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High-frequency instabilities in supersonic
compression-ramp flow
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We consider high Reynolds number supersonic flow over a compression ramp in the
triple-deck formulation. Previous studies of compression-ramp stability have shown rapid
growth of high-frequency disturbances in initial-value computations; however, no physical
or numerical origin has yet been identified robustly. By considering linear perturbations to
steady compression-ramp solutions, we show that instabilities observed in previous studies
do not have a growth rate that is described by the integral eigenrelation of Tutty & Cowley
(J. Fluid Mech., vol. 168, 1986, pp. 431–456) for a (long-wave) Rayleigh instability. We
solve both the temporal and spatial instability problems in the limit of asymptotically large
wavenumber K (or equivalently frequency) and show that the growth rate of the instability
remains o(K), being dominated by higher-order terms in the expansion at moderate ramp
angles.

Key words: boundary layer stability, compressible boundary layers

1. Introduction

The effect of a shock wave impinging on a supersonic boundary layer has been the subject
of many studies, both experimental and theoretical. It is known that an instability forms
in the separation region produced by the shock wave, and this typically causes the flow
to undergo laminar–turbulent transition. The closely related experiments of Chapman,
Kuehn & Larson (1957) found that when a compressive feature such as a concave ramp
is introduced into supersonic flow over an otherwise flat surface, a separation region
occurs upstream. This phenomenon cannot be explained by the parabolic boundary layer
equations, which permit only downstream propagation of disturbances. The theoretical
explanation for this behaviour was eventually provided by (supersonic) triple-deck theory
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developed independently by Stewartson & Williams (1969) and Neiland (1969). This
theory provides a viscous–inviscid interaction problem that allows for upstream influence.

Following a formulation of the appropriate interactive equations, computational
solutions to the problem of supersonic compression-ramp flow were sought eventually.
The resulting flow is parametrised by a scaled measure (α) of the true ramp angle (θ ),
where α ∝ θ Re1/4; see e.g. Korolev, Gajjar & Ruban (2002). A schematic of the flow,
which includes the scalings of the triple-deck model, is given in figure 1. The objective of
the early studies of Rizzetta, Burggraf & Jensen (1979) and Ruban (1978) was to determine
steady-state solutions, though this was achieved by time-marching the unsteady triple-deck
equations instead of solving directly the time-independent problem. The initial-value
problem starts from a flat-plate solution, increasing the ramp angle to a final desired angle
and time-marching until an approximate steady state is achieved. Owing to the limited
computational resources of the time and the sensitive nature of the problem, only solutions
for low to moderate values of α were obtained.

A different approach was taken by Smith & Khorrami (1991), who found steady-state
solutions for much larger ramp angles up to α = 6.5 by solving the steady equations
directly. It was hypothesised therein that a critical ramp angle existed at which the steady
flow developed a singularity; however, further studies of steady large-angle solutions by
Korolev et al. (2002) and Logue (2008) suggest that this is not the case, though there is a
slight quantitative discrepancy between their results at the largest ramp angles.

Instability of these flows has also been a topic of much theoretical investigation.
It is known that supersonic flow is stable to Tollmien–Schlichting waves (see e.g.
Duck 1985); however, it has been shown by Tutty & Cowley (1986) that solutions to
the triple-deck equations are in principle unstable to long-wavelength Rayleigh (LWR)
waves for a variety of interaction conditions. These are inviscid instabilities where the
wavelength is short compared to the triple-deck streamwise length scale, but remains
long compared to the boundary-layer scale. If the flow is susceptible to such instabilities,
then in any time-marching procedure, the growth of these waves will be limited only
by the spatio-temporal resolution of the scheme – the better the resolution, the faster
the waves will grow. Tutty & Cowley (1986) derived a general eigenrelation for the
complex wavespeed c = cr + ici, showing that (in the supersonic case) the presence
of an inflection point (i.e. a point where UYY = 0) is a necessary but not sufficient
condition for the flow to be unstable to LWR instabilities. For a supersonic base flow,
the leading-order eigenrelation in the high-frequency limit is given by Tutty & Cowley
(1986) as ∫ ∞

0

UBY

((UB + Y) − c)2 dY + 1
c

= 0, (1.1)

where Y is the transverse coordinate, and UB + Y is the streamwise component of the
base flow in the lower deck. These LWR modes have an asymptotically large frequency,
therefore if the base flow is found as part of a time-marching procedure, then it can be
treated quasi-steadily (and locally) at each time step due to the separation of scales. For
a given base flow, this relation can be assessed at each streamwise location, and for an
instability to be present, we require c to have non-zero imaginary part in one or more
regions. The above eigenrelation can be difficult to evaluate in the cases where the flow
is stable or ci is numerically small, as the integral would have to be deformed into the
complex Y-plane or be very close to a double pole, respectively.

Cassel, Ruban & Walker (1995) were the first to study these instabilities in
compression-ramp flows. They obtained steady solutions to the unsteady equations by
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Figure 1. Schematic of the flow. The ramp is a distance L from the leading edge, and the triple-deck
formulation spans a downstream scale of O(L Re−3/8) around this point. The ramp angle θ for which interaction
develops is O(Re−1/4).

using a time-marching procedure in a manner similar to Rizzetta et al. (1979) and Ruban
(1978), this time for larger ramp angles. By abruptly increasing the ramp angle from a
flat-plate solution to the desired value, a broad range of frequencies are excited so no
artificial forcing is necessary to generate high-frequency instabilities. It was suggested that
an absolute instability exists for α � 3.9, where it was stated that the first inflection points
arise. Nevertheless, Cassel et al. (1995) were unable to connect the observed instability
to the eigenrelation (1.1) derived by Tutty & Cowley (1986) for LWR modes, though it is
clear from the comments therein that the authors did believe that the instabilities present
were of this type.

