Proceedings of the Edinburgh Mathematical Society (1997) 40, 63-67 ③

ON JOINS WITH GROUP CONGRUENCES

by P. M. EDWARDS

(Received 29th November 1994)

Let \mathscr{S} be an arbitrary semigroup. A congruence γ on \mathscr{S} is a group congruence if \mathscr{S}/γ is a group. The set of group congruences on \mathscr{S} is non-empty since $\mathscr{S} \times \mathscr{S}$ is a group congruence. The lattice of congruences on a semigroup \mathscr{S} will be denoted by $\mathscr{C}(\mathscr{S})$ and the set of group congruences on \mathscr{S} will be denoted by $\mathscr{G}(\mathscr{S})$. If $\mathscr{G}(\mathscr{S})$ is a lattice then it is modular and $\gamma \vee \rho = \gamma \circ \rho = \rho \circ \gamma$ for all $\gamma, \rho \in \mathscr{G}(\mathscr{S})$. The main result is that $\gamma \vee \rho = \gamma \circ \rho \circ \gamma$ for any $\gamma \in \mathscr{G}(\mathscr{S})$ and $\rho \in \mathscr{C}(\mathscr{S})$ (whence every element of the set $\mathscr{G}(\mathscr{S})$ is dually right modular in $\mathscr{C}(\mathscr{S})$). This result has appeared, for particular classes of semigroups, many times in the literature. Also $\gamma \vee \rho = \gamma \circ \rho \circ \gamma = \rho \circ \gamma \circ \rho$ for all $\gamma, \rho \in \mathscr{G}(\mathscr{S})$ which is similar to the well known result for the join of congruences on a group. Furthermore, if $\gamma \cap \rho \in \mathscr{G}(\mathscr{S})$ then $\gamma \vee \rho = \gamma \circ \rho = \rho \circ \gamma$.

1991 Mathematics subject classification: 20 M 10

1. Introduction and summary

Unless stated otherwise \mathscr{S} will always be an arbitrary semigroup. A congruence γ on \mathscr{S} is a group congruence if \mathscr{S}/γ is a group. The set of group congruences on \mathscr{S} is non-empty since $\mathscr{S} \times \mathscr{S}$ is a group congruence. The lattice of congruences on a semigroup \mathscr{S} will be denoted by $\mathscr{C}(\mathscr{S})$ and the set of group congruences on \mathscr{S} will be denoted by $\mathscr{G}(\mathscr{S})$. If $\mathscr{G}(\mathscr{S})$ is a lattice then it is modular (Corollary 4). If \mathscr{S} has a minimum group congruence it will be denoted by σ . The existence of a minimum group congruence is equivalent to having a maximum homomorphic group image. If \mathscr{S} has a minimum group congruence then $\mathscr{G}(\mathscr{S})$ is a complete modular lattice.

The main result [Theorem 1] is that $\gamma \lor \rho = \gamma \circ \rho \circ \gamma$ for any $\gamma \in \mathscr{GC}(\mathscr{S})$ and $\rho \in \mathscr{C}(\mathscr{S})$ whence every element of the set $\mathscr{GC}(\mathscr{S})$ is dually right modular in $\mathscr{C}(\mathscr{S})$. Also $\gamma \lor \rho = \gamma \circ \rho \circ \gamma = \rho \circ \gamma \circ \rho$ for all $\gamma, \rho \in \mathscr{GC}(\mathscr{S})$ which is similar to the well known result for the join of congruences on a group. Theorem 1 is proved to apply to all semigroups and has appeared, for particular classes of semigroups, many times in the literature. That $\sigma \lor \rho = \sigma \circ \rho \circ \sigma$ for \mathscr{S} inverse is [3, Theorem 3.9] and that $\gamma \lor \rho = \gamma \circ \rho \circ \gamma$ for all $\gamma = \mathscr{GC}(\mathscr{S})$ for \mathscr{S} regular is [6, Theorem 6]. Other usage appears in [5, Section 3], [6, Section 2], [7, Section 6], [8, Lemma III.5.4] and the regular case was generalised in [2, Theorem 5].

