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Abstract

In this paper, we generalize monotone operators, their resolvents and the proximal point algorithm to
complete CAT(0) spaces. We study some properties of monotone operators and their resolvents. We
show that the sequence generated by the inexact proximal point algorithm ∆-converges to a zero of the
monotone operator in complete CAT(0) spaces. A strong convergence (convergence in metric) result is
also presented. Finally, we consider two important special cases of monotone operators and we prove that
they satisfy the range condition (see Section 4 for the definition), which guarantees the existence of the
sequence generated by the proximal point algorithm.
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1. Introduction

One of the most important parts of nonlinear and convex analysis is monotone
operator theory. It has an essential role in convex analysis, optimization, variational
inequalities, semigroup theory and evolution equations. A zero of a monotone operator
is a solution of a variational inequality associated to the monotone operator, an
equilibrium point of an evolution equation governed by the monotone operator and
a solution of a minimization problem for a convex function when the monotone
operator is the subdifferential of the convex function. Therefore the existence and
approximation of zeros of monotone operators are central considerations of many
recent researchers. The most popular method for the approximation of a zero of
a monotone operator is the proximal point algorithm, which was introduced by
Martinet [20] and Rockafellar [23]. Rockafellar [23] showed the weak convergence
of the sequence generated by the proximal point algorithm to a zero of the maximal
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monotone operator in Hilbert spaces. Güler’s counterexample [15] showed that the
sequence generated by the proximal point algorithm does not necessarily converge
strongly even if the maximal monotone operator is the subdifferential of a convex,
proper and lower semicontinuous function. For some generalizations and modified
versions of the proximal point algorithm in Hilbert spaces, the reader can consult
[7, 12, 15, 23].

In this paper, we consider the proximal point algorithm in a nonlinear version
of Hilbert spaces (that is, complete CAT(0) spaces). By using the duality theory
introduced in [3], we extend monotone operators, their resolvents and some of their
properties to CAT(0) spaces. Our results extend the previous results in Hilbert spaces
as well as the recent results on Hadamard manifolds (see, for example, [1, 18] and
references therein) to complete CAT(0) spaces.

The paper has been organized as follows. In Section 2, we give some preliminaries
of CAT(0) spaces, monotone operators and the proximal point algorithm. In Section 3,
we define monotone operators, their resolvents and Yosida approximations in CAT(0)
spaces. Then we study some of their properties. Section 4 is devoted to the proximal
point algorithm in complete CAT(0) spaces. In this section, we prove that the proximal
point algorithm ∆-converges to a zero of the maximal monotone operator in complete
CAT(0) spaces. Also in this section, we prove a strong convergence result when the
operator is strongly monotone. In the two final sections of the paper, two important
special cases of monotone operators are studied. In Sections 5, when the monotone
operator is the subdifferential of a convex function, we prove the range condition
(defined in Section 4), which implies the existence of the sequence generated by the
proximal point algorithm, in this case. Section 6 is devoted to the other special case
when the monotone operator is in form I–T , where I and T are, respectively, identity
and nonexpansive mappings. We prove the range condition, in this case, in CAT(0)
spaces. We also show that, in this case, in spite of Hilbert spaces, the monotone
operator in form I–T is not necessarily maximal monotone in arbitrary CAT(0) spaces.

2. Preliminaries

Let (X, d) be a metric space and let x, y ∈ X. A geodesic path joining x to y is an
isometry c : [0,d(x, y)] −→ X such that c(0) = x, c(d(x, y)) = y. The image of a geodesic
path joining x to y is called a geodesic segment between x and y. The metric space
(X, d) is said to be a geodesic space if every two points of X are joined by a geodesic,
and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y
for each x, y ∈ X.

A geodesic space (X, d) is a CAT(0) space if it satisfies the following inequality.
CN-inequality: If x, y0, y1, y2 ∈ X such that d(y0, y1) = d(y0, y2) = 1

2 d(y1, y2), then

d2(x, y0) ≤ 1
2 d2(x, y1) + 1

2 d2(x, y2) − 1
4 d2(y1, y2).

A complete CAT(0) space is called a Hadamard space. It is known that a CAT(0)
space is an uniquely geodesic space.
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For other equivalent definitions and basic properties, we refer the reader to the
standard texts such as [8, 9, 14, 16]. For all x and y belonging to a CAT(0) space
X, we write (1 − t)x ⊕ ty for the unique point z in the geodesic segment joining from
x to y such that d(z, x) = td(x, y) and d(z, y) = (1 − t)d(x, y). Set [x, y] = {(1 − t)x ⊕ ty :
t ∈ [0, 1]}. a subset C of X is called convex if [x, y] ⊆ C for all x, y ∈ C. In CAT(0)
spaces, the following technical lemma is well known.

Lemma 2.1 [8]. A geodesic space (X, d) is a CAT(0) space if and only if, for all
x, y, z,w ∈ X and all t ∈ [0, 1],

d2(tx ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x, y). (2.1)

In this case:

(1) d(tx ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z); and
(2) d(tx ⊕ (1 − t)y, tz ⊕ (1 − t)w) ≤ td(x, z) + (1 − t)d(y,w).

A Hadamard space X is called a flat Hadamard space if and only if the inequality in
(2.1) is an equality. Every closed convex subset of a Hilbert space is a flat Hadamard
space.

A kind of convergence in complete CAT(0) spaces, called ∆-convergence, was
introduced by Lim [19], which has the following definition.

