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CONVEX FUNCTIONS ON BANACH
SPACES NOT CONTAINING ‡1

JON BORWEIN AND JON VANDERWERFF

ABSTRACT. There is a sizeable class of results precisely relating boundedness, con-
vergence and differentiability properties of continuous convex functions on Banach
spaces to whether or not the space contains an isomorphic copy of ‡1. In this note,
we provide constructions showing that the main such results do not extend to natural
broader classes of functions.

Introduction. Following [3], we will say a Banach space is sequentially reflexive
if Mackey and norm convergence coincide sequentially in its dual space. In addition
to showing that Asplund spaces are sequentially reflexive, [3] also shows that weak
Hadamard and Fréchet differentiability coincide for continuous convex functions on se-
quentially reflexive spaces (and thus on all Asplund spaces which was quite unexpected;
see also [4]). Using Rosenthal’s ‡1 theorem, [10] shows that a Banach space X is sequen-
tially reflexive if and only if X Â¦ ‡1 (meaning no subspace of X is isomorphic to ‡1).
Sequential reflexivity has turned out to be an extremely useful notion in convex analy-
sis. Indeed, in addition to its implications in the study of differentiability properties of
convex functions [3, 4], it has applications to boundedness and convergence properties
of convex functions [2, 6, 7].

Because the notion of uniform convergence on bounded sets plays a fundamental
role in convex analysis and optimization (see [1]), it is natural to ask when it is implied
by weaker forms of convergence. We studied this question in [7], where among other
results it was shown that on each sequentially reflexive space, every sequence of lsc
convex functions converging uniformly on weakly compact sets to a continuous affine
function converges uniformly on bounded sets. However, it was not known if this result
still holds when the limit function is only a continuous convex or even Lipschitz convex
function—Theorem 1 (a) below shows, in a decisive fashion, that it fails even for norms.

Throughout, we will work with real Banach spaces. We use BX and SX to denote the
closed unit ball and unit sphere of X. Definitions of additional basic concepts used but
not defined here can be found in [1], [8], or [11]. We also often use the Eberlein-Šmulian
theorem (see [8]) without specific reference to it.

THEOREM 1. Let X be a nonreflexive Banach space. Then:
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CONVEX FUNCTIONS ON BANACH SPACES 11

(a) There is a non-increasing sequence of equi-Lipschitz norms converging uniformly
on weakly compact sets to a norm, but such that the convergence is not uniform
on bounded sets.

(b) There are norms ñ and ó on X such that ñ�ó is weak Hadamard but not Fréchet
differentiable at some point.

(c) There are continuous convex functions f and h on X such that h � f is bounded
on weakly compact sets, but not on bounded sets.

Before proceeding with the proof of Theorem 1, let us recall that a function f is weak
Hadamard differentiable at x if there is a Λ 2 XŁ such that

lim
t#0

[f (x + th) � f (x) � Λ(th)]Ût ≥ 0

with the limit being uniform for h in weakly compact sets. Notice that Theorem 1(b)
and (c) sharply contrast the following known result which is a restatement of parts of [4,
Theorem 2] and [6, Theorem 2.4].

THEOREM 2. For a Banach space X the following are equivalent.
(a) X is sequentially reflexive or equivalently X Â¦ ‡1.
(b) Weak Hadamard and Fréchet differentiability coincide for continuous convex

functions on X.
(c) Every continuous convex function bounded on weakly compact subsets of X is

bounded on bounded subsets of X.

The following lemma is a key component in the proof of Theorem 1. Notice that the
system it provides is stronger than a sequence in the dual space that is weakŁ null but
not norm null as given by the Josefson-Nissenzweig theorem in the dual of each infinite
dimensional Banach space (see [8, p. 219]). However, its proof shares similarities with
the manner in which the Josefson-Nissenzweig theorem is derived from [9, Corollary 1].

LEMMA 3. If X is not reflexive and X Â¦ ‡1, then there is a system fxn, Λng ² BXðXŁ

such that Λn
wŁ

! 0 and
(a) 1 � è � Λk(xn) � 1 for k � n,
(b) Λk(xn) ≥ 0 whenever k Ù n.