Results concerning joins of congruences and group congruences for specific classes of semigroups can be found in [3, 7, 8] for inverse semigroups, [5, 6] for regular semigroups, and [2] for eventually regular semigroups.

P. M. EDWARDS

2. Congruences on groups

Obviously when \mathscr{S} is a group, G say, $\mathscr{GG}(G) = \mathscr{C}(G)$. It is well known that for $G = G_e$ there is a one to one correspondence between the normal subgroups of G and the congruences on G. Explicitly, if N is a normal subgroup of G then $\rho_N = \{(a, b) \in G \times G : ab^{-1} \in N\}$ is a congruence on G and $N = e\rho_N$. Conversely if ρ is a congruence on G then $N = e\rho$ is a normal subgroup of G. Furthermore if M and N are normal subgroups of G then $\rho_N \cap \rho_M = \rho_{N \cap M}$ and $\rho_N \circ \rho_M = \rho_{NM}$. Thus $\rho_N \circ \rho_M = \rho_{NM} = \rho_{MN} = \rho_M \circ \rho_N$ and so $\mathscr{GC}(G)$ is a modular lattice and $\gamma \vee \rho = \gamma \circ \rho = \rho \circ \gamma$ for all $\gamma, \rho \in \mathscr{GC}(G)$.

In the next section joins of congruences on an arbitrary semigroup will be considered. Results will be given for the case when one (or both) of the congruences is a group congruence.

3. Joins with group congruences

In general the join of two congruences on a semigroup \mathscr{S} may be quite complicated. In fact for $\rho, \beta \in \mathscr{C}(\mathscr{S}), \rho \lor \beta$ is the transitive closure of $\rho \cup \beta$ and so $\rho \lor \beta = (\rho \circ \beta)^{\infty} = \bigcup_{n=1}^{\infty} (\rho \circ \beta)^n$. Example 1 below demonstrates a semigroup \mathscr{S} and $\rho, \beta \in \mathscr{C}(\mathscr{S})$ for which this union must be infinite. Theorem 1 below shows that we can do much better if one of the congruences is a group congruence. The previous section mentioned how the first term of the union suffices when \mathscr{S} is a group.

Theorem 1. Let γ be a group congruence on an arbitrary semigroup \mathscr{S} and let ρ be a congruence on \mathscr{S} . Then $\gamma \lor \rho = \gamma \circ \rho \circ \gamma$.

Proof. It suffices to show that $\gamma \circ \rho \circ \gamma$ is transitive. Let $i\gamma$ denote the identity element of the group \mathscr{P}/γ . Take any $(x, y), (y, z) \in \gamma \circ \rho \circ \gamma$. It will be shown that $(x, z) \in \gamma \circ \rho \circ \gamma$. Then there exist $a, b, c, d \in \mathscr{S}$ such that $(x, a) \in \gamma, (a, b) \in \rho, (b, y) \in \gamma, (y, c) \in \gamma, (c, d) \in \rho$ and $(d, z) \in \gamma$. Clearly $(b, c) \in \gamma$ and so there exists $s\gamma$ in \mathscr{P}/γ such that $s\gamma b\gamma = i\gamma$ and $c\gamma s\gamma = i\gamma$. Since $(a, b) \in \rho$ and $(c, d) \in \rho, (csa, csb) \in \rho$ and $(csb, dsb) \in \rho$ whence $(csa, dsb) \in \rho$. Therefore $x \gamma a \gamma csa \rho dsb \gamma d \gamma z$ whence $(x, z) \in \gamma \circ \rho \circ \gamma$.

