̂
g(

⋅

N
)h(θ⋅)( t +

s
q
) .

_erefore, in order to establish (ii), it suõces to prove that

(A.3) ∥
̂

g(
⋅

N
)h(θ⋅)∥1 = Oε ,ε′ ,d(1).

Fourier expanding h and applying Poisson summation, we have
̂

g(
⋅

N
)h(θ⋅)(t) =∑

n
g(

n
N

)h(θn)e(−tn)(A.4)

=∑
n

g(
n
N

)∑
r

ĥ(r)e((r ⋅ θ − t)n)

= N∑
r

ĥ(r)∑
k∈Z

ĝ(N(t + k − r ⋅ θ)) .

_us,

∥
̂

g(
⋅

N
)h(θ⋅)∥

1
⩽ N∑

r
∣ĥ(r)∣∫

∞

−∞

∣ĝ(Nu)∣du = ∥ĝ∥1∥ĥ∥1 ,

where the ℓ1 norms are on Zd and R, respectively.
_at ∥ĝ∥1 ≪ε ,ε′ 1 follows immediately from (A.1) with M = 2.
By essentially the same reasoning used in the proof of Lemma A.2, we have

(A.5) ∣ĥ(r)∣ ≪ε ,ε′ ,d ,M ∥r∥−M
∞

.

Taking M = d + 1, we obtain ∥ĥ∥1 = Oε ,ε′ ,d(1). Putting these facts together completes
the proof of (A.3) and hence of (ii).

It remains to verify (iii). Note thatwe have not yet used the irrationality of θ. From
(A.2) we have

∑
n
χ(n) = χ̂(0) = q−1

∑
s∈Z/qZ

e(−
us
q
)

̂
g(

⋅

N
)h(θ⋅)(

s
q
) .

By (A.4), it follows that

(A.6) ∑
n
χ(n) = Nq−1

∑
r∈Zd

∑
s∈Z/qZ

∑
k∈Z
e(−

us
q
) ĥ(r)ĝ(N(

s
q
+ k − r ⋅ θ)) .

_e contribution from r = 0, s = 0, k = 0 is Nq−1(∫Td h)(∫R g). Since ε′ < ε/10d,
we have ∫Td h ⩾ µTd (Bε−ε′(0)) ⩾ 0.9(2ε)d , and evidently ∫R g ⩾ 2(ε − ε′) > 0.9(2ε).
_us, the contribution from this term is ⩾ 3

4 (2ε)
d+1q−1N . To complete the proof of
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(iii) it suõces to show that the contribution of the other terms to (A.6) is at most
1
4 (2ε)

d+1q−1N , to which end it is enough to show that

(A.7) ∑
r∈Zd

∑
s∈Z/qZ

∑
k∈Z

∣ĥ(r)∣∣ĝ(N(
s
q
+ k − r ⋅ θ)) ∣ ⩽ 1

4
(2ε)d+1 ,

where the sum omits the term r = 0, s = 0, k = 0.
By (A.5) (with M = d + 1) and (A.1) (with M = 2), the le�-hand side is bounded by

(A.8) Oε ,ε′ ,d(1) ∑
r∈Zd

∑
s∈Z/qZ

∑
k∈Z

min(1, ∥r∥−d−1
)min( 1,N−2

∣k +
s
q
− r ⋅ θ∣−2

) .

If 0 < ∥r∥1 ⩽ A/q, then it follows from the fact that θ is (A,N)-irrational that
∣k + s

q − rθ∣ ⩾ A
qN (nomatter the value of s or k). _e same is trivially truewhen r = 0,

provided that not both of s, k are zero and that N is suõciently large. In the inner
sum over k in (A.8), the contribution from all but at most one term is

≪ N−2
∑

m∈Z∖{0}
∣m∣

−2
≪ N−2 ,

and so when ∥r∥1 ⩽ A/q the inner sum over k is ≪ q2

A2 + N−2, which is ≪ q2/A2 if N
is big enough. _erefore,

∑

r∈Zd

∥r∥⩽A/q

∑
s∈Z/qZ

∑
k∈Z

min(1, ∥r∥−d−1
)min(1,N−2

∣k +
s
q
− r ⋅ θ∣−2

)

≪
q3

A2 ∑
r
∥r∥−d−1

≪d ,q A−2 .

All other terms in (A.8) have ∥r∥ ⩾ A
q . Using the trivial bound

∑
k∈Z

min(1,N−2
∣k +

s
q
− r ⋅ θ∣−2

) ≪ 1,

the contribution from these is bounded by

Od ,ε ,ε′ ,q(1) ∑
∥r∥⩾A/q

∥r∥−d−1
≪d ,ε ,ε′ ,q A−1 .

Putting all of this together shows that (A.8) is bounded by Od ,ε ,ε ,q(A−1), and so (A.7)
does indeed hold if A is large enough as a function of ε, ε′ , d , q.
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