Let (xn) be a bounded sequence in a complete CAT(0) space (X, d) and let x ∈ X.
Set r(x, (xn)) = lim supn→∞ d(x, xn). The asymptotic radius of (xn) is given by r((xn)) =

inf{r(x, (xn)) : x ∈ X} and the asymptotic center of (xn) is the set A((xn)) = {x ∈ X :
r(x, (xn)) = r((xn))}. It is known that in the complete CAT(0) spaces, A((xn)) consists
of exactly one point (see [17]). A sequence (xn) in the complete CAT(0) space (X, d) is
said to be ∆-convergent to x ∈ X if A((xnk )) = {x} for every subsequence (xnk ) of (xn).
The concept of ∆-convergence has been studied by many authors (see, for example,
[11, 13]).

Berg and Nikolaev [6] introduced the concept of quasilinearization for a CAT(0)
space X. They denoted a pair (a, b) ∈ X × X by

−→
ab and called it a vector. Then the

quasilinearization map 〈·, ·〉 : (X × X) × (X × X)→ R is defined by

〈
−→
ab,
−→
cd〉 = 1

2 (d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)) (a, b, c, d ∈ X).

It can be easily verified that 〈
−→
ab,
−→
ab〉 = d2(a, b), 〈

−→
ba,
−→
cd〉 = −〈

−→
ab,
−→
cd〉 and 〈

−→
ab,
−→
cd〉 =

〈
−→ae,
−→
cd〉 + 〈

−→
eb,
−→
cd〉 are satisfied for all a, b, c, d, e ∈ X. Also, we can formally add

compatible vectors, more precisely, −→ac +
−→
cb =

−→
ab for all a, b, c ∈ X. We say that X

satisfies the Cauchy–Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d) (a, b, c, d ∈ X).

It is known [6, Corollary 3] that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy–Schwarz inequality. By using
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quasilinearization, Ahmadi Kakavandi [2] proved that (xn) ∆-converges to x ∈ X if
and only if lim supn→∞〈

−−→xxn,
−→xy〉 ≤ 0 for all y ∈ X. Throughout the paper, we denote

∆-convergence by ⇀ and metric convergence by→.
Ahmadi Kakavandi and Amini [3] have introduced the concept of dual space of a

complete CAT(0) space X, based on a work of Berg and Nikolaev [6], as follows.
Consider the map Θ : R × X × X → C(X,R) defined by

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉 (t ∈ R, a, b, x ∈ X),

where C(X, R) is the space of all continuous real-valued functions on X. Then
the Cauchy–Schwarz inequality implies that Θ(t, a, b) is a Lipschitz function
with Lipschitz seminorm L(Θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X), where L(ϕ) =

sup{(ϕ(x) − ϕ(y))/d(x, y) : x, y ∈ X, x , y} is the Lipschitz seminorm for any function
ϕ : X → R. A pseudometric D on R × X × X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b) − Θ(s, c, d)) (t, s ∈ R, a, b, c, d ∈ X).

For a Hadamard space (X,d), the pseudometric space (R × X × X,D) can be considered
as a subspace of the pseudometric space of all real-valued Lipschitz functions
(Lip(X,R), L). It is obtained [3, Lemma 2.1] that D((t, a, b), (s, c, d)) = 0 if and only
if t〈
−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉 for all x, y ∈ X. Thus, D can impose an equivalence relation on

R × X × X, where the equivalence class of (t, a, b) is

[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d). It is

clear that [−→aa] = [
−→
bb] for all a, b ∈ X. Fix o ∈ X; we write 0 = [−→oo] as the zero of the

dual space. In [3], it is shown that the dual of a closed and convex subset of Hilbert
space H with nonempty interior is H and t(b − a) ≡ [t

−→
ab] for all t ∈ R, a, b ∈ H. Note

that X∗ acts on X × X by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉 (x∗ = [t

−→
ab] ∈ X∗, x, y ∈ X).

We also use the following notation in the subsequent work.

〈αx∗ + βy∗,−→xy〉 := α〈x∗,−→xy〉 + β〈y∗,−→xy〉 (α, β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗).

In the final part of this section, we give a brief review of monotone operators
and the proximal point algorithm in Hilbert spaces. Let H be a real Hilbert space.
The multivalued operator A : D(A) ⊂ H → 2H with D(A) := {x ∈ X : Ax , ∅} is called
monotone if and only if

〈x − y, x∗ − y∗〉 ≥ 0 (∀x, y ∈ D(A),∀x∗ ∈ Ax,∀y∗ ∈ Ay).

The multivalued monotone operator A : H → 2H is maximal if there exists no
monotone operator B : H → 2H such that gra(B) properly contains gra(A). It is well

https://doi.org/10.1017/S1446788716000446 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000446


74 H. Khatibzadeh and S. Ranjbar [5]

known that maximality of monotone operators is equivalent to surjectivity of I + A,
where I is the identity operator (see [21]). The proximal point algorithm introduced
by Rockafellar [23] is defined as

xn−1 − xn ∈ λnA(xn) x0 ∈ H, (2.2)

where (λn) is a sequence of positive real numbers. In fact, Rockafellar [23] proved
that the sequence generated by the proximal point algorithm is weakly convergent to a
zero of the monotone operator A, provided λn ≥ λ > 0 for all n ≥ 1. The condition on
the control sequence λn was improved by Brézis and Lions [7]. In this paper, as well
as the definition of monotone operators, their resolvents and verifying some of their
properties, we extend some of the previous results on the convergence of the proximal
point algorithm to complete CAT(0) spaces.