The method of Cassel et al. (1995) was used later by Fletcher, Ruban & Walker (2004)
in an attempt to establish a connection between the numerically observed instability and
the eigenrelation (1.1). Using substantially more refined spatial meshes and a spatially
localised initial disturbance, it was argued that ramp angles in the region 3.2 � α � 3.7
were convectively unstable, and larger angles were absolutely unstable. However, it had
been stated previously by Cassel et al. (1995) that the flow was non-inflectional at these
values of α, which if true suggested that any convective instabilities must not be connected
to the eigenrelation (1.1), a point that was later made by Logue, Gajjar & Ruban (2014). In
the case of absolute instability at larger values of α, Fletcher et al. (2004) found unstable
solutions to (1.1) and compared the growth rate given by the eigenrelation (a value of 2.74)
to the observed growth rate of the instability (a value of 0.74) in initial-value computations.

The contradictions in the literature can therefore be summarised as follows. Cassel et al.
(1995) observed a high-frequency instability but could not connect it to (1.1). Fletcher et al.
(2004) observed convective instabilities for ramp angles 3.2 < α < 3.7; however, (1.1) has
a necessary condition of an inflection point in the flow, and Cassel et al. (1995) states that
the flow becomes inflectional only above α ≈ 3.9. A comparison of the predicted/observed
growth rates ci by Fletcher et al. (2004) in the initial-value computation was not convincing
(though inevitably such comparisons are difficult and depend on initial conditions). To
try to resolve some of these issues, Logue et al. (2014) investigated the problem by first
solving the steady equations. Using this as a base flow, two linear problems were then
investigated: first a global eigenvalue problem was derived, then convective instabilities
were investigated via an initial-value problem. In the global eigenvalue problem, ramp
angles up to α = 7.8 were considered, but no unstable eigenvalues were found for any
α. The convective instabilities were investigated by introducing a localised disturbance
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at the wall and time-marching the linearised disturbance equations. This triggers a
primary wavepacket which was well resolved in their computations; however, a secondary
wavepacket remained unresolved for the range of spatio-temporal step sizes employed. For
α > 3.2, a continuous stream of wavepackets was formed in the separated region and grew
rapidly in time, though a finer grid delayed the growth of these instabilities somewhat. It
was stated that at the ramp angles for which the convective modes arose, the base flow
remained non-inflectional so the instability could not be connected to the LWR instability
of Tutty & Cowley (1986).

More recently, Exposito, Gai & Neely (2021) employed the method of Cassel et al.
(1995) to look at the influence of the precise choice of ramp shape. They found convective
instabilities for even smaller slope angles than previously. Furthermore, they concluded
that the instability was numerical as it was present only when the method of Cassel et al.
(1995) was used to solve the ramp problem, whereas in Smith & Khorrami (1991) no such
instability was encountered. However, it should be noted that as Smith & Khorrami (1991)
solved only the steady equations, clearly no such temporal instability could ever be present
in their solutions.

In this paper, we begin by solving the steady triple-deck equations via a global numerical
method to obtain compression-ramp base flows, being careful to verify our results with
the existing literature. We then consider linearised, unsteady perturbations to base flows
at moderate ramp angles. It is instructive to first investigate the spatial instability problem
by considering harmonic disturbances of a single frequency before returning to address
temporal stability. By constructing a local eigenvalue problem, we investigate the growth
rates of instabilities for large but finite wavenumbers/frequencies, before considering the
asymptotic limit (in both the temporal and spatial problems, respectively).

2. Governing equations

We consider two-dimensional, high-Reynolds-number, supersonic flow over a ramp placed
a distance L downstream from the leading edge of a flat plate, and define a Reynolds
number Re based on this length scale as shown in figure 1. The interacting flow at the
base of the ramp is assumed to have streamwise extent O(L Re−3/8), and upon using
the triple-deck model, scaling the local shear out of the problem, and applying a Prandtl
transform, we obtain the standard viscous–inviscid interaction problem of (Smith 1973):

∂U
∂T

+ (U + Y)
∂U
∂X

+ V
(

1 + ∂U
∂Y

)
= −∂P

∂X
+ ∂2U

∂Y2 , (2.1a)

∂P
∂Y

= 0, (2.1b)

∂U
∂X

+ ∂V
∂Y

= 0, (2.1c)

subject to the conditions

U = V = 0 at Y = 0, (2.2a)

U → A(X, T) + F(X) as Y → ∞, (2.2b)

U, V, P, A → 0 as X → −∞, (2.2c)

P = −∂A
∂X

. (2.2d)
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High-frequency instabilities in supersonic ramp flow

These are the unsteady triple-deck equations, with (2.2d) the interaction condition for
supersonic flow; more explicit details can be found in e.g. Korolev et al. (2002). In this
lower deck, (U + Y, V) is the velocity vector, P is the pressure, A is the displacement, and
F is the shape of the ramp. Strictly speaking, if we consider a sharp corner at the base of
the ramp, then the function F should take a piecewise definition:

F(X) =
{

0 X < 0,

αX X > 0,
(2.3)

where α is the scaled acute angle between the ramp and the horizontal. However, to retain
an everywhere differentiable wall shape (Rizzetta et al. 1979), we follow the choice made
by Cassel et al. (1995) and others, by using a slightly rounded corner:

F(X) = α

2
(X +

√
X2 + r2), (2.4)

where r is a constant. To enable comparisons to the existing literature, we take r = 0.5,
though the qualitative behaviour of the flow is consistent for other small values of r.

2.1. Steady base flow solutions
A base flow is found from a direct solution of the steady form of (2.1)–(2.2), and denoted
by (U, V, P, A) = (UB, VB, PB, AB), with F defined as in (2.4). This system is solved
using a novel numerical method. Given that there is upstream influence in (2.1) from the
interaction condition (2.2d) (in addition to reversed flow in the corner of the compression
ramp), we solve the steady problem by discretising over both X and Y , and solving for all
degrees of freedom simultaneously.