PROOF. First suppose that BXŁ is wŁ-sequentially compact. For è Ù 0 given, we shall
construct a system fun,ûng ² SX ð SXŁ such that

(1) 1 � è � ûk(un) � 1 if k � n;

(2) ûk(un) ≥ 0 if k Ù n.

Because X is not reflexive, we can choose Φ 2 SXŁŁ n X such that d(Φ, X) Ù 1 � è.

By Goldstine’s theorem one can fix a net fxãg ² SX such that xã
wŁ

! Φ. Let û1 2 SXŁ

satisfy û1(Φ) Ù 1 � è; fix ã1 such that û1(xã) Ù 1 � è for ã ½ ã1, and let u1 ≥

xã1 . Suppose u1, . . . , un and û1, . . . ,ûn have been chosen appropriately. To choose ûn+1,
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12 JON BORWEIN AND JON VANDERWERFF

let En :≥ spanfu1, . . . , ung. Then En is wŁ-closed, and by the separation theorem one
chooses ûn+1 2 SXŁ such that ûn+1(En) ≥ f0g, and ûn+1(Φ) Ù 1� è. Fix ãn+1 ½ ãn such
that ûn+1(xã) Ù 1� è for ã ½ ãn+1 and let un+1 ≥ xãn+1. It follows from the construction

that fun,ûng satisfy (1) and (2). By wŁ-sequential compactness,ûnk

wŁ

! û for some û. We
let xk :≥ unk and Λk :≥ ûnk �û. Observe that û(un) ≥ 0 for each n, so it follows that the
system fxk, Λkg satisfies the conditions of the lemma.

It remains to prove the lemma in the case BXŁ is not wŁ-sequentially compact. Because
X Â¦ ‡1 and BXŁ is not wŁ-sequentially compact, [9, Corollary 1] shows that c0 is isomor-
phic to a quotient of X. Let T be the quotient map of X onto Y where Y is isomorphic to
c0. From the first part of the proof, there is a system fyn, yŁng ² Y ð YŁ satisfying the
conclusion of the lemma. Choose un such that fung

1

n≥1 is bounded and Tun ≥ yn. Let
K Ù 0 be such that Kun 2 BX for each n. For xn :≥ Kun and Λn :≥ 1

K yŁn Ž T, it follows
that fxn, Λng has the desired properties.

PROOF OF THEOREM 1. (a) If X ¦ ‡1, then X is not sequentially reflexive [10] and
so there is a sequencefΛng ² SXŁ that converges to 0 uniformly on weakly compact sets.
Hence the sequence of norms k Ð kn defined by kxkn :≥ kxk + supk½n jΛk(x)j decreases
to k Ð k uniformly on weakly compact sets but not on bounded sets. So we may assume
X Â¦ ‡1 and that fxn, Λng is a system in BX ð XŁ as given by Lemma 3 with è ≥ 1Û4.
Thus in particular,

(3) 3Û4 � Λk(xn) � 1 if k � n;

(4) Λk(xn) ≥ 0 if k Ù n.

Now one can use the system fxn, Λng to define norms

ó(x) :≥ kxk + sup
n

sup
k�n

þþþþ
�

Λn �
1
2

Λk

�
(x)

þþþþ,
ón(x) :≥ maxfó(x), kxk + sup

k½n
jΛk(x)jg.

Notice that these norms are uniformly bounded on BX because fΛng is norm bounded.
Let us first check that ón converges to ó uniformly on weakly compact sets. Indeed,

because the sequence fóng is nonincreasing, if it did not converge on some weakly com-
pact set, one could find wn

w
! w̄ such that lim supn!1 ón(wn)�ó(wn) Ù 0. However, for

any fixed è Ù 0, because Λk
wŁ

! 0, we can find k0 such that jΛk0 (w̄)j Ú è. Thus for some
n0, jΛk0 (wn)j Ú è for all n ½ n0. Let N ≥ maxfk0, n0g. Then for n ½ N, we have

ó(wn) ½ kwnk + sup
m½N

þþþþ
�

Λm �
1
2

Λk0

�
(wn)

þþþþ
½ kwnk + sup

m½N
jΛm(wn)j � è.