3. Monotone operators

Let X be a Hadamard space with dual X∗ and let A : X → 2X∗ be a multivalued
operator with domain D(A) := {x ∈ X : Ax , ∅}, range R(A) :=

⋃
x∈X Ax, A−1(x∗) :=

{x ∈ X : x∗ ∈ Ax} and graph gra(A) := {(x, x∗) ∈ X × X∗ : x ∈ D(A), x∗ ∈ Ax}.

Definition 3.1. Let X be a Hadamard space with dual space X∗. The multivalued
operator A : X → 2X∗ is:

(i) monotone if and only if, for all x, y ∈ D(A), x∗ ∈ Ax and y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 ≥ 0;

(ii) strictly monotone if and only if, for all x, y ∈ D(A), x , y, x∗ ∈ Ax and y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 > 0;

(iii) α-strongly monotone for α > 0 if and only if, for all x, y ∈ D(A), x∗ ∈ Ax and
y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 ≥ αd2(x, y).

It is clear that every α-strongly monotone operator for α > 0 is strictly monotone
and every strictly monotone operator is monotone.

Proposition 3.2. If A : X → 2X∗ is strictly monotone, then A−1(0) is singleton.

Proof. It is clear by the definition. �

Definition 3.3. Let X be a Hadamard space with dual X∗. The multivalued monotone
operator A : X→ 2X∗ is maximal if there exists no monotone operator B : X→ 2X∗ such
that gra(B) properly contains gra(A) (that is, for any (y, y∗) ∈ X × X∗, the inequality
〈x∗ − y∗,−→yx〉 ≥ 0 for all (x, x∗) ∈ gra(A) implies that y∗ ∈ Ay).

In the subsequent work, we define resolvent and Yosida approximation of a
monotone operator in CAT(0) spaces. We extend some facts on the resolvent operators
and Yosida approximations to CAT(0) spaces.
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Definition 3.4. Let X be a Hadamard space with dual X∗, λ > 0 and let A : X → 2X∗

be a multivalued operator. The resolvent and Yosida approximation of A of order λ
are the multivalued mappings Jλ : X → 2X and Aλ : X → 2X∗ defined, respectively, by
Jλ(x) := {z ∈ X | [(1/λ)−→zx] ∈ Az} and Aλ(x) := {[(1/λ)−→yx] | y ∈ Jλ(x)}.

Definition 3.5. Let X be a Hadamard space with dual X∗ and let T : C ⊂ X → X be
a mapping. We say that T is firmly nonexpansive if d2(T x, Ty) ≤ 〈

−−−−→
T xTy,−→xy〉 for any

x, y ∈ C.

By the definition and Cauchy–Schwarz inequality, it is clear that any firmly
nonexpansive mapping T is nonexpansive.

Proposition 3.6. Let X be a Hadamard space with dual X∗. The mapping T : C ⊂ X→
X is firmly nonexpansive if and only if

〈
−−−−→
T xTy,

−−−−→
(T x)x〉 + 〈

−−−−→
TyT x,

−−−−→
(Ty)y〉 ≤ 0 ∀x, y ∈ C.

Proof.

2〈
−−−−→
T xTy,

−−−−→
(T x)x〉 + 2〈

−−−−→
TyT x,

−−−−→
(Ty)y〉

= d2(T x,Ty) + d2(T x, x) − d2(x,Ty) + d2(T x,Ty) + d2(Ty, y) − d2(T x, y)

= 2d2(T x,Ty) − 2〈
−−−−→
T xTy,−→xy〉.

Hence

〈
−−−−→
T xTy,

−−−−→
(T x)x〉 + 〈

−−−−→
TyT x,

−−−−→
(Ty)y〉 ≤ 0 if and only if d2(T x,Ty) ≤ 〈

−−−−→
T xTy,−→xy〉.

This concludes the proof. �

Theorem 3.7 [10]. Let C be a nonempty convex subset of a CAT(0) space X, x ∈ X and
u ∈ C. Then u = PC x if and only if

〈
−→xu,−→yu〉 ≤ 0 ∀y ∈ C.

Corollary 3.8. The metric projection onto a closed convex subset K ⊂ X is a firmly
nonexpansive mapping.

Proof. By Theorem 3.7, for all x, y ∈ X, 〈
−−−−−−−→
PK xPKy,

−−−−−→
(PK x)x〉 ≤ 0 because PKy ∈ K for

all y ∈ X. Thus, by Proposition 3.6, we get the desired result. �

Theorem 3.9. Let X be a CAT(0) space and let A : X → 2X∗ . Suppose Jλ and Aλ are,
respectively, resolvent and Yosida approximation of the operator A of order λ.

(i) For any λ > 0, R(Jλ) ⊂ D(A), F(Jλ) = A−1(0) = A−1
λ (0), where R(Jλ) and F(Jλ)

are, respectively, the range and the fixed points set of Jλ.
(ii) If Jλ is single valued, then Aλ is single-valued and Aλ(x) ⊂ A(Jλ(x)).
(iii) If A is monotone, then Jλ is a single-valued and firmly nonexpansive mapping.
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(iv) If A is monotone, then Aλ is a monotone operator.
(v) If A is monotone and 0 < λ ≤ µ, then d2(Jλx, Jµx) ≤ (µ − λ)/(µ + λ)d2(x, Jµx),

which implies that d(x, Jλx) ≤ 2d(x, Jµx).

