
Proceeding! of the Edinburgh Mathematical Society (1997) 40. 63-67 ©

ON JOINS WITH GROUP CONGRUENCES

by P.M. EDWARDS

(Received 29th November 1994)

Let y be an arbitrary semigroup. A congruence y on y is a group congruence if £f'/y is a group. The set
of group congruences on Sf is non-empty since y x y is a group congruence. The lattice of congruences on
a semigroup y will be denoted by V(y) and the set of group congruences on y will be denoted by <0<g(y).
If 9f(y) is a lattice then it is modular and y v p = y o p = p o y for all y, p e VS(y). The main result is that
y v p = y o p o y for any y e W(5*") and p 6 ^.SO (whence every element of the set 9V(y) is dually right
modular in W(y)). This result has appeared, for particular classes of semigroups, many times in the literature.
Also y v p = y o p o y = p o y o p for all y, p 6 W(5") which is similar to the well known result for the join
of congruences on a group. Furthermore, if y n p e y6(y) then y v p = y o p = poy .

1991 Mathematics subject classification: 20 M 10

1. Introduction and summary

Unless stated otherwise Sf will always be an arbitrary semigroup. A congruence y
on Sf is a group congruence if Sf ly is a group. The set of group congruences on Sf is
non-empty since Sf x Sf is a group congruence. The lattice of congruences on a
semigroup Sf will be denoted by ^(Sf) and the set of group congruences on Sf will be
denoted by ^(Sf). If W(<9") is a lattice then it is modular (Corollary 4). If Sf has a
minimum group congruence it will be denoted by a. The existence of a minimum group
congruence is equivalent to having a maximum homomorphic group image. If Sf has
a minimum group congruence then (§c€(Sf) is a complete modular lattice.

The main result [Theorem 1] is that yvp = yopoy for any ye^^(Sf) and
p e <€{Sf) whence every element of the set ^(Sf) is dually right modular in ^(Sf). Also
yvp — yopoy = poyop for all y, p e ^{Sf) which is similar to the well known
result for the join of congruences on a group. Theorem 1 is proved to apply to all
semigroups and has appeared, for particular classes of semigroups, many times in the
literature. That ov p = a o p oo for Sf inverse is [3, Theorem 3.9] and that
y v p — y o p o y for all y = W ( ^ ) for Sf regular is [6, Theorem 6]. Other usage appears
in [5, Section 3], [6, Section 2], [7, Section 6], [8, Lemma III.5.4] and the regular case
was generalised in [2, Theorem 5].

Results concerning joins of congruences and group congruences for specific classes
of semigroups can be found in [3, 7, 8] for inverse semigroups, [5, 6] for regular
semigroups, [5, 6] for orthodox semigroups, and [2] for eventually regular semigroups.
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2. Congruences on groups

Obviously when 5" is a group, G say, W(G) = <<f(G). It is well known that for
G = Ge there is a one to one correspondence between the normal subgroups of G and
the congruences on G. Explicitly, if AT is a normal subgroup of G then
pN = {(a, b) € G x G : ab"1 e N} is a congruence on G and iV = epN. Conversely if p is a
congruence on G then N — ep is a normal subgroup of G. Furthermore if M and iV
are normal subgroups of G then PH^PM = PNKM

 a n d PN°PM—PNM- Thus
pNo pM = pNM = pMN = pM ° pN and so ^#(G) is a modular lattice and
y v p = y o p — p o y for all y, p e ^(G).

In the next section joins of congruences on an arbitrary semigroup will be
considered. Results will be given for the case when one (or both) of the congruences is
a group congruence.

3. Joins with group congruences

In general the join of two congruences on a semigroup if may be quite complicated.
In fact for p, /? e ^(if), p v /? is the transitive closure of p U /? and so
p v f} — (p o /?)°° = U " , ( p o /?)". Example 1 below demonstrates a semigroup 5^ and
p, /? 6 ^(.SO for which this union must be infinite. Theorem 1 below shows that we can
do much better if one of the congruences is a group congruence. The previous section
mentioned how the first term of the union suffices when if is a group.