The numerical scheme used to solve the problem is relatively simple as we remain in
primitive variable form. On a given spatial mesh (Xi, Yj), i = 1, . . . , N, j = 1, . . . , M,
in the range i = 2, . . . , N − 1, j = 2, . . . , M − 1 we evaluate (2.1a) at (Xi, Yj) using
second-order central finite differences for both X and Y derivatives. When i = N, we
again use central finite differences for the transverse derivative; however, we now use
three-point backwards differencing for the streamwise derivatives. We evaluate (2.1c) at
(Xi, Yj−1/2) for i = 2, . . . , N, j = 2, . . . , M, again using second-order finite differences at
all points, implementing backwards differencing in the streamwise direction when i = N.
When i = 1, we impose (2.2c) as Dirichlet conditions. For the interaction condition (2.2d),
we use central finite differences, except at the final streamwise location, where we require

∂PB

∂X
= 0 at X = XN, (2.5)

where XN is the furthest downstream streamwise location.
We solve the resulting discrete system numerically using Newton iteration, where each

iteration requires the inversion of a sparse 2N(M + 1) × 2N(M + 1) linear system. For all
the results given herein, we use a uniform mesh in the transverse direction with Ymax = 50
and a remapped mesh in the streamwise direction in order to concentrate points in the
corner region. The typical grid size is (3001 × 601); however, results were reproduced to
graphical accuracy for grids (1601 × 601) and (1601 × 301).
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Figure 2. Steady solutions for the wall shear τ0: (a) α = 3.6, (b) α = 4.5. The solid line indicates the present
method; dots indicate Logue et al. (2014), and crosses indicate Korolev et al. (2002).

2.1.1. Base flow results
To demonstrate that this global numerical method solves the problem accurately, we will
give a brief comparison of our results to the existing literature of the steady problem,
before considering the important flow features. Our first comparison is with Logue et al.
(2014) for α = 3.6. Figure 2(a) shows the surface shear stress associated with the base
flow

τ0(X) = UBY(X, Y = 0) + 1, (2.6)

together with data extracted from figure 7 of Logue et al. (2014). The flow becomes
separated at X ≈ −7.5 and does not reattach until X ≈ 7, though in between these values
there is a local maximum at X ≈ 0. The minimum of τ0 upstream of this maximum is only
a local minimum, with the global minimum lying further downstream where the strongest
reversed flow is expected to be. As α is increased, we expect that the local maximum
will grow in value until eventually we will have τ0 > 0 at this point, leading to secondary
separation.

The other comparison made is with Korolev et al. (2002) for α = 4.5. This is the lowest
ramp angle given therein, and the two methods outlined in that paper gave very similar
results to graphical accuracy. Figure 2(b) again shows τ0 for this value of α. We see that
our results show good agreement with theirs for this relatively large value of α, even for the
complicated behaviour within the separation region. Here, the local maximum has grown
such that τ0 is just smaller than zero, so the flow is on the cusp of developing a region of
secondary separation.

For a typical computational solution over a truncated domain, even at α = 3.6 the
base flow can be ‘weakly inflectional’ in the sense that inflection points are displaced
substantially from the ramp surface where |UBY | is numerically very small (10−5 and
smaller). In agreement with Cassel et al. (1995), only at larger ramp angles α > 3.8 do
we obtain robust inflectional points close to the boundary in the recirculation region.
Using these base flows, we can seek solutions to (1.1) for each value of α. However, for
α = 3.6, no unstable solutions for c can be found at any streamwise location. As a check,
we also solve the discretised LWR equation directly as an eigenvalue problem using finite
difference methods; again, no complex c solutions were found.

The results of Logue et al. (2014) demonstrate an instability in their initial-value
computations for α = 3.6; however, it is evidently not described by the eigenrelation (1.1).
The rest of this paper will be focused on determining the nature of this instability.

2.2. Linear perturbations
We introduce linear perturbations to the steady base flow of the form

U = UB(X, Y) + ε Up(X, Y, T) + · · · , (2.7a)
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High-frequency instabilities in supersonic ramp flow

V = VB(X, Y) + ε Vp(X, Y, T) + · · · , (2.7b)

P = PB(X) + ε Pp(X, T) + · · · , (2.7c)

A = AB(X) + ε Ap(X, T) + · · · , (2.7d)

where ε � 1. Upon substitution into (2.1)–(2.2), we find that the perturbation terms satisfy

∂Up

∂T
+ (UB + Y)

∂Up

∂X
+ Up

∂UB

∂X
+ Vp

(
1 + ∂UB

∂Y

)
+ VB

∂Up

∂Y
= −∂Pp

∂X
+ ∂2Up

∂Y2 ,

(2.8a)

∂Up

∂X
+ ∂Vp

∂Y
= 0, (2.8b)

subject to the conditions

Up = Vp = 0 at Y = 0, (2.9a)

Up, Vp, Pp, Ap → 0 as X → −∞, (2.9b)

Up → Ap,
∂Up

∂Y
→ 0, as Y → ∞, (2.9c)

Pp = −∂Ap

∂X
. (2.9d)

Solutions to (2.8)–(2.9) are obtained by a second-order discretisation in time, in addition to
the methodology described in § 2.1. We will consider the receptivity problem by relaxing
the impermeability condition at the surface.

As a brief demonstration of the issues encountered when time-marching this linear
problem, we consider a case similar to that of Logue et al. (2014), and transiently force
a response for a short time. In this case, we replace the impermeability condition by

Vp(X, 0, T) = T2 exp(−50T) (X − X0) exp(−γ (X − X0)
2), (2.10)

where X0 and γ are constants to be chosen. For this test case, we take X0 = −5, γ = 3.
Other choices can be made for a perturbation here; for example, Logue et al. (2014) choose
to impose a perturbation to the no-slip condition at the wall. In our case, perturbing
the system via the impermeability condition reproduces the same qualitative features
described by Logue et al.

Figure 3 shows the scaled surface shear stress for the perturbation τp = ∂Up/∂Y
(evaluated at Y = 0) for increasing times and a base flow with α = 3.6. We see in
figure 3(a) that an initial wavepacket develops from the injection site, and in figure 3(b)
this is seen to have grown by several orders of magnitude after it has been convected
downstream. This growth slows as the wavepacket moves into a less unstable part of the
flow. In figure 3(c), the maximum amplitude of this wave has grown by only one order of
magnitude, and by this time it is clear that there are some new oscillations upstream of the
primary wavepacket. These new oscillations are higher in frequency and are growing at
a faster rate; at T = 1.75, they are larger in amplitude than the primary wavepacket. This
secondary wavepacket was found by Logue et al. (2014) to be grid-dependent, and they
were unable to resolve it, leading to mesh-dependent results.