Proof. (i) Let z not belong to D(A); then A(z) = ∅. Thus, for all x ∈ X, [(1/λ)−→zx]
does not belong to Az. Hence z does not belong to Jλ(x) for all x ∈ X. Therefore,
R(Jλ) ⊂ D(A). Also, if x ∈ X,

0 ∈ A(x)⇔
[1
λ
−→xx

]
∈ Ax⇔ x ∈ Jλ(x)

⇔ x ∈ F(Jλ)⇔ x ∈ Jλ(x)

⇔

[1
λ
−→xx

]
∈ Aλ(x)⇔ 0 ∈ Aλ(x).

(ii) It is clear, by Definition 3.4.
(iii) Let x ∈ X and z1, z2 ∈ Jλ(x). Then [(1/λ)−−→z1x] ∈ A(z1) and [(1/λ)−−→z2x] ∈ A(z2).

Monotonicity of A implies that

0 ≤
〈[1
λ
−−→z1x

]
−

[1
λ
−−→z2x

]
,−−→z2z1

〉
=

1
λ

(〈−−→z1x,−−→z2z1〉 − 〈
−−→z2x,−−→z2z1〉)

=
1
λ

(〈−−→z1x,−−→z2z1〉 + 〈
−−→xz2,
−−→z2z1〉)

=
1
λ
〈
−−→z1z2,

−−→z2z1〉 = −
1
λ

d2(z1, z2).

Hence d(z1, z2) = 0, which implies z1 = z2. Therefore, Jλ is single valued. Now we
show that Jλ is firmly nonexpansive. We know that [(1/λ)

−−−−−→
Jλ(x)x] ∈ A(Jλ(x)) and

[(1/λ)
−−−−→
Jλ(y)y] ∈ A(Jλ(y)). By monotonicity of A,

0 ≤ 2
〈[1
λ

−−−−−→
Jλ(x)x

]
−

[1
λ

−−−−→
Jλ(y)y

]
,
−−−−−−−−→
Jλ(y)Jλ(x)

〉
=

2
λ

(〈
−−−−−→
Jλ(x)x,

−−−−−−−−→
Jλ(y)Jλ(x)〉 − 〈

−−−−→
Jλ(y)y,

−−−−−−−−→
Jλ(y)Jλ(x)〉)

=
1
λ

(d2(Jλ(y), x) − d2(Jλ(x), Jλ(y)) − d2(Jλ(x), x)

− d2(Jλ(x), Jλ(y)) − d2(Jλ(y), y) + d2(Jλ(x), y)),

which implies that

2d2(Jλ(x), Jλ(y)) ≤ d2(Jλ(y), x) − d2(Jλ(x), x) − d2(Jλ(y), y) + d2(Jλ(x), y).

Hence
d2(Jλ(x), Jλ(y)) ≤ 〈

−−−−−−−−→
Jλ(x)Jλ(y),−→xy〉.

Therefore, Jλ is firmly nonexpansive.
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(iv) For any x, y ∈ X, Aλ(x) = {[(1/λ)
−−−−−→
Jλ(x)x]} ⊂ A(Jλ(x)) and Aλ(y) = {[(1/λ)

−−−−→
Jλ(y)y]}

⊂ A(Jλ(y)). Thus, by monotonicity of A,

〈Aλ(x) − Aλ(y),−→yx〉 =

〈[1
λ

−−−−−→
Jλ(x)x

]
−

[1
λ

−−−−→
Jλ(y)y

]
,−→yx

〉
=

〈[1
λ

−−−−−→
Jλ(x)x

]
−

[1
λ

−−−−→
Jλ(y)y

]
,
−−−−→
yJλ(y)

〉
+

〈[1
λ

−−−−−→
Jλ(x)x

]
−

[1
λ

−−−−→
Jλ(y)y

]
,
−−−−−−−−→
Jλ(y)Jλ(x)

〉
+

〈[1
λ

−−−−−→
Jλ(x)x

]
−

[1
λ

−−−−→
Jλ(y)y

]
,
−−−−−→
Jλ(x)x

〉
≥

〈[1
λ

−−−−−→
Jλ(x)x

]
−

[1
λ

−−−−→
Jλ(y)y

]
,
−−−−→
yJλ(y)

〉
+

〈[1
λ

−−−−−→
Jλ(x)x

]
−

[1
λ

−−−−→
Jλ(y)y

]
,
−−−−−→
Jλ(x)x

〉
=

1
λ

(〈
−−−−−→
Jλ(x)x,

−−−−→
yJλ(y)〉 − 〈

−−−−→
Jλ(y)y,

−−−−→
yJλ(y)〉

+ 〈
−−−−−→
Jλ(x)x,

−−−−−→
Jλ(x)x〉 − 〈

−−−−→
Jλ(y)y,

−−−−−→
Jλ(x)x〉)

=
1
λ

(〈
−−−−−→
Jλ(x)x,

−−−−→
yJλ(y)〉 + 〈

−−−−→
yJλ(y),

−−−−→
yJλ(y)〉

+ 〈
−−−−−→
Jλ(x)x,

−−−−−→
Jλ(x)x〉 + 〈

−−−−→
yJλ(y),

−−−−−→
Jλ(x)x〉)

=
1
λ

(d2(x, Jλ(x)) + d2(y, Jλ(y)) + 2〈
−−−−−→
Jλ(x)x,

−−−−→
yJλ(y)〉)

≥
1
λ

(d2(x, Jλ(x)) + d2(y, Jλ(y)) − 2d(x, Jλ(x))d(y, Jλ(y)))

=
1
λ

(d(x, Jλ(x)) − d(y, Jλ(y)))2 ≥ 0.