Theorem 1. Let y be a group congruence on an arbitrary semigroup if and let p be
a congruence on if. Then yvp = yopoy.

Proof. It suffices to show that y o p o y is transitive. Let iy denote the identity
element of the group £f/y. Take any (x, y), (y, z) e y o p o y. It will be shown that
(x, z) 6 y o p o y. Then there exist a,b,c,d e if such that (x, a) e y, (a, b) 6 p, (b, y) e y,
(y, c) 6 y, {c,d) e p and (d, z) € y. Clearly (b, c) e y and so there exists sy in if Iy
such that syby = iy and cysy = iy. Since (a, b) e p and (c, d) e p, (csa, csb) e p and
(csfc, dsb) e p whence (csa, dsb) € p. Therefore x y a y csa p rfsb y dy z whence
(x, z) e y o p o y. •

In [5] a modularity relation M was defined on a lattice L by a Mb if
(x v a) A b — x v (a A b) for all x < b; with its dual denoted M*. An element d is right
[left] modular if aMd [dMa] for all a e L. If Z, is right and left modular then it is
modular. Proposition 2.3 of [5] states that if <x,P,£e <€(if) and a v ^ = a o ^ o a then
/? M* a whence (i) if a v £ = a o £ o a for all a e ^(5") then £ is (dually) left modular and
(ii) ifav<i; = <i;oao£ for all a e # ( y ) then £ is dually right modular.

Corollary 2. For an_y semigroup if, every group congruence on if is a dually right
modular element of the lattice of congruences on if.
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C o r o l l a r y 3 . Let y and p be a group congruences on an arbitrary semigroup Sf. Then
ywp—yopoy — poyop. Furthermore ify D p e ^ ^ ( 5 ^ ) then yvp = yop — poy.

Proof. The first assertion follows from Theorem 1. Suppose p = yC\ p e
and put L — [/?, Sf x Sf\. Then L ^ "if^/j?) which is a modular lattice of commuting
congruences since Sf/P is a group. Thus y and p commute. •

Corollary 4. If W ( y ) is a sublattice of # (50 then ^{Sf) is a modular lattice and
yvp=yop = po y for all y, p e

The kernel of p e # ( y ) is defined by, ker(/>) = {a e <f : ap e E(^/p)}. It is well
known that if two group congruences have the same kernel then they are equal. For a
subset H of Sf, define Hco = {x e Sf : hx e H for some h e H], define coH dually and
put H' = coH U Hco. If H is a subsemigroup then // c //a> and /f c a>H. The subset / /
is called closed if H = H'. It is straightforward to show that H — ker(y) is always a
closed subsemigroup for y e <S(€(Sf').

After proving the following preliminary result some applications of Theorem 1 will
be given.

Theorem 5. Let y be a group congruence on an arbitrary semigroup with H = ker(y).
Then the following are equivalent:

(1) ayb,
(2) xa = by for some x, y e H,
(3) ax = yb for some x, y e H,
(4) HaHDHbH ^ 0.

Proof. Suppose ayb. Let z be the group inverse of ay = by in Sf/y and put x = bz,
y — za,s — zb a n d t — az. T h e n xa = bza = by a n d as = azb = tb a n d x , y , s , t e k e r (y )
whence (1) implies (2) and (3). It also follows that for any h e H, hbzah = (hbz)ah =
hb(zah) e HaHDHbH so (1) implies (4). That (2), (3) and (4) each imply (1) is trivial,
whence the four statements are equivalent. •

Theorem 6. For any congruence p and any group congruence y on an arbitrary
semigroup, a(y v p)b if and only if xa p by for some x, y e ker(y).

Proof. The following proof is a slight modification of the proof of Theorem 7 of
LaTorre [6]. Put H = ker(y). Suppose (a, b) e y v p. By Theorem 1 there exist c,d €. £/"
such that ayc,cpd and dyb. Since aye, by Theorem 5 there exist h,keH such that
ha — ck and similarly there exist p,qeH such that pd = bq. Put x — ph and y = qk so
x, y e H. Then xa = pha — p(ha) = p(ck) p p(dk) — (pd)k = (bq)k = by so xapby with
x, y e H. Conversely, if xapby with x,y e H then since xaya and byya,ayxapbyyb
so (a, b) e y v p. •
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Theorem 7. For any congruence p and any group congruence y on an arbitrary
semigroup, ker(y v p) = ((ker(y))p)co.