In [5] a modularity relation M was defined on a lattice L by aMb if $(x \lor a) \land b = x \lor (a \land b)$ for all $x \le b$; with its dual denoted M^* . An element d is right [left] modular if aMd [dMa] for all $a \in L$. If L is right and left modular then it is modular. Proposition 2.3 of [5] states that if $\alpha, \beta, \xi \in \mathscr{C}(\mathscr{S})$ and $\alpha \lor \beta = \alpha \circ \beta \circ \alpha$ then $\beta M^* \alpha$ whence (i) if $\alpha \lor \xi = \alpha \circ \xi \circ \alpha$ for all $\alpha \in \mathscr{C}(\mathscr{S})$ then ξ is (dually) left modular and (ii) if $\alpha \lor \xi = \xi \circ \alpha \circ \xi$ for all $\alpha \in \mathscr{C}(\mathscr{S})$ then ξ is dually right modular.

Corollary 2. For any semigroup \mathcal{S} , every group congruence on \mathcal{S} is a dually right modular element of the lattice of congruences on \mathcal{S} .

Corollary 3. Let γ and ρ be a group congruences on an arbitrary semigroup \mathscr{G} . Then $\gamma \lor \rho = \gamma \circ \rho \circ \gamma = \rho \circ \gamma \circ \rho$. Furthermore if $\gamma \cap \rho \in \mathscr{GC}(\mathscr{G})$ then $\gamma \lor \rho = \gamma \circ \rho = \rho \circ \gamma$.

Proof. The first assertion follows from Theorem 1. Suppose $\beta = \gamma \cap \rho \in \mathscr{GC}(\mathscr{S})$ and put $L = [\beta, \mathscr{S} \times \mathscr{S}]$. Then $L \cong \mathscr{C}(\mathscr{S}/\beta)$ which is a modular lattice of commuting congruences since \mathscr{S}/β is a group. Thus γ and ρ commute.

Corollary 4. If $\mathcal{GC}(\mathcal{S})$ is a sublattice of $\mathcal{C}(\mathcal{S})$ then $\mathcal{GC}(\mathcal{S})$ is a modular lattice and $\gamma \lor \rho = \gamma \circ \rho = \rho \circ \gamma$ for all $\gamma, \rho \in \mathcal{GC}(\mathcal{S})$.

The kernel of $\rho \in \mathscr{C}(\mathscr{S})$ is defined by, $\ker(\rho) = \{a \in \mathscr{S} : a\rho \in E(\mathscr{S}/\rho)\}$. It is well known that if two group congruences have the same kernel then they are equal. For a subset H of \mathscr{S} , define $H\omega = \{x \in \mathscr{S} : hx \in H \text{ for some } h \in H\}$, define ωH dually and put $H' = \omega H \cup H\omega$. If H is a subsemigroup then $H \subseteq H\omega$ and $H \subseteq \omega H$. The subset His called closed if H = H'. It is straightforward to show that $H = \ker(\gamma)$ is always a closed subsemigroup for $\gamma \in \mathscr{GC}(\mathscr{S})$.

After proving the following preliminary result some applications of Theorem 1 will be given.

Theorem 5. Let γ be a group congruence on an arbitrary semigroup with $H = \text{ker}(\gamma)$. Then the following are equivalent:

- (1) $a \gamma b$,
- (2) xa = by for some $x, y \in H$,
- (3) ax = yb for some $x, y \in H$,
- (4) $HaH \cap HbH \neq \emptyset$.

Proof. Suppose ayb. Let z be the group inverse of ay = by in \mathscr{G}/y and put x = bz, y = za, s = zb and t = az. Then xa = bza = by and as = azb = tb and x, y, s, $t \in ker(y)$ whence (1) implies (2) and (3). It also follows that for any $h \in H$, $hbzah = (hbz)ah = hb(zah) \in HaH \cap HbH$ so (1) implies (4). That (2), (3) and (4) each imply (1) is trivial, whence the four statements are equivalent.

Theorem 6. For any congruence ρ and any group congruence γ on an arbitrary semigroup, $a(\gamma \lor \rho)b$ if and only if $xa \rho by$ for some $x, y \in ker(\gamma)$.