Thus Aλ is a monotone operator.
(v) By (iii), Jλx and Jµx are single valued and, by the definition of resolvent,

[(1/λ)
−−−−−→
(Jλx)x] ∈ A(Jλx) and [(1/µ)

−−−−−→
(Jµx)x] ∈ A(Jµx). Thus monotonicity of A implies

that

0 ≤ 2
〈[1
µ

−−−−−→
(Jµx)x

]
−

[1
λ

−−−−−→
(Jλx)x

]
, JλxJµx

〉
.

It then follows that

2〈
−−−−−→
(Jλx)x,

−−−−−→
JλxJµx〉 ≤

2λ
µ
〈
−−−−−→
(Jµx)x,

−−−−−→
JλxJµx〉.

That is,

d2(Jλx, Jµx) + d2(x, Jλx) − d2(x, Jµx) ≤
λ

µ
(d2(x, Jλx) − d2(Jλx, Jµx) − d2(x, Jµx)),
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which implies that

d2(Jλx, Jµx) ≤
µ − λ

µ + λ
d2(x, Jµx) ≤ d2(x, Jµx).

Thus we get
d(x, Jλx) ≤ d(x, Jµx) + d(Jµx, Jλx) ≤ 2d(x, Jµx),

which is the required result. �

Remark 3.10. It is well known that if T is a nonexpansive mapping on subset C of
CAT(0) space X, then F(T ) is closed and convex. Thus, if A is a monotone operator
on CAT(0) space X, then, by parts (i) and (iii) of Theorem 3.9, A−1(0) is closed and
convex.

4. Proximal point algorithm

Let X be a Hadamard space with dual X∗. The problem of finding a zero of a
monotone operator A : X → 2X∗ can be formulated as

Find x ∈ X, such that 0 ∈ A(x),

where 0 is the zero of dual space X∗. A−1(0) is called the set of singularity points of A.
We say that A satisfies the range condition if, for every λ > 0, D(Jλ) = X. It is known
that if A is a maximal monotone operator on a Hilbert space H, then R(I + λA) = H
for all λ > 0, where I is the identity operator. Thus every maximal monotone operator
A on a Hilbert space satisfies the range condition. Also as it has been shown in [18]
if A is a maximal monotone operator on a Hadamard manifold, then A satisfies the
range condition. For presenting some examples of monotone operators in CAT(0)
spaces, in the next section of the paper, it has been proved that the subdifferential
of a convex, proper and lower semicontinuous function (which is defined in [3] and
recalled in the next section) satisfies the range condition. Also, in the last section of
the paper, we study the range condition for the monotone operator Az = [

−−→
Tzz], where

T is a nonexpansive mapping. We do not know whether every maximal monotone
operator A : X → 2X∗ satisfies the range condition when X is a Hadamard space. Let
A : X→ 2X∗ be a multivalued monotone operator on a Hadamard space X with dual X∗

that satisfies the range condition and let (λn) be a sequence of positive real numbers.
The proximal point algorithm for monotone operator A in Hadamard space X is the
sequence generated by 

[ 1
λn

−−−−−→xnxn−1

]
∈ Axn,

x0 ∈ X,
(4.1)

which, by the definition of the resolvent operator, is equivalent toxn = Jλn xn−1,

x0 ∈ X.
(4.2)

https://doi.org/10.1017/S1446788716000446 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000446


[10] Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces 79

Note that the range condition and part (iii) of Theorem 3.9 guarantee existence and
well definedness of the sequence {xn} in (4.1) or (4.2). Also (4.2) is in accordance with
the proximal point algorithm (2.2) in Hilbert spaces.

The inexact version of (4.2) can be formulated as
un = Jλn yn−1,

d(un, yn) ≤ en,

y0 ∈ X,
(4.3)

where (en) is a sequence in (0,∞). In the following, we prove ∆-convergence of the
sequence generated by the proximal point algorithm (4.3) to an element of A−1(0)
with the summability condition on the error sequence. To this purpose, we need the
following lemmas. The first one is a generalization of the Opial lemma in CAT(0)
spaces.

Lemma 4.1 [22, Lemma 2.1]. Let (X, d) be a CAT(0) space and let (xn) be a sequence
in X. If there exists a nonempty subset F of X verifying:

(i) for every z ∈ F, limn d(xn, z) exists; and
(ii) if a subsequence (xn j ) of (xn) is ∆-convergent to x ∈ X, then x ∈ F,

then there exists p ∈ F such that (xn) ∆-converges to p in X.

Lemma 4.2. Let X be a Hadamard space with dual X∗ and let A : X → 2X∗ be a
multivalued monotone operator which satisfies the range condition and A−1(0) , ∅.
Suppose that x0 = y0 ∈ X. Assume that the sequences (xn) and (yn) are generated by
the algorithms (4.2) and (4.3), respectively, and that

∑∞
n=1 en < +∞. In this case:

(i) if (xn) converges strongly to a singularity of A, then (yn) does; and
(ii) if (xn) ∆-converges to a singularity of A, then (yn) does.