Using this with the definition of ón, one sees that ó(wn) ½ ón(wn) � è for n ½ N. Thus
we conclude the convergence is uniform on weakly compact sets.
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To see that the convergence is not uniform on bounded sets, using (3) and (4) it follows
for k � n that

(5) 0 �
�

Λn �
1
2

Λk

�
(xm) � 1 �

3
8
�

5
8

if n � m;

(6) �
1
2
�

�
Λn �

1
2

Λk

�
(xm) ≥ 0 �

1
2

Λ(xk) � 0 if n Ù m.

Therefore, ó(xn) � 5Û8 + kxnk for all n, while ón(xn) ½ Λn(xn) + kxnk ½ 3Û4 + kxnk for
all n. Hence the convergence is not uniform on the bounded set fxng

1

n≥1. This proves (a).
To prove (b), if X ¦ ‡1, then [4, Theorem 2] shows there is a norm on X for which

weak Hadamard and Fréchet differentiability do not coincide. So we may suppose X Â¦

‡1, and we write X ≥ HðR. Now let fxn, Λng ² BHðHŁ be a system given by Lemma 3
that satisfies (3) and (4). We let ûn,k(x) :≥ Λn(x) � 2Λk(x) for k � n. Using (3) and (4)
as in (5) and (6), one obtains

(7) �2 � ûn,k(xm) � 0 for all m, n and k � n.

Motivated by [4], we let ç1 ≥ 1Û2 and çn ≥ 1� 1Ûn for n ½ 2, and we define functions
f and g on H ð R by

f (x, t) :≥ sup
n

sup
k�n

jûn,k(x) + tçnj,

g(x, t) :≥ sup
n
jΛn(x) + tçnj.

The desired equivalent norms are now defined for (x, t) 2 H ð R by

ñ(x, t) :≥ maxff (x, t), g(x, t),
1
2

(kxk + jtj)g,

ó(x, t) :≥ maxff (x, t),
1
2

(kxk + jtj)g.

We shall show that ñ � ó is weak Hadamard differentiable at (0, 1) but not Fréchet
differentiable there. First observe that f (0, 1) ≥ g(0, 1) ≥ 1 while 1Û2(k0k+ j1j) ≥ 1Û2.
Therefore, the norm term in the definition of ñ and ó is locally inactive around (0, 1) and
so it suffices to show that h� f is weak Hadamard but not Fréchet differentiable at (0, 1)
where h(x, t) :≥ maxff (x, t), g(x, t)g.

Let us now show that h � f has weak Hadamard derivative 0 at (0, 1). Because
(h � f )(0, 1) ≥ 0 and h � f ½ 0, if h � f were not weak Hadamard differentiable at
(0, 1), one could find tn # 0, è Ù 0 and a weakly convergent sequence f(wn, rn)g, such
that

lim sup
n!1

h(tnwn, 1 + tnrn) � f (tnwn, 1 + tnrn)
tn

Ù è,

and consequently

(8) lim sup
n!1

g(tnwn, 1 + tnrn) � f (tnwn, 1 + tnrn)
tn

Ù è.
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14 JON BORWEIN AND JON VANDERWERFF

As in (a), one can fix k0 and n0, with n0 ½ k0 such that jΛk0 (wn)j Ú èÛ2 for all n ½ n0.
Now fix N ½ n0 such that

(9) jΛm(tnwn)j + jtnrnj Ú
1

2n0
for n ½ N.

Then for n ½ N and m � n0 one has

(10) jΛm(tnwn) + çn + tnrnçmj � jçmj +
1

2n0
� 1 �

1
2n0

.

For each n ½ N, using (10) with the definition of g yields

(11) g(tnwn, 1 + tnrn) ≥ max
²

1 �
1

2n0
, sup

mÙn0

jΛm(tnwn) + çm(1 + tnrn)j
¦

.

Because ûm,m
wŁ

! 0, using (9) for each n ½ N one obtains

(12)

f (tnwn, 1 + tnrn) ½ lim
m!1

jûm,m(tnwn) + çm + tnrnçmj

½ 1 � jtnrnj

Ù 1 �
1

2n0
.