3. Spatial instability

As seen in § 2.2, any initial-value calculation will naturally excite waves of all frequencies.
If the flow is unstable to large frequencies, then at best we will only be able to time-march
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Figure 3. Evolution of the surface stress perturbation for base flow of α = 3.6 at various times: (a) T = 0.5,
(b) T = 1, (c) T = 1.6 and (d) T = 1.75.

the solution for so long before this high-frequency growth will dominate the calculation.
To gain an insight into the growth of the instability, we instead begin by considering
the effect of single-frequency forcing. We will focus on the case α = 3.6, and examine
a spatial problem to describe how the forced response develops downstream through the
compression-ramp flow.

3.1. A harmonic problem
We consider a linear, harmonic perturbation to the base flow in the case α = 3.6 so that
the impermeability condition is replaced by

Vp(X, 0, T) = exp(−iωT) (X − X0) exp(−γ (X − X0)
2), (3.1)

where ω is the frequency of the forcing, and X0 and γ are constants to be chosen. Forcing
of this nature suggests that we search for solutions to the system (2.8)–(2.9) of the form

(Up, Vp, Pp, Ap) = exp(−iωT) (UH(X, Y), VH(X, Y), PH(X), AH(X)) . (3.2)

The system to be solved is then

−iωUH + (UB + Y)
∂UH

∂X
+ UH

∂UB

∂X
+ VH

(
1 + ∂UB

∂Y

)
+ VB

∂UH

∂Y
= −dPH

dX
+ ∂2UH

∂Y2 ,

(3.3a)

968 A5-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

50
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.505


High-frequency instabilities in supersonic ramp flow

–30

–20

–10

0

10

20

30

τH

–1500

–1000

–500

0

500

1000

1500

X

–3

–2

–1

0

1

2

3

τH

(×104)

–10 –5 0 5 10 15 20 –10 –5 0 5 10 15 20

–10 –5 0 5 10 15 20 –10 –5 0 5 10 15 20

X

–2.0
–1.5
–1.0
–0.5

0
0.5
1.0
1.5
2.0

(×105)

(a) (b)

(c) (d )

Figure 4. The distribution of the real part of the scaled surface shear stress of the harmonic perturbation
τH forced by (3.1) for increasing frequency ω with X0 = −5, γ = 3 and ramp angle α = 3.6:
(a) ω = 8, (b) ω = 16, (c) ω = 24 and (d) ω = 32.

∂UH

∂X
+ ∂VH

∂Y
= 0, (3.3b)

PH(X) = −A′
H(X), (3.3c)

UH = 0, VH = (X − X0) exp(−γ (X − X0)
2) at Y = 0, (3.3d)

UH, VH, PH, AH → 0 as X → −∞, (3.3e)

UH → AH,
∂UH

∂Y
→ 0 as Y → ∞. (3.3f )

Like the base flow calculation (see § 2.1) this problem is then formulated globally, and
being linear, it can be solved for all degrees of freedom simultaneously in a single matrix
inversion.

We begin by considering the effect of varying ω on the behaviour of the solutions.
Figure 4 shows the real part of the (harmonic) scaled surface shear stress perturbation
τH = ∂UH/∂Y (on Y = 0) for various ω with X0 = −5, γ = 3 in (3.1). As ω is increased,
a wavepacket with increasing amplitude is formed (with the expected decrease in
wavelength). This behaviour was found to be grid-independent for sufficiently fine meshes,
though large numbers of streamwise points (typically 3001 nodes) were required to confirm
this for ω > 16.

If we assume naively that the spatially developing waves shown in figure 4 have
sufficient scale separation from the base flow, then we can define a local complex
wavenumber to be

K = − i
τH

dτH

dX
. (3.4)

Figures 5(a) and 5(b) show −Ki and Kr (where K = Kr + iKi), respectively, for increasing
forcing frequency ω. Here, −Ki is the local spatial growth rate of the disturbance.
Quantitatively similar results are found when varying the disturbance generator through
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Figure 5. (a) The local spatial growth rate, and (b) the wavenumber, of the harmonic disturbance. The blue
dotted line indicates ω = 8, the orange dot-dashed line indicates ω = 16, the purple dashed line indicates
ω = 24, and the black solid indicates ω = 32.

X0 and γ . We see that in the separation region, the instability undergoes spatial growth
before eventually decaying further downstream, in line with figure 4.

These results are well-resolved and point to an underlying eigenvalue problem governing
the spatial behaviour of the disturbance. The base flow appears to be unstable at
these values of ω; nevertheless, as discussed in § 2.2, in the high-frequency limit the
eigenrelation (1.1) does not give unstable modes (in either the spatial or temporal cases).

3.2. A local spatial eigenvalue problem
To formally connect the linear harmonic problem considered above to the asymptotically
large-frequency limit, we study a local eigenvalue problem. Instead of the receptivity
problem driven by injection, we instead look directly for propagating normal mode
solutions

(Up, Vp, Pp, Ap) = exp(i(KX − ωT))(Ũ(Y), Ṽ(Y), P̃, Ã); (3.5)

in this approach, the shape functions remain parametrically dependent on X through the
local base flow, but we do not show this dependence explicitly. This assumption is rational
only in the high-frequency limit where there is sufficient scale separation between the base
flow and the perturbations, so the resulting eigenvalue problem can be evaluated locally.
Upon substitution into the governing equations, we obtain the local eigenvalue problem

−iωŨ + iK(UB + Y)Ũ + Ũ
∂UB

∂X
+ VB

dŨ
dY

+ Ṽ
(

1 + ∂UB

∂Y

)
= −iKP̃ + d2Ũ

dY2 , (3.6a)

iKŨ + dṼ
dY

= 0, (3.6b)

Ũ = Ṽ = 0 at Y = 0, (3.6c)

Ũ → Ã as Y → ∞, (3.6d)

P̃ = −iKÃ. (3.6e)