Proof. For every fixed k, consider the sequence (ξn(k)) defined by ξ0(k) = yk, ξ1(k) =

Jλk+1 (ξ0(k)), ξ2(k) = Jλk+2 (ξ1(k)), . . . , ξn(k) = Jλk+n (ξn−1(k)). By part (iii) of Theorem 3.9,
Jλ is nonexpansive, so, if p ∈ A−1(0), then, by part (i) of Theorem 3.9, for any n, k ∈ N,

d(ξn(k), p) = d(Jλk+n (ξn−1(k)), p)
≤ · · · ≤ d(yk, p)
≤ d(yk, uk) + d(uk, p)
≤ d(yk, uk) + d(yk−1, p)
≤ ek + d(yk−1, p)
≤ · · ·

≤ d(y1, p) +

k∑
i=1

ei <∞,
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which implies that (ξn(k)) is bounded. On the other hand,

d(ξn(k), ξn+1(k − 1)) = d(Jλk+n (ξn−1(k)), Jλk+n (ξn(k − 1)))
≤ d(ξn−1(k), ξn(k − 1))
≤ · · ·

≤ d(ξ0(k), ξ1(k − 1))
= d(yk, Jλk (yk−1)) = d(yk, uk) ≤ ek.

Thus
d(ξn(k), ξn+1(k − 1)) ≤ ek. (4.4)

Now we will prove (i). Assume that (xn) converges strongly to a singularity of A.
Then, by the definition, (ξn(k)) converges strongly to some ξ(k) ∈ A−1(0) as n→∞.
Thus (4.4) implies that d(ξ(k), ξ(k − 1)) ≤ ek. Therefore, by the assumptions, (ξ(k))k∈N

is a Cauchy sequence. Since, by Remark 3.10, A−1(0) is closed and (ξ(k)) converges
to some a ∈ A−1(0). We show that (yn) converges to a. We know that

d(yk, ξn+1(k − n − 1)) ≤ d(ξ0(k), ξ1(k − 1)) + d(ξ1(k − 1), ξ2(k − 2))
+ · · · + d(ξn(k − n), ξn+1(k − n − 1))

≤ ek + ek−1 + · · · + ek−n

=

k∑
i=k−n

ei,

and hence

d(yk+n, ξn+1(k − 1)) ≤
k+n∑
i=k

ei.

It follows that

d(yk+n, a) ≤ d(yk+n, ξn+1(k − 1)) + d(ξn+1(k − 1), ξ(k − 1)) + d(ξ(k − 1), a)

≤

k+n∑
i=k

ei + d(ξn+1(k − 1), ξ(k − 1)) + d(ξ(k − 1), a).

Taking limsup when n→∞ from both sides of this inequality, we get that

lim sup
n→∞

d(yn+k, a) ≤
∞∑

i=k

ei + d(ξ(k − 1), a).

Now part (i) is proved by letting k→∞.
To prove (ii), let (xn) ∆-converge to a zero of A. Then, by the definition, (ξn(k))

∆-converges to some ξ(k) ∈ A−1(0) as n→∞. Hence lim supn〈
−−−−−−−→
ξ(k)ξn(k),

−−−→
ξ(k)y〉 ≤ 0 for

all y ∈ X. Thus by (4.4),
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d2(ξ(k), ξ(k − 1)) = 〈
−−−−−−−−−−→
ξ(k)ξ(k − 1),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉

= 〈
−−−−−−−→
ξ(k)ξn(k),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉 + 〈

−−−−−−−−−−−−−−→
ξn(k)ξn+1(k − 1),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉

+ 〈
−−−−−−−−−−−−−−−−−→
ξn+1(k − 1)ξ(k − 1),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉

≤ 〈
−−−−−−−→
ξ(k)ξn(k),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉 + d(ξn(k), ξn+1(k − 1))d(ξ(k), ξ(k − 1))

+ 〈
−−−−−−−−−−−−−−−−−→
ξn+1(k − 1)ξ(k − 1),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉

≤ 〈
−−−−−−−→
ξ(k)ξn(k),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉 + ekd(ξ(k), ξ(k − 1))

+ 〈
−−−−−−−−−−−−−−−−−→
ξn+1(k − 1)ξ(k − 1),

−−−−−−−−−−→
ξ(k)ξ(k − 1)〉.

Taking limsup when n→∞, we get d(ξ(k), ξ(k − 1)) ≤ ek. Thus, by the assumptions,
(ξ(k)) is a Cauchy sequence. Since A−1(0) is closed, (ξ(k)) converges to some
a ∈ A−1(0). We show that (yn) ∆-converges to a. Using a method similar to that of
part (i), we get that

d(yk+n, ξn+1(k − 1)) ≤
k+n∑
i=k

ei. (4.5)