The definition of f , (11) and (12), for n ½ N, imply that

f (tnwn, 1 + tnrn) ½ max
²

1�
1

2n0
, sup

mÙn0

jΛm(tnwn) � 2Λk0 (tnwn) + çm(1 + tnrn)j
¦

½ max
²

1�
1

2n0
, sup

mÙn0

[jΛm(tnwn) + çm(1 + tnrn)j � tnè]
¦

½ g(tnwn, 1 + tnrn)� tnè.

This contradicts (8) and so we conclude that h� f has weak Hadamard derivative 0 at 0.
Now we show that h� f is not Fréchet differentiable at (0, 1). First, by (3), h( 2

n xn, 1) ½
2
n Λn(xn)+1� 1

n ½ 1+ 1
2n . However, since ûn,n is weakŁ null (7) implies that f ( 2

n xn, 1) ≥ 1
for n ½ 3. Therefore,

lim sup
n!1

h( 2
n xn, 1) � f ( 2

n xn, 1)
2
n

½
1
4

.

Hence h � f does not have Fréchet derivative 0 at (0, 1), which proves (b).
Finally, to prove (c), according to Theorem 2 (see [6, Theorem 2.4]) we may assume

X Â¦ ‡1. Let fxn, Λng ² BX ð XŁ be a system as in Lemma 3 which satisfies (3) and (4).
Let ûn,k ≥ Λn �

2
n Λk for 1 � k � n, and let an ≥ Λn(xn). Using this, one defines real

functions fn by fn(t) ≥ 0 if t � an �
1
n and fn(t) ≥ n! (t + 1

n � an) if t ½ an �
1
n . We define

gn by gn(t) ≥ 0 if t � an �
1

2n and gn(t) ≥ n! (t + 1
2n � an) if t ½ an �

1
2n . The desired

functions f and h are defined as follows:

f (x) ≥ sup
n

sup
k�n

n
fn
�
ûn,k(x)

�o
,

g(x) ≥ sup
n

n
gn

�
Λn(x)

�o
and

h(x) ≥ maxff (x), g(x)g.
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CONVEX FUNCTIONS ON BANACH SPACES 15

First, we show that f and g (and hence h) are continuous convex functions. Indeed, it is
clear that f and g are convex because they are suprema of such functions. Also, because

Λn
wŁ

! 0, one verifies as in the proof of [6, Lemma 2.1] that f and g are locally a maximum
of finitely many Lipschitz functions and therefore continuous.

If h� f were not bounded on some weakly compact set, one could find a weakly con-
vergent sequence fwng such that lim supn!1(h � f )(wn) ≥ 1, which implies
lim supn!1(g � f )(wn) ≥ 1, as h � f ½ 0. However, as in (a), one finds k0 and n0

so that jΛk0 (wn)j Ú 1
4 for n ½ n0. Let N ≥ maxfk0, n0g. Then for m, n ½ N, it follows

that

jûm,k0 (wn) � Λm(wn)j ≥
þþþþ
�

Λm �
2
m

Λk0

�
(wn)� Λm(wn)

þþþþ
≥

2
m
jΛk0 (wn)j �

1
2m

.

Thus, ûm,k0 (wn) ½ Λm(wn) � 1
2m for m, n ½ N. Observe that the definitions of fm and gm

imply that fm(s) ½ gm(t) if s ½ t � 1
2m . Consequently fm

�
ûm,k0 (wn)

�
½ gm

�
Λm(wn)

�
for

m, n ½ N. Hence, letting M :≥ supn jΛn(wn)j, for k ½ N we have

g(wn) � max
n

g1

�
Λ1(wn)

�
, . . . , gN�1

�
ΛN�1(wn)

�
, f (wn)

o

� maxfN! M, f (wn)g.

Thus lim supn!1(g� f )(wn) � N! M, and we conclude h� f is bounded on each weakly
compact set.