We choose to neglect the non-parallel terms in (3.6a), but the viscous term is retained to
regularise any critical layers. This problem is localised to each streamwise location, and
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Figure 6. Comparison of (a) Im(K) and (b) Re(K) produced by the linear harmonic approach (dashed line)
and the local eigenvalue problem (solid line), and the real part of the scaled eigenfunctions Ũ (solid line), UH
(dashed line) at (c) X = 0.0045, (d) X = 6, for ω = 32.

we are free to normalise the eigenfunctions. On taking Ã ≡ 1, (3.6a) and (3.6d) become

−iωŨ + iK(UB + Y)Ũ + Ṽ
(

1 + ∂UB

∂Y

)
= −K2 + d2Ũ

dY2 , (3.7a)

Ũ → 1 as Y → ∞, (3.7b)

after eliminating P̃ using the interaction condition (3.6e). To solve this problem
numerically requires a truncation of the domain to Y ∈ [0, Y∞], and for solutions to be
independent of the truncation Y∞, we also require that the correct far-field behaviour is
achieved asymptotically with

dŨ
dY

→ 0 as Y → ∞. (3.8)

Given a frequency of the disturbance, ω, we can now solve (3.7a), (3.6b) subject to (3.6c),
(3.7b) and (3.8) to determine the eigenvalue K.

Starting with ω = 32, an initial guess for K can be found at any X location by applying
(3.4) to the harmonic results. Figures 6(a) and 6(b) compare the K values obtained from
this local eigenvalue problem with those obtained from the harmonic spatially developing
disturbance. The two results show good agreement, even at this rather modest value of
frequency. As a check, we then look at examples of the eigenfunctions Ũ alongside
appropriately scaled eigenfunctions UH from the linear harmonic problem. In figures 6(c)
and 6(d), we see that the eigenfunctions display the same type of behaviour in both
problems, and in particular at X ≈ 0 the agreement is very good. Close to the wall, there
is a thin Stokes layer developing at high frequencies; we will return to this feature below.

There are unstable eigenvalues for a finite streamwise X range around the corner of the
ramp. Figure 7 shows the variation of the dominant Im(K) as a function of X location
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Figure 7. Imaginary part of K against streamwise location X for varying disturbance frequency ω in the
case α = 3.6. These results are obtained from the local eigenvalue problem (3.6); negative values indicate
downstream spatial growth.
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Figure 8. Imaginary part of K against disturbance frequency ω for various streamwise locations X in the case
α = 3.6. The blue dotted line indicates X = −4.83, the black solid line indicates X = −0.05, the red dashed
line indicates X = 1.16, and the purple dot-dashed line indicates X = 3.05. These results are obtained from the
local eigenvalue problem (3.6); negative values indicate downstream spatial growth.

for a range of increasing frequency ω. Whilst the extent of the region of instability is
reduced slightly, there remains a large region for which there are unstable solutions to the
local eigenvalue problem. In addition, the maximal growth rate is at X ≈ 0 at the larger
values of ω considered, with Ki ≈ −12. This growth rate shows no evidence of growing
linearly as ω increases, hence it cannot be captured by the eigenvalue problem (1.1), which
describes modes for which the growth rate is O(ω) when ω 
 1.

We now consider how the growth rate changes at a fixed streamwise location as ω

increases. In figure 8, there are two different types of behaviour: Im(K) initially decreases
before reaching a clear maximum growth rate, then increases until it eventually becomes
greater than zero (and hence stable) for sufficiently large ω; or Im(K) decreases until it
plateaus, then does not appear to have a well-defined maximum growth rate. The second
type of behaviour could be problematic, as the peak growth rate is found only for high
frequency.

It is difficult to ascertain the asymptotic behaviour of Im(K) in the limit ω → ∞
from the local eigenvalue problem because of the Stokes layer. This layer has decreasing
thickness O(ω−1/2) (see § 3.3), therefore it becomes increasingly difficult to resolve.
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3.3. The large-frequency limit
We now consider the same local eigenvalue problem for frequencies that are asymptotically
large. Evaluating the streamwise momentum equation (3.6a) near the wall, we require
a Stokes layer with thickness Y = ω−1/2η, where η = O(1). In the Stokes layer, the
solutions take the form

Ũ = ωUS + · · · , Ṽ = ω3/2VS + · · · . (3.9a,b)

For a wave that propagates at the speed of the underlying base flow, we require that

K = ωK0 + · · · , (3.10)

where K0 is related to the inverse of the phase speed. The Stokes layer problem results in

US = −iK2
0(1 − e−√−i η), (3.11a)

VS = −K3
0

(
η + 1√−i

(e−√−i η − 1)

)
. (3.11b)

As we leave the Stokes layer (i.e in the limit η → ∞), we have

US → −iK2
0 , (3.12a)

VS → −K3
0η + K3

0√−i
. (3.12b)

We now return to finding solutions in the lower deck of the triple-deck structure. The
Stokes layer solution suggests that in the lower deck we should expand Ũ, Ṽ as

Ũ = ωUl + · · · , Ṽ = ω2Vl + · · · . (3.13a,b)

The second term in (3.12b) suggests that there will be an O(ω3/2) correction term to Ṽ , and
therefore an O(ω1/2) correction to Ũ and K. Substituting in the leading-order expansions
to the perturbation equations gives the problem

−iUl + iK0(UB + Y)Ul + Vl

(
1 + ∂UB

∂Y

)
= −K2

0 , (3.14a)

iK0Ul + dVl

dY
= 0, (3.14b)

subject to the matching conditions with the Stokes layer and

Ul → 0,
dUl

dY
→ 0 as Y → ∞. (3.15)

This problem differs from the large but finite frequency version of the local eigenvalue
problem by the fact that Ul decays in the far field.