Proof. Take x € ker(y v p). For any e e E, (x, e) e y v p so from Theorem 6 there
exist p, q e ker(y) such that xppqe. Now ge e ker(y) so xp e (ker(y))p. Since
/? € ker(y) c (ker(y))p, we have that x e ((ker(y))p)co. Conversely, if x e ((ker(y))p)a;,
then hx e (ker(y))p for some h e (ker(y))p so (hx, y) e p for some y e ker(y) and
(h, z) e p for some z e ker(y). Since (y, e) e y, it follows that (hx, e) e y v p so
/ix e ker(y v p). Similarly, h e ker(y v p) whence x e ker(y v p) since ker(y v p) is closed.
Therefore ker(y vp) = ((ker(y))p)a>.

Theorems 1, 6 and 7 above generalise the corresponding results for regular
semigroups given in [6].

Example 1. Let if = Z+ with left zero multiplication and let p and p be con-
gruences on if given respectively by the partitions {{1}, {2,3}, {4,5}, {6,7},...} and
{{1,2}, {3,4}, {5,6},...}. Then p v j? = £f x </> and clearly p v 0 ^ Ur=i(P °/3)" f o r a n y
finite w.

Example 2. A congruence y on if is a cancellative congruence if ifly is a
cancellative semigroup. Any semigroup has a minimum cancellative congruence,
namely the intersection of all the cancellative congruences. Denote the set of
idempotent elements in if by E = E{if). A semigroup if is E-inversive if for all xeif,
there exists y e if such that xy e E. A semigroup is eventually regular [group-bound]
if every element has some power that is regular [in a subgroup]. The class of
is-inversive semigroups includes eventually regular semigroups, regular semigroups,
group-bound semigroups, finite semigroups and semigroups with a zero element. If if
is an is-inversive semigroup then the group congruences coincide with the cancellative
congruences, whence if has a minimum group congruence a equal to the intersection
of all cancellative congruences on if, [1]. Let if be any semigroup that possesses a
minimum group congruence a. Then ^#(50 = [a, if x if\ is a complete modular
lattice. The mapping <t> : <€(if) -»• <§<€{if) defined by 4>{p) — awp is a surjection of
^(if) onto WCS") and the elements of <S<e(if) are invariant under <f>. If if is orthodox
then the mapping <j> is a homomorphism, [6, Theorem 11].

Example 3. Let if = (a) be an infinite monogenic semigroup. Then the relation
pn = {(ap, a") : p = g(modn)} is a group congruence on if and every group congruence
on if is of this form [4, p. 185, Exercise 26]. If pn and pm are two group congruences
on if then pnC\ pm = pk where k is the lowest common multiple of n and m. It follows
that the intersection of any finite set of group congruences on if is a group congruence
and that if does not possess a minimum group congruence. In fact the intersection of
all group congruences on if equals ly which is of course not a group congruence.
Therefore ^^(if) is a lattice but is not a complete lattice. It follows from Corollary 4
that W(5") is a modular lattice.
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Example 4. This example was suggested by T. E. Hall. Put A = (a) and B — (b)
both infinite cyclic groups and in A x B let £f° be the subsemigroup generated by
(a, b), (a, b inverse) and (a inverse, b). Note that if (ap, bq) e y then p + q is even and
p + q > 0. In particular, the semigroup Sf is not a group since (a, b) does not have an
inverse in ¥. Let pA and pB be the kernels of the projections of Sf onto A and 5
respectively. Then pA and p s are group congruences on y but their intersection is
trivial and so is not a group congruence. Since (a2, b~2)pA (a2, b°)pB(a°, b°) we have that
(a2, b~2) is pA o pB related to (a0, b°). Because (a0, b~2) i if, (a2, b~2) is not pB o pA related
to (a0, b°). Thus pA o pB ^ pB o p^ [cf. Corollary 3].
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