Finally, let us show that h � f is unbounded on fxng
1

n≥1. Indeed, Λn(xn) ≥ an and so
g(xn) ½ gn

�
Λn(xn)

�
≥ (n � 1)!Û2. On the other hand, using (3) and (4), we obtain:

ûn,k(xm) � 0 if m Ú n and so fn
�
ûn,k(xm)

�
≥ 0;

ûn,k(xn) Ú an � 1Ûn and so fn
�
ûn,k(xn)

�
≥ 0;

and finally ûn,k(xm) Ú Λm(xn) � 1 for n Ú m, and so

fn
�
ûn,k(xm)

�
Ú n! (1 + 1Ûn � 3Û4)

≥ (n � 1)! + n!Û4

� (m � 2)! + (m� 1)!Û4.

Therefore f (xm) � (m� 2)! + (m � 1)!Û4 and g(xm) � f (xm) ½ (m � 1)!Û4 � (m � 2)!
which tends to 1 as m !1.

REMARK 4. (a) One can also construct an increasing sequence of norms as in
Theorem 1(a). However, our proof requires a more complicated system than given by
Lemma 3, so we have chosen to omit the details.

(b) An underlying theme from [4] and [6] is that many constructions involving con-
vex functions are not as easy as it might first appear. We should also emphasize this here.
Indeed, it may seem that it should be easy to construct a difference of continuous convex
functions as in Theorem 1(c). However, as soon as the difference of continuous convex
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16 JON BORWEIN AND JON VANDERWERFF

functions is unbounded on a bounded set, at least one of the continuous convex functions
must be unbounded on a bounded set. From this, [6, Lemma 2.3] immediately produces
a sequence in the dual sphere that converges weakŁ to 0. Therefore, the highly nontrivial
Josefson-Nissenzweig theorem is a direct corollary of Theorem 1(c). This provides jus-
tification to our use of deep structural properties in Banach spaces, namely Rosenthal’s
‡1 theorem and Hagler and Johnson’s [9, Corollary 1].

We should add that Theorem 1(a) largely answers the main open question in our arti-
cle [7]. However, one issue remains: in a sequentially reflexive space, whenever the di-
rectional derivative for a convex continuous function is approached uniformly on weak
compact sets, is it approached uniformly on bounded sets? In other words, if the func-
tion is directionally weak Hadamard differentiable is it perforce directionally Fréchet
differentiable even at points of non differentiability? This question was first answered by
John Giles and Scott Sciffer, who informed us—immediately upon receiving an earlier
version of this note which did not contain any of the results listed hereunder—that they
have constructed an example showing the answer is negative on c0. This motivated us
to re-examine the consequences of Theorem 1(a), and indeed one can use it to provide a
negative answer to the preceding question on all nonreflexive spaces:

COROLLARY 5. On each nonreflexive space there is a Lipschitz convex function that
is directionally weak Hadamard differentiable at 0, but such that it is not directionally
Fréchet differentiable at 0.

PROOF. By Theorem 1(a), there is a sequence of uniformly bounded norms fóng
1

n≥1

decreasing to a norm ó uniformly on weakly compact sets, but not uniformly on bounded
sets. Therefore, we can find é Ù 0 and fxng

1

n≥1 bounded such that ón(xn) Ù ó(xn) + 2é.
Now let

f (x) :≥ max
²
ó(x), sup

n

�
ón(x) �

é

n

½¦
,

and define fn(x) :≥ n[f (0 + xÛn) � f (0)]. Then fn(x) ≥ nf (xÛn), and d+f (0)(x) ≥

limn!1 fn(x) where d+f (0)(x) denotes the directional derivative of f at 0 in the direction x
(see [11, Section 1] for basic properties of directional derivatives). We shall show that fn
converges to ó uniformly on weakly compact sets, but not on bounded sets; consequently
f is directionally weak Hadamard differentiable at 0, with d+f (0)(x) ≥ ó(x).

Let W be a weakly compact set and let è Ù 0. We fix N 2 N such that ón(w) � ó(w)+è
for all n ½ N and w 2 W. Then choose M 2 N such that

ón(wÛM) �
é

N
� 0 for all w 2 W, n 2 N.