For all z ∈ X,

〈
−−−−→yn+ka,−→za〉 = 〈

−−−−−−−−−−−−−→
yn+kξn+1(k − 1),−→za〉 + 〈

−−−−−−−−−−−−−−−−−→
ξn+1(k − 1)ξ(k − 1),

−−−−−−−→
zξ(k − 1)〉

+ 〈
−−−−−−−−−−−−−−−−−→
ξn+1(k − 1)ξ(k − 1),

−−−−−−−→
ξ(k − 1)a〉 + 〈

−−−−−−→
ξ(k − 1)a,−→za〉

≤ d(yn+k, ξn+1(k − 1))d(z, a) + 〈
−−−−−−−−−−−−−−−−−→
ξn+1(k − 1)ξ(k − 1),

−−−−−−−→
zξ(k − 1)〉

+ d(ξ(k − 1), a)d(ξn+1(k − 1), ξ(k − 1)) + d(z, a)d(ξ(k − 1), a),

which, by (4.5), implies that

〈
−−−−→yn+ka,−→za〉 ≤

n+k∑
i=k

eid(z, a) + 〈
−−−−−−−−−−−−−−−−−→
ξn+1(k − 1)ξ(k − 1),

−−−−−−−→
zξ(k − 1)〉

+ d(ξ(k − 1), a)d(ξn+1(k − 1), ξ(k − 1)) + d(z, a)d(ξ(k − 1), a).

First, taking limsup when n→ ∞ and then taking limsup when k → ∞ from both
sides of this inequality, we get lim supk lim supn〈

−−−−→yn+ka, −→za〉 ≤ 0, which implies that
lim supn〈

−−→yna,−→za〉 ≤ 0: that is, ∆ − limn yn = a. �

In the following theorem, we prove ∆-convergence of the sequence given by (4.2)
to a zero of A. This theorem extends all related results in the literature for convergence
of the proximal point algorithm in Hilbert spaces and Hadamard manifolds.

Theorem 4.3. Let X be a Hadamard space with dual X∗ and let A : X → 2X∗ be a
multivalued monotone operator which satisfies the range condition and A−1(0) , ∅,
where 0 ∈ X∗ is the zero of the dual space. Let (λn) be a sequence of positive real
numbers such that λn ≥ λ > 0. Then the sequence generated by the proximal point
algorithm (4.2) is ∆-convergent to a point p ∈ A−1(0). Hence, by part (ii) of Lemma 4.2,
the sequence generated by (4.3) is also ∆-convergent to a zero of A.
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Proof. Let x ∈ A−1(0). By (4.1), [(1/λn)−−−−−→xnxn−1] ∈ Axn for all n ∈ N. Monotonicity of
A implies that

0 ≤ 2
〈[ 1
λn

−−−−−→xnxn−1

]
− 0,−−→xxn

〉
=

2
λn
〈
−−−−−→xnxn−1,

−−→xxn〉

=
1
λn

(d2(x, xn−1) − d2(x, xn) − d2(xn, xn−1)),

and so
0 ≤ d2(xn, xn−1) ≤ d2(x, xn−1) − d2(x, xn).

Thus (d(x, xn)) is convergent for all x ∈ A−1(0). Hence (xn) is bounded and
d(xn+1, xn)→ 0. Thus, by (4.2), d(xn, Jλn xn)→ 0. On the other hand, by part (v)
of Theorem 3.9, we get

d(xn, Jλxn) ≤ 2d(xn, Jλn xn),

which implies that d(xn, Jλxn)→ 0. Now, if subsequence (xn j ) of (xn) is ∆-convergent
to q ∈ X, ∆-demicloseness of nonexpansive mappings (see [17]) implies that q ∈
A−1(0). Therefore, we have proved that:

(1) for every x ∈ A−1(0), limn d(xn, x) exists; and
(2) if the subsequence (xn j ) of (xn) is ∆-convergent to q ∈ X, then q ∈ A−1(0).

Hence Lemma 4.1 completes the proof. �

In the following theorem, we prove the strong convergence of the proximal point
algorithm (4.2) to the unique element of A−1(0) with strong monotonicity of the
operator A.

Theorem 4.4. Let X be a Hadamard space with dual X∗ and let A : X → 2X∗ be a
multivalued α-strongly monotone operator which satisfies the range condition and
A−1(0) , ∅, where 0 ∈ X∗ is the zero of dual space. Suppose that (λn) is a sequence
of positive real numbers such that

∑∞
n=1 λn = ∞. Then the sequence generated by the

proximal point algorithm (4.2) converges strongly to the single element x of A−1(0).
Hence, by part (i) of Lemma 4.2, the sequence generated by (4.3) is also strongly
convergent to the unique zero of A.

Proof. Clearly, A is a strictly monotone operator. Thus, by Theorem 3.2, let A−1(0) =

{x}. By (4.1), [(1/λn)−−−−−→xnxn−1] ∈ Axn for all n ∈ N. α-strong monotonicity of A implies
that

αd2(xn, x) ≤ 2
〈[ 1
λn

−−−−−→xnxn−1

]
− 0,−−→xxn

〉
=

2
λn
〈
−−−−−→xnxn−1,

−−→xxn〉

=
1
λn

(d2(x, xn−1) − d2(x, xn) − d2(xn, xn−1)),
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from which it follows that

αλnd2(x, xn) ≤ d2(x, xn−1) − d2(x, xn). (4.6)

Summing from n = 1 to n = k and letting k→ +∞, we get
+∞∑
n=1

λnd2(x, xn) < +∞,

which, by the assumption on {λn}, implies that lim infn→+∞ d(xn, x) = 0. Since by (4.6),
limn d(xn, x) exists, xn → x as n→ +∞. This is the desired result. �

5. Subdifferential case

A well known result in Hilbert spaces claims that the subdifferential of any convex,
proper and lower semicontinuous function is maximal monotone, and therefore
it satisfies the range condition. In this section, we recall the definition of the
subdifferential operator in Hadamard spaces from [3]. We show that it satisfies the
range condition. Then we show that the approach of Bačák [4] for the proximal point
algorithm in Hadamard spaces for convex functions is equivalent to (4.2) when the
monotone operator is subdifferential of a convex function.