To find non-trivial solutions to this problem, we can either solve the above generalised
eigenvalue problem directly, or equivalently look for solutions to the eigenrelation

0 =
∫ ∞

0

UBY

(1 − K0(UB + Y))2 dY + 1
K0

, (3.16)

which comes from eliminating Ul in favour of Vl and integrating (3.14). This eigenrelation
is simply the spatial analogue of the relation (1.1), with complex K0 solutions
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Figure 9. Imaginary part of the complex frequency ω against streamwise location X for various disturbance
wavenumbers K for a base flow with α = 3.6. These results are obtained from the local eigenvalue problem
(3.6), and positive values indicate temporal growth of the disturbance.

corresponding to spatial instabilities of the base flow. However, this eigenrelation has no
unstable complex roots, which is consistent with the bounded growth rates obtained in the
large-frequency limit, as shown in figure 8.

This suggests that in the high-frequency limit, the wavenumber expands as

K = ωK0 + O(ω1/2), (3.17)

where no solution has been found with Im(K0) < 0. We will return to the limiting problem
in § 5 in the context of a temporal stability problem.

4. Temporal instability

Whilst the spatial problem is simpler to validate against the full triple-deck formulation,
the temporal problem is of more relevance to the initial-value computations discussed in
the wider literature.

4.1. A local eigenvalue problem
Returning to the local eigenvalue problem (3.6), we fix the real wavenumber K and iterate
to find a complex frequency ω. If ω has a positive imaginary part, then the base flow will be
unstable at this streamwise location to waves with the corresponding wavenumber K and
phase speed cr = Re(ω)/K. This approach is rational only in the large wavenumber limit;
however, at moderate values values of K, the results can be checked against an initial-value
calculation, and we return to this in § 4.2.

Figure 9 shows the downstream behaviour of Im(ω). It is clear that as K increases, the
region of instability is reduced slightly. However, for the larger values of K, the growth
rate peaks near to X = 0, a behaviour similar to the spatial analogue.

Figure 10(a) shows the growth rate Im(ω) variation with K at fixed streamwise locations.
As in the spatial problem, sufficiently far from the corner, a local temporally stable flow
is obtained for large K, but near to X = 0, an instability exists. It is not surprising that
the presence of these unstable modes causes substantial difficulties for finite-resolution
computations, but the fact that this growth rate appears to remain bounded for larger values
of K again means that it cannot be obtained from the eigenrelation (1.1). Figure 10(b)
shows that the phase speed cr = Re(ω)/K tends to a constant value as K increases.
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Figure 10. Behaviour of the temporal growth rate and phase speed against the disturbance wavenumber K for
various streamwise locations X: (a) growth rate Im(ω), (b) phase speed cr = Re(ω)/K. The blue dotted line
indicates X = −4.83, the black solid line indicates X = −0.05, the red dashed line indicates X = 1.16, and the
purple dot-dashed line indicates X = 3.05. These are obtained from the local eigenvalue problem (3.6). In (a),
positive values indicate temporal growth of the disturbance.

As expected, the temporal local eigenvalue problem is comparable to the spatial
analogue. For large, finite K there is a finite region around the corner where the flow
is unstable, and the maximal growth rate remains large for the wavenumbers considered in
this section.

4.2. Initial-value problem
Any computation of the linear initial-value problem will eventually be dominated by the
high-wavenumber components present in the initial conditions, as these are the fastest
growing. To mitigate this, we will force a response in the linear perturbation equations
(2.8)–(2.9) by replacing the impermeability condition with an expression that is dominated
by a single wavenumber component. As the flow appears to be most unstable in the region
of reversed flow, we ensure that the perturbation has fixed wavelength in this region, so
the impermeability condition is now replaced by a transient forcing:

V(X, 0, T) =
{

T2 e−50T sin(KX) |X| < 20,

0 |X| > 20,
(4.1)

where K is an integer multiple of π. The discontinuity in the derivative of this condition
will introduce high-frequency/short-wavelength noise into the problem that will eventually
dominate the solution; however, over moderate times, the effect of this should be negligible
in the corner (X ≈ 0) region. We can now determine an approximate phase speed and
temporal growth of these waves, for comparison with the local eigenvalue problem studied
above. For the sake of comparison, we take K = 2π in both the initial-value problem and
the local eigenvalue problem.

We will use the scaled perturbation surface shear stress τp(X, T) = ∂Up/∂Y (on Y = 0)
as a measure of the perturbation, and distributions are shown at T = π/20 and T = 3π/10
in figure 11. At early times (T = π/20), there is clearly growth of the initial perturbation as
it develops through the corner region; at later times (T = 3π/10), the disturbance has been
convected downstream whilst undergoing growth of four orders of magnitude. Because we
have limited the initial disturbance wavenumber, this response remains well-resolved over
this time scale. Our goal is to see whether the local eigenvalue problem accurately predicts
the growth rate and phase speed of these waves.

Figure 12 shows a contour plot of τp(X, T) in the corner region for π/20 � T �
3π/20. Superimposed are two lines with a gradient that corresponds to the maximum
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Figure 11. Evolution of τp in the initial-value problem (2.8)–(2.9) driven by (4.1): (a) T = π/20,
(b) T = 3π/10. The base flow corresponds to ramp angle α = 3.6.
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Figure 12. Contours of the perturbation shear τp for π/20 � T � 3π/20. The black lines show the phase
speed of propagation predicted from the local eigenvalue problem at X = 0.

phase speed (calculated from the local eigenvalue problem (3.6)) either side of a
downstream-propagating maximum of τp. We see that the disturbance developing in the
initial-value computations is travelling at approximately the phase speed determined from
the local eigenvalue problem.

To compare the temporal growth of the instability, we examined how a local maximum
of τp shown in figure 11(a) increases in amplitude. To do this, we follow a maximum τM
starting at T = π/20, and estimate the amplitude at the next time to be

τM(T + 
T) = τM(T) exp(σ (XM)
T), (4.2)

where σ(XM) is the temporal growth rate according to the local eigenvalue problem at the
corresponding X = XM location of this maximum in the initial-value computation results.
We then repeat this procedure until we reach the desired final time. Figure 13 compares
the predicted and calculated growth of τM up to the time T = 3π/10. The prediction
(4.2) is approximate at this (not particularly large) value of K = 2π as there remain both
non-parallel contributions and a slow evolution of local wavenumber; nevertheless, there
remains good agreement with results from the initial-value computation.

