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CERTAIN EXTENSIONS OF THE MEHLER FORMULA 

BY 

J. P. SINGHALO 

1. Introduction. For the Hermite polynomials Hn(z) defined by 

(1) § ^ / 4 ( z ) = exp(2z*-f2) 
n = 0 n-

it is easy to see from the Rodrigues formula that 

(2) Hn(ax) = ( - \)na~n exp (a2x2)D n
x exp (-a2x2), 

where, as usual, Ds=d/dz. 
In recent papers ([1], [2]) Carlitz has proved the following formulae: 

| ^Hk+n(x)HkUy) = (l-4*2)- (m+n + 1,,2exp p^-^+^^j 

t Hni+ ...+nk(x)Hni(yi).. .Hnk(yk) "
î,1---f; 

(4) m n„=o n\...nk\ 

= (l-42«?)-1'2exp p- (Y_2
4

2/g )2]> 

where, on the right-hand side of (4), the range of each summation is from /= 1 to 
i=fc(fc=l,2,...)-

Both (3) and (4) provide elegant generalizations of the bilinear generating 
function 

(5) Ï^Hn(X)Hn(y) = ( 1 - 4 , - ) - e x p [ ^ ^ l 

which is well known as Mehler formula [3, p. 198]. The object of the present note 
is to show how effectively certain operational techniques may be applied to give 
easy and direct proofs of (3) and (4). We first derive here the operational formula 
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exp (tDxDy){<ixp ( - a2x2 - b2y2)} 

^ « (l-4aW)-exp [-^-^igff/j^ 
which is believed to be new, and then apply it to prove (3). Formula (4) is shown 
to be an immediate consequence of Glaisher's operational formula 

(7) exp {tD2
x){exp ( - x2)} = (1 + At) "1/2 exp 

In what follows we shall also use the known results 

1+4* 

(8) Dr
xHn(x) = Tr\QHn.r{x) 

(9) exp(tDx)f(x)=f(x+t). 

2. To prove (6), we replace x, y in the Mehler formula (5) by ax and by respec
tively. Making use of the operational formula (2) we are led at once to (6). 

In order to prove (3), we note that 

oo fk 

2 T}Hk+n{x)Hk+m{y) 
fc = 0 K" 

= ( - l ) m + n exp (x2+y2)Dn
xD™ exp (tDxDy) {exp (-x2-y2)} 

= (l-4t2)-v2exp(x2+y2)(-Dxy(-DyrQxp [ - x 2 - ^ 2 ^ / ] 

= (l-4*2)- ( m + 1 ) / 2exp(%2+j;2) 

= ( l -4? 2 ) - ( m + 1 ) / 2exp(x 2 ) . 

min(m,n) 
X 

which evidently proves (3). 
Further, by using (2) and (1), the left-hand side of (4) can be transformed into 

exp (x2) exp - \y ufj2)2 - 2 H? u^ADx\ exp ( -x 2 ) 

= exp (x2) exp [ - (2w?JZ) 2J exp [ - ( x - ^ w ^ ) ] , 

which, in view of (7), leads us to the desired result (4). 
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