Using this for w 2 W and n ½ maxfM, Ng, we have

ó(w) � fn(w) ≥ n maxfó(wÛn), sup
k

[ók(wÛn)� éÛk]g

� n maxfó(wÛn), max
k�N

[ók(wÛn) � éÛN], sup
kÙN

[ók(wÛn) � éÛk]g
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CONVEX FUNCTIONS ON BANACH SPACES 17

� n max
²
ó(wÛn), 0, sup

k½N

1
n
ók(w)

¦

� n max
²
ó(wÛn),

1
n

�
ó(w) + è

�¦

≥ ó(w) + è.

Finally, we shall show the limit is not uniform on the bounded set fxng
1

n≥1 (and so f
is not directionally Fréchet differentiable at 0). Indeed:

fn(xn) ½ n[ón(xnÛn)� éÛn] ≥ ón(xn) � é ½ ó(xn) + é.

So we’ve shown all we wish to show.
As a consequence of Corollary 5, one also obtains the following result that is slightly

weaker than Theorem 1(b), in that the functions obtained are not norms.

COROLLARY 6. If X is a nonreflexive Banach space, then there is a difference of two
Lipschitz convex functions that is weak Hadamard but not Fréchet differentiable at 0.

PROOF. Let f be a function as guaranteed by Corollary 5. Then one can verify that
f (x) � d+f (0)(x) is the desired difference of Lipschitz convex functions.

We close, by considering briefly a different class of spaces. As in [5], we shall say
that X has the DPŁ property if weakŁ and Mackey convergence coincide sequentially
in XŁ. Also, recall that a Banach space has the Schur property if its weakly compact
sets are norm compact. Notice that all spaces with Schur property trivially have the DPŁ

property, while the converse fails. Indeed, any space with the Grothendieck and Dunford
Pettis properties, such as ‡1 has the DPŁ property; see [8, 5] for more. In fact, the relation
between the Schur property and the DPŁ property is analogous to the relation between
reflexivity and sequential reflexivity. Moreover, the results of [4] and [6] combine to
immediately provide the following result which parallels Theorem 2.

THEOREM 7. For a Banach space X, the following are equivalent.
(a) X has the DPŁ property.
(b) Gateaux and weak Hadamard differentiability coincide for continuous convex

functions on X.
(c) Each continuous convex function on X is bounded on weakly compact sets.

In contrast to this, we have the following analog of Corollaries 5 and 6.

PROPOSITION 8. Suppose X does not have the Schur property. Then:
(a) there is a continuous convex function for which weak Hadamard directional dif-

ferentiability and (Gateaux) directional differentiability do not agree;
(b) there is a difference of Lipschitz convex functions that is Gateaux but not weak

Hadamard differentiable at 0.

PROOF. Let fwng ² SX converge weakly to 0. Because fwng
1

n≥1 is not relatively
norm compact, it is easy to construct a system fxn,ûng ² XðXŁ where fxng is a subse-
quence of fwng, fûng is norm bounded, and ûn(xn) ≥ 2 while ûn(xm) ≥ 0 for n Ù m (see
for instance the proof of [5, Theorem 3.4]). Now we define f (x) :≥ supn[ûn(x) � 1Ûn].
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18 JON BORWEIN AND JON VANDERWERFF

An argument similar to the proof of Corollary 5 shows d+f (0)(x) ≥ lim supn!1 ûn(x).
Consequently, d+f (0)(xn) ≥ 0 for each n because limm!1 ûm(xn) ≥ 0 for each n. How-
ever, nf (xnÛn) ½ 1 and so the difference quotients do not converge uniformly to the
directional derivative on the weakly compact set fxng

1

n≥1 [ f0g. This proves (a). To
prove part (b), simply consider f (x) � d+f (0)(x).

By comparing Proposition 8 with Corollaries 5 and 6, one might guess an analog for
Theorem 1(c): on any space which does not have the Schur property, there is a difference
of continuous convex functions that is unbounded on some weakly compact set. Curi-
ously, this is not the case. Indeed, if X has the DPŁ property and f and g are continuous
convex functions, then Theorem 7 ensures that f and g are bounded on weakly compacts
sets and hence f � g is also. This serves as a further reminder of the subtleties one can
encounter when dealing with convex functions.
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