4.3. The large wavenumber limit
The large wavenumber limit K → ∞ follows that of § 3.3. Again, close to the wall there is
a Stokes layer of thickness Y = K−1/2ξ , where ξ = O(1). Here we obtain the eigenrelation
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Figure 13. A comparison of the predicted wave growth in the linear initial-value problem (blue) with that
predicted by the local temporal eigenvalue problem (black).

(1.1):

0 =
∫ ∞

0

UBY

(ω0 − (UB + Y))2 dY + 1
ω0

. (4.3)

When α = 3.6 and X = 0, we can find no unstable solutions to this eigenproblem, yet a
growing instability is observed in the initial-value computations of figure 11. For larger
values of |X| (further from the corner), we can find stable solutions (Im(ω0) < 0) via
analytic continuation of the base flow UB to a deformed contour of Y in the lower
half-plane, consistent with the stable results for X = −4.83, 3.05 shown in figure 10(a).
However, these leading-order decay rates approach zero rapidly on approaching the corner
region.

Hence for α = 3.6 in the large-wavenumber limit, the complex frequency appears to
expand like

ω = Kω0 + O(K1/2), (4.4)

with Im(ω0) � 0, being numerically indistinguishable from zero when sufficiently close to
the corner region. In this case a higher-order correction term that is not determined by the
integral relation (1.1) dominates the temporal growth. Therefore, any attempt to correlate
(unstable) temporal growth rates obtained in initial-value computations with (1.1), such as
those in Fletcher et al. (2004), is possible only at larger ramp angles, e.g. α = 4.5, where
Im(ω0) > 0.

5. Discussion

The triple-deck formulation for supersonic flow over a compression ramp has been
discussed a number of times over the last 30 years. Unsteady results for this problem
are consistently dominated by growing high-frequency perturbations as the ramp angle
parameter (α) is increased. Nevertheless, the origin of these waves has remained largely
unexplained, being attributed either to the eigenrelation (1.1) (Cassel et al. 1995; Fletcher
et al. 2004) or more recently to a numerical instability of the discretised problem by
Exposito et al. (2021). A necessary condition for the instability described by (1.1) is
that the flow is inflectional, and Cassel et al. (1995) indicated that base flows were
non-inflectional for α < 3.9. This added a further inconsistency since the results of
Fletcher et al. (2004) and Logue et al. (2014) clearly show instability in the corner region
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Figure 14. Comparison of ω0r from the local (viscous) temporal eigenproblem (3.6) for various disturbance
wavenumbers K, compared with the formal leading-order inviscid solution. The blue dot-dashed line indicates
K = 100, the purple dashed line indicates K = 200, the red solid line indicates K = 500, and data points are
the inviscid results.

of the ramp, even in this moderate angle regime. Furthermore, as shown by Logue et al.
(2014), although initial development of a wavepacket arising from a localised transient
disturbance was robust and reproducible, a secondary higher-frequency wavepacket was
observed, which remained unresolved even on the finest spatial/temporal meshes reported.

In this work, we have tackled the supersonic compression ramp using a global
numerical method to find both steady equilibrium states and then determine their
linear spatial/temporal stability. As in previous studies, attempts to connect the spatial
or temporal growth of the instability to the leading-order eigenrelation (1.1) were
unsuccessful for the moderate ramp angles (α ≤ 3.6) considered herein.

Unstable solutions to (1.1) must grow at a rate that increases without bound as the
inverse of the wavelength, whereas in the compression ramp at moderate ramp angles
this is not the case, as shown in figure 10 for α = 3.6. As the ramp angle is reduced
further, this maximum growing mode eventually moves to a finite wavenumber before
the instability is removed entirely. For example, at a lower angle α = 3, the peak growth
can be found for a wavenumber K ≈ 130; nevertheless, to resolve this scale would
still require a computational mesh sufficiently fine to resolve a perturbation wavelength
2π/130 ≈ 0.048.

The local temporal eigenvalue problem (3.6) is based on a large-wavenumber
assumption that neglects non-parallelism but still retains the viscous term. We have
confirmed that the solutions of this (ad hoc) viscous temporal eigenvalue problem do
recover the formal inviscid solution for K 
 1. To do this, we use the phase speed
ω0r determined in the large-K limit (i.e. from figure 10b) as an initial guess in solving
the inviscid leading-order eigenproblem calculated over a complex Y contour deformed
appropriately at the critical layer. Figure 14 displays the value of ω0r for increasing values
of K over a range of streamwise locations alongside the inviscid solution. As expected, the
two solutions show very good agreement for K sufficiently large, and at K = 500 they are
the same to graphical accuracy.

At a fixed streamwise position in the corner region (for α = 3.6, for example), at leading
order we obtain what appears to be a neutral mode with a real frequency (ω = ω0r) and
the associated eigenfunctions. As shown in Appendix A, there is a slip velocity at the
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High-frequency instabilities in supersonic ramp flow

wall in this leading-order solution, which leads to a Stokes layer. This inner Stokes layer
induces a correction that is O(K1/2) smaller, caused by the transpiration induced in the
outer region. Any growth rate modification (ω1 say) induced by this correction must be
numerically small as there is little evidence of it in the limiting results of figure 10, which
are dominated by a higher-order (O(1)) term in the expansion.

The linear stability problem considered herein remains distinct from the nonlinear
initial-value problem considered by Fletcher et al. (2004). We examine linear perturbations
to a formally steady base flow, whereas for sufficiently large ramp angles, Fletcher
et al. (2004) never obtain a steady-state base flow via the initial-value problem. They
instead appeal to the spatial/temporal scale separation between the instability and base
flow to evaluate the eigenrelation (1.1) at every time step, finding unstable solutions via
this quasi-steady treatment. Since no such unstable eigensolutions exist for the steady
compression ramp at moderate α, any unstable solutions to (1.1) must be tied inherently
to the transient flow, which remains sufficiently perturbed from the equilibrium base state
to become unstable. As soon as an unstable solution to the eigenrelation (1.1) is found,
time-marching should stop, as the growth of the LWR instability is unbounded and limited
only by the spatio-temporal mesh being used.