Proof. The following proof is a slight modification of the proof of Theorem 7 of LaTorre [6]. Put $H = \ker(\gamma)$. Suppose $(a, b) \in \gamma \lor \rho$. By Theorem 1 there exist $c, d \in \mathscr{S}$ such that $a\gamma c, c\rho d$ and $d\gamma b$. Since $a\gamma c$, by Theorem 5 there exist $h, k \in H$ such that ha = ck and similarly there exist $p, q \in H$ such that pd = bq. Put x = ph and y = qk so $x, y \in H$. Then $xa = pha = p(ha) = p(ck)\rho p(dk) = (pd)k = (bq)k = by$ so $xa\rho by$ with $x, y \in H$. Conversely, if $xa\rho by$ with $x, y \in H$ then since $xa\gamma a$ and $by\gamma a, a\gamma xa\rho by\gamma b$ so $(a, b) \in \gamma \lor \rho$.

P. M. EDWARDS

Theorem 7. For any congruence ρ and any group congruence γ on an arbitrary semigroup, $ker(\gamma \lor \rho) = ((ker(\gamma))\rho)\omega$.

Proof. Take $x \in \ker(\gamma \lor \rho)$. For any $e \in E$, $(x, e) \in \gamma \lor \rho$ so from Theorem 6 there exist $p, q \in \ker(\gamma)$ such that $xp \rho qe$. Now $qe \in \ker(\gamma)$ so $xp \in (\ker(\gamma))\rho$. Since $p \in \ker(\gamma) \subseteq (\ker(\gamma))\rho$, we have that $x \in ((\ker(\gamma))\rho)\omega$. Conversely, if $x \in ((\ker(\gamma))\rho)\omega$, then $hx \in (\ker(\gamma))\rho$ for some $h \in (\ker(\gamma))\rho$ so $(hx, y) \in \rho$ for some $y \in \ker(\gamma)$ and $(h, z) \in \rho$ for some $z \in \ker(\gamma)$. Since $(y, e) \in \gamma$, it follows that $(hx, e) \in \gamma \lor \rho$ so $hx \in \ker(\gamma \lor \rho)$. Similarly, $h \in \ker(\gamma \lor \rho)$ whence $x \in \ker(\gamma \lor \rho)$ since $\ker(\gamma \lor \rho)$ is closed. Therefore $\ker(\gamma \lor \rho) = ((\ker(\gamma))\rho)\omega$.

Theorems 1, 6 and 7 above generalise the corresponding results for regular semigroups given in [6].

Example 1. Let $\mathscr{G} = \mathbb{Z}^+$ with left zero multiplication and let ρ and β be congruences on \mathscr{G} given respectively by the partitions $\{\{1\}, \{2,3\}, \{4,5\}, \{6,7\}, \ldots\}$ and $\{\{1,2\}, \{3,4\}, \{5,6\}, \ldots\}$. Then $\rho \lor \beta = \mathscr{G} \times \mathscr{G}$ and clearly $\rho \lor \beta \neq \bigcup_{n=1}^{m} (\rho \circ \beta)^n$ for any finite *m*.

Example 2. A congruence γ on \mathscr{G} is a cancellative congruence if \mathscr{G}/γ is a cancellative semigroup. Any semigroup has a minimum cancellative congruence, namely the intersection of all the cancellative congruences. Denote the set of idempotent elements in \mathscr{G} by $E = E(\mathscr{G})$. A semigroup \mathscr{G} is *E-inversive* if for all $x \in \mathscr{G}$, there exists $y \in \mathscr{G}$ such that $xy \in E$. A semigroup is *eventually regular* [group-bound] if every element has some power that is regular [in a subgroup]. The class of *E*-inversive semigroups includes eventually regular semigroups, regular semigroups, group-bound semigroups, finite semigroups and semigroups with a zero element. If \mathscr{G} is an *E*-inversive semigroup then the group congruences coincide with the cancellative congruences, whence \mathscr{G} has a minimum group congruence σ equal to the intersection of all cancellative congruences on \mathscr{G} , [1]. Let \mathscr{G} be any semigroup that possesses a minimum group congruence σ . Then $\mathscr{GC}(\mathscr{G}) = [\sigma, \mathscr{G} \times \mathscr{G}]$ is a surjection of $\mathscr{C}(\mathscr{G})$ onto $\mathscr{GC}(\mathscr{G})$ and the elements of $\mathscr{GC}(\mathscr{G})$ are invariant under ϕ . If \mathscr{G} is orthodox then the mapping ϕ is a homomorphism, [6, Theorem 11].

