CERTAIN EXTENSIONS OF THE MEHLER FORMULA

BY
J. P. SINGHAL(${ }^{\mathbf{1}}$)

1. Introduction. For the Hermite polynomials $H_{n}(z)$ defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(z)=\exp \left(2 z t-t^{2}\right) \tag{1}
\end{equation*}
$$

it is easy to see from the Rodrigues formula that

$$
\begin{equation*}
H_{n}(a x)=(-1)^{n} a^{-n} \exp \left(a^{2} x^{2}\right) D_{x}^{n} \exp \left(-a^{2} x^{2}\right), \tag{2}
\end{equation*}
$$

where, as usual, $D_{z}=d / d z$.
In recent papers ([1], [2]) Carlitz has proved the following formulae:
(3)

$$
\begin{array}{r}
\sum_{k=0}^{\infty} \frac{t^{k}}{k!} H_{k+n}(x) H_{k+m}(y)=\left(1-4 t^{2}\right)^{-(m+n+1) / 2} \exp \left[\frac{4 x y t-4\left(x^{2}+y^{2}\right) t^{2}}{1-4 t^{2}}\right] \\
\times \sum_{r=0}^{\min (m, n)} 2^{2 r} r!\binom{m}{r}\binom{n}{r} t^{\top} H_{m-r}\left(\frac{x-2 y t}{\sqrt{1-4 t^{2}}}\right) H_{n-r}\left(\frac{y-2 x t}{\sqrt{1-4 t^{2}}}\right), \\
\sum_{n_{1}, \ldots, n_{k}=0}^{\infty} H_{n_{1}+\cdots+n_{k}}(x) H_{n_{1}}\left(y_{1}\right) \ldots H_{n_{k}}\left(y_{k}\right) \frac{u_{1}^{n_{1}} \ldots u_{k^{k}}^{n_{k}}}{n!\ldots n_{k}!} \tag{4}\\
=\left(1-4 \sum u_{i}^{2}\right)^{-1 / 2} \exp \left[x^{2}-\frac{\left(x-2 \sum y_{i} u_{i}\right)^{2}}{1-4 \sum u_{i}^{2}}\right]
\end{array}
$$

where, on the right-hand side of (4), the range of each summation is from $i=1$ to $i=k(k=1,2, \ldots)$.

Both (3) and (4) provide elegant generalizations of the bilinear generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(x) H_{n}(y)=\left(1-4 t^{2}\right)^{-1 / 2} \exp \left[\frac{4 x y t-4\left(x^{2}+y^{2}\right) t^{2}}{1-4 t^{2}}\right], \tag{5}
\end{equation*}
$$

which is well known as Mehler formula [3, p. 198]. The object of the present note is to show how effectively certain operational techniques may be applied to give easy and direct proofs of (3) and (4). We first derive here the operational formula

[^0]\[

$$
\begin{align*}
& \exp \left(t D_{x} D_{y}\right)\left\{\exp \left(-a^{2} x^{2}-b^{2} y^{2}\right)\right\} \\
&=\left(1-4 a^{2} b^{2} t^{2}\right)^{-1 / 2} \exp \left[-a^{2} x^{2}-\frac{\left(b y-2 a^{2} b x t\right)^{2}}{1-4 a^{2} b^{2} t^{2}}\right] \tag{6}
\end{align*}
$$
\]

which is believed to be new, and then apply it to prove (3). Formula (4) is shown to be an immediate consequence of Glaisher's operational formula

$$
\begin{equation*}
\exp \left(t D_{x}^{2}\right)\left\{\exp \left(-x^{2}\right)\right\}=(1+4 t)^{-1 / 2} \exp \left[\frac{-x^{2}}{1+4 t}\right] \tag{7}
\end{equation*}
$$

In what follows we shall also use the known results

$$
\begin{equation*}
D_{x}^{r} H_{n}(x)=2^{r} r!\binom{n}{r} H_{n-r}(x) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\exp \left(t D_{x}\right) f(x)=f(x+t) \tag{9}
\end{equation*}
$$

2. To prove (6), we replace x, y in the Mehler formula (5) by $a x$ and $b y$ respectively. Making use of the operational formula (2) we are led at once to (6).

In order to prove (3), we note that

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{t^{k}}{k!} H_{k+n}(x) H_{k+m}(y) \\
&=(-1)^{m+n} \exp \left(x^{2}+y^{2}\right) D_{x}^{n} D_{y}^{m} \exp \left(t D_{x} D_{y}\right)\left\{\exp \left(-x^{2}-y^{2}\right)\right\} \\
&=\left(1-4 t^{2}\right)^{-1 / 2} \exp \left(x^{2}+y^{2}\right)\left(-D_{x}\right)^{n}\left(-D_{y}\right)^{m} \exp \left[-x^{2}-\frac{(y-2 x t)^{2}}{1-4 t^{2}}\right] \\
&=\left(1-4 t^{2}\right)^{-(m+1) / 2} \exp \left(x^{2}+y^{2}\right) \\
& \times(-1)^{n} D_{x}^{n}\left[H_{m}\left(\frac{y-2 x t}{\sqrt{1-4 t^{2}}}\right) \exp \left\{-\frac{(x-2 y t)^{2}}{1-4 t^{2}}-y^{2}\right\}\right] \\
&=\left(1-4 t^{2}\right)^{-(m+1) / 2} \exp \left(x^{2}\right) . \\
& \times \sum_{r=0}^{n}(-1)^{n}\binom{n}{r} D_{x}^{n-r} \exp \left[-\frac{(x-2 y t)^{2}}{1-4 t^{2}}\right] D_{x}^{r} H_{m}\left(\frac{y-2 x t}{\sqrt{1-4 t^{2}}}\right) \\
&=\left(1-4 t^{2}\right)^{-(m+n+1) / 2} \exp \left[\frac{4 x y t-4\left(x^{2}+y^{2}\right) t^{2}}{1-4 t^{2}}\right] \\
& \times \sum_{r=0}^{\min (m, n)} 2^{2 r} r!\binom{m}{r}\binom{n}{r} t^{r} H_{n-r}\left(\frac{x-2 y t}{\sqrt{1-4 t^{2}}}\right) H_{m-r}\left(\frac{y-2 x t}{\sqrt{1-4 t^{2}}}\right)
\end{aligned}
$$

which evidently proves (3).
Further, by using (2) and (1), the left-hand side of (4) can be transformed into

$$
\begin{aligned}
& \exp \left(x^{2}\right) \exp \left[-\left(\sum u_{i}^{2}\right) D_{x}^{2}-2\left(\sum u_{i} y_{i}\right) D_{x}\right] \exp \left(-x^{2}\right) \\
&=\exp \left(x^{2}\right) \exp \left[-\left(\sum u_{i}^{2}\right) D_{x}^{2}\right] \exp \left[-\left(x-\sum 2 u_{i} y_{i}\right)^{2}\right]
\end{aligned}
$$

which, in view of (7), leads us to the desired result (4).

References

1. L. Carlitz, An extension of Mehler's formula, Boll. Un. Mat. Ital. (4) 3 (1970), 43-46.
2. ——, Some extensions of the Mehler formula, Collect. Math. 21 (1970), 117-130.
3. E. D. Rainville, Special functions, Macmillan, New York, 1960.

University of Victoria, Victoria, British Columbia

[^0]: Received by the editors September 3, 1970 and, in revised form, October 28, 1970.
 ${ }^{1}{ }^{1}$) This work was carried out at the University of Victoria while the author held a postdoctoral fellowship of the National Research Council of Canada under the supervision of Professor H. M. Srivastava. Thanks are due to the referee for his valuable suggestions.