Finally, we note that these more nuanced features of the stability problem remain
a property of the supersonic compression-ramp flow. Similar investigations of related
flows, such as flow over an isolated large-scale wall roughness, are well captured by the
leading-order integral eigenrelation (1.1). Indeed, even in the compression-ramp problem
at larger ramp angles, for example α = 4.5, we find inflectional profiles and unstable
solutions to the integral relation (1.1). Even in this case, however, the leading-order O(K)

growth rates are typically small (10−2 or less) and therefore can still be dominated by a
large O(1) term unless the wavenumber K is sufficiently large. Outside of the triple-deck
model, we expect downstream diffusion to eventually dampen any instability when the
wavelength is sufficiently small, depending on the local Reynolds number.
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Appendix A. High-frequency expansion

Here, we present some brief details of the structure of the disturbance equations in the
high-frequency limit. The modes leading to instability shown in figure 14 have relatively
large phase speed; these values are in line with those reported previously by Fletcher et al.
(2004). Any critical layer where UB(Y) + Y = ω0r is therefore displaced away from the
boundary where U′′

B(Y) is numerically small. In the results below, we have not included
any explicit critical layer discussion.

We return to the temporal analogue of the leading-order (parallel) problem (3.14)–(3.15)
in the small-wavelength limit (K 
 1). We assume that to leading order, ω = Kω0r as
K → ∞ (where ω0r is real), and

Ũ = KU0 + · · · , Ṽ = K2V0 + · · · . (A1a,b)
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For the lower deck, we obtain

i(UB + Y − ω0r)U0 + V0

(
∂UB

∂Y
+ 1

)
= −1, (A2a)

iU0 + dV0

dY
= 0. (A2b)

The boundary conditions for this problem are that U0 decays as Y → ∞, and that the
solutions match with a Stokes layer as Y → 0.

If we now consider the Stokes layer solution, from (A2a) and the expansion (A1a,b)
we see that the viscous term d2U/dY2 must balance −iω0U0 and the streamwise pressure
gradient in the limit Y → 0. We therefore introduce the Stokes layer variable

ξ = K1/2Y, (A3)

and in the large-wavenumber limit, the solutions are

Ũ = KU0S + · · · , Ṽ = K3/2V0S · · · . (A4a,b)

The leading-order governing equations in the Stokes layer are

−iω0rU0S = −1 + d2U0S

dξ2 , (A5a)

iU0S + dV0S

dξ
= 0, (A5b)

and the solutions satisfying the boundary conditions and the matching conditions to the
lower deck are

U0S = − i
ω0r

(1 − exp(−
√

−iω0r ξ)), (A6a)

V0S = − ξ

ω0r
− 1

ω0r
√−iω0r

(exp(−
√

−iω0r ξ) − 1). (A6b)

As ξ → ∞, at leading order V0S matches with V0; however, there is a second-order
correction arising from the last term of (A6b), which is O(K3/2) in the outer region. Upon
leaving the Stokes layer, U0S is imaginary and V0S is real to leading order, and it can be
seen from (A2) that in the lower deck, U0 is imaginary and V0 is real. Considering the
next-order correction in V0S the expansion in the lower deck must continue as

Ũ = KU0 + K1/2U1 + · · · , Ṽ = K2V0 + K3/2V1 + · · · . (A7a,b)

Similarly, we expand the frequency as

ω = Kω0r + K1/2ω1 + · · · . (A8)

These second-order solutions are driven entirely by the Stokes layer transpiration, and the
governing equations in the lower deck can be written as

−iω0rU1 − iω1U0 + i(UB + Y)U1 + V1

(
∂UB

∂Y
+ 1

)
= 0, (A9a)
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iU1 + dV1

dY
= 0, (A9b)

subject to the conditions

V1 = 1
ω0r

√−iω0r
at Y = 0, U1 = −i

dV1

dY
→ 0 as Y → ∞. (A10a,b)

Continuing the Stokes layer solution to higher order,

Ũ = KU0S + K1/2U1S + · · · , Ṽ = K3/2V0S + KV1S + · · · , (A11a,b)

the next-order governing equations can be found to be

−iω0rU1S − iω1U0S + iξτ0U0S + V0Sτ0 = d2U1S

dξ2 , (A12a)

iU1S + dV1S

dξ
= 0, (A12b)

leading to spatial instability at leading order, where τ0 = UBY(Y = 0) + 1 is the local
base flow shear at the current X position. These are subject to the no-slip/impermeability
conditions and the matching conditions implied by the lower deck solutions U1, V1.

Again, there will be a correction in the lower deck due to the transpiration of this
second-order Stokes layer solution. However, the lower deck solution at this next (third)
order will also be driven by the far-field displacement condition for Ũ, where

Ũ = KU0 + K1/2U1 + U2 + · · · , Ṽ = K2V0 + K3/2V1 + KV2 + · · · . (A13a,b)

Consequently, the far-field conditions at this order in the expansion are

U2 = −i
dV2

dY
→ 1 as Y → ∞. (A14)

The next-order expansion of the frequency is (not including critical layer contributions)

ω = Kω0r + K1/2ω1 + ω2 + · · · , (A15)

and the governing equations for U2, V2 are

i(UB + Y − ω0r)U2 − iω2U0 − iω1U1 + V2

(
∂UB

∂Y
+ 1

)
= d2U0

dY2 , (A16a)

iU2 + dV2

dY
= 0. (A16b)
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Using the second-order Stokes layer, it can be seen that the impermeability condition
must be replaced by a transpiration

V2(0) = −i

(
τ0 − 2ω1

√−iω0r

4ω3
0r

)
. (A17)

An integral solution to this problem can be given as (again neglecting the critical layer)

i − V2(0)

ω0r
−
∫ ∞

0

iω2U0 + iω1U1 + d2U0

dY2

(UB + Y − ω0r)2 dY = 0. (A18)

Formally, non-parallelism is also expected to enter into (A16); however, numerical
evidence points to these additional terms having little quantitative influence around X = 0
in the test case α = 3.6.
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