Example 3. Let $\mathscr{G} = \langle a \rangle$ be an infinite monogenic semigroup. Then the relation $\rho_n = \{(a^p, a^q) : p \equiv q \pmod{n}\}$ is a group congruence on \mathscr{G} and every group congruence on \mathscr{G} is of this form [4, p. 185, Exercise 26]. If ρ_n and ρ_m are two group congruences on \mathscr{G} then $\rho_n \cap \rho_m = \rho_k$ where k is the lowest common multiple of n and m. It follows that the intersection of any finite set of group congruences on \mathscr{G} is a group congruence and that \mathscr{G} does not possess a minimum group congruence. In fact the intersection of all group congruences on \mathscr{G} equals $1_{\mathscr{G}}$ which is of course not a group congruence. Therefore $\mathscr{GC}(\mathscr{G})$ is a lattice but is not a complete lattice. It follows from Corollary 4 that $\mathscr{GC}(\mathscr{G})$ is a modular lattice.

ON JOINS WITH GROUP CONGRUENCES

Example 4. This example was suggested by T. E. Hall. Put $A = \langle a \rangle$ and $B = \langle b \rangle$ both infinite cyclic groups and in $A \times B$ let \mathscr{S} be the subsemigroup generated by (a, b), (a, b inverse) and (a inverse, b). Note that if $(a^{\rho}, b^{q}) \in \mathscr{S}$ then p + q is even and $p + q \ge 0$. In particular, the semigroup \mathscr{S} is not a group since (a, b) does not have an inverse in \mathscr{S} . Let ρ_{A} and ρ_{B} be the kernels of the projections of \mathscr{S} onto A and B respectively. Then ρ_{A} and ρ_{B} are group congruences on \mathscr{S} but their intersection is trivial and so is not a group congruence. Since $(a^{2}, b^{-2}) \rho_{A} (a^{2}, b^{0}) \rho_{B} (a^{0}, b^{0})$ we have that (a^{2}, b^{-2}) is $\rho_{A} \circ \rho_{B}$ related to (a^{0}, b^{0}) . Because $(a^{0}, b^{-2}) \notin \mathscr{S}, (a^{2}, b^{-2})$ is not $\rho_{B} \circ \rho_{A}$ related to (a^{0}, b^{0}) . Thus $\rho_{A} \circ \rho_{B} \neq \rho_{B} \circ \rho_{A}$ [cf. Corollary 3].

REFERENCES

1. A. H. CLIFFORD and G. B. PRESTON, *The algebraic theory of semigroups*, Volume I (Mathematical Surveys, 7, American Mathematical Society, Providence, Rhode Island, 1961).

2. S. HANUMANTHA RAO and P. LAKSHMI, Group congruences on eventually regular semigroups, J. Austral. Math. Soc. Ser. A 45 (1988), 320-325.

3. J. M. HOWIE, The maximum idempotent-separating congruence on an inverse semigroup, *Proc. Edinburgh Math. Soc.* 14 (1964), 71-79.

4. J. M. HOWIE, An introduction to semigroup theory (London Mathematical Society Monographs, 7, Academic Press, London, New York, San Francisco, 1976).

5. P. R. JONES, Joins and meets of congruences on a regular semigroup, Semigroup Forum 30 (1984), 1-16.

6. D. R. LATORRE, Group congruences on regular semigroups, Semigroup Forum 24 (1982), 327-340.

7. MARIO PETRICH, Congruences on inverse semigroups, J. Algebra 55 (1978), 231-256.

8. MARIO PETRICH, Inverse semigroups (John Wiley, New York, 1984).

ECONOMETRICS DEPARTMENT Monash University Clayton Victoria 3168 Australia