Definition 5.1 [3]. Let X be a Hadamard space with dual X∗ and let f : X →] −
∞,+∞] be a proper function with efficient domain D(f ) := {x : f (x) < +∞}. Then the
subdifferential of f is the multivalued function ∂ f : X → 2X∗ defined by

∂ f (x) = {x∗ ∈ X∗ : f (z) − f (x) ≥ 〈x∗,−→xz〉 (z ∈ X)},

when x ∈ D(f ) and ∂ f (x) = ∅, otherwise.

The following theorem has essentially been proved in [3]. It is given for sake of
completeness.

Theorem 5.2 [3, Theorem 4.2]. Let f : X →] − ∞, +∞] be a proper, lower
semicontinuous and convex function on a Hadamard space X with dual X∗. Then

(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂ f (x);
(ii) ∂ f : X → 2X∗ is a monotone operator; and
(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that [α−→xy] ∈ ∂ f (x).

Proof. For (iii), fix y ∈ X and α > 0. Set g(x) = f (x) + (α/2)d2(x, y). By a proof similar
to that of Theorem 4.2 of [3], there exists a point x ∈ X such that [α−→xy] ∈ ∂ f (x). To
prove uniqueness, if there exists x, z ∈ X such that [α−→xy] ∈ ∂ f (x) and [α−→zy] ∈ ∂ f (z),
then, by part (ii),

0 ≤ 2〈[α−→xy] − [α−→zy],−→zx〉

= 2α〈−→xy,−→zx〉 − 2α〈−→zy,−→zx〉

= −2αd2(x, z),

which implies that x = z. �
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Part (iii) of Theorem 5.2 shows that the subdifferential of a convex, proper and
lower semicontinuous function satisfies the range condition. Therefore the existence
of the sequence {xn} given by (4.2) is guaranteed. Convergence of the proximal point
algorithm for convex functions in Hadamard spaces has been investigated by Bačák
[4] by studying the algorithm

x0 ∈ X and (λn) ⊂ (0,+∞),

xn+1 = Argminz∈X

{
f (z) +

1
2λn

d2(z, xn)
}
.

(5.1)

In the following proposition, we show that algorithm (5.1) is equivalent toxn+1 = J∂ f
λn

xn,

x0 ∈ X,

which is the proximal point algorithm (4.2) when A = ∂ f .

Proposition 5.3. Let f : X→] −∞,+∞] be a proper, lower semicontinuous and convex
function on a Hadamard space X with dual X∗. Then

J∂ f
λ x = Argminz∈X

{
f (z) +

1
2λ

d2(z, x)
}
, (5.2)

for all λ > 0 and x ∈ X.

Proof. Let λ > 0 and x ∈ X. Set y = Argminz∈X{ f (z) + (1/2λ)d2(z, x)}. Then

f (y) +
1

2λ
d2(y, x) ≤ f (z) +

1
2λ

d2(z, x) (z ∈ X).

Set z = ty ⊕ (1 − t)u, where u is an arbitrary element in X and t ∈ [0, 1). Then

f (y) +
1

2λ
d2(y, x) ≤ f (ty ⊕ (1 − t)u) +

1
2λ

d2(ty ⊕ (1 − t)u, x)

≤ t f (y) + (1 − t) f (u) +
1

2λ
(td2(y, x) + (1 − t)d2(u, x)

− t(1 − t)d2(y, u)).

That is,

(1 − t)( f (y) − f (u)) ≤
1 − t
2λ

(d2(u, x) − td2(y, u) − d2(y, x)),

which implies that

f (y) − f (u) ≤
1

2λ
(d2(u, x) − td2(y, u) − d2(y, x)).

Now, when t→ 1, we get

f (y) − f (u) ≤
1

2λ
(d2(u, x) − d2(y, u) − d2(y, x)).
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Thus

f (y) − f (u) ≤
〈[1
λ
−→yx

]
,−→uy

〉
,

for all u ∈ X.
Therefore, by the definition of subdifferential, [(1/λ)−→yx] ∈ ∂ f (y). Hence, by the

definition of resolvent, y ∈ J∂ f
λ x. On the other hand, by Theorem 5.2, ∂ f is monotone

and hence, by part (iii) of Theorem 3.9, J∂ f
λ is single valued. This implies that

y = J∂ f
λ x. �

Remark 5.4. Bačák [5] defined the resolvent of a convex function by (5.2).
Proposition 5.3 shows that his definition is equivalent to our definition of resolvent
when the monotone operator is the subdifferential of a convex function. Therefore our
definition of resolvent of a monotone operator extends the definition of Bačák.

6. Nonexpansive case

In Hilbert spaces, it is well known that if T is a nonexpansive self-mapping, then
I–T is maximal monotone and hence it satisfies the range condition, where I is the
identity mapping. In this section, we consider maximality and the range condition for
the operator I–T in Hadamard spaces.

Lemma 6.1. Let X be a CAT(0) space and let T : X → X be an arbitrary nonexpansive
mapping. Then the operator Az = [

−−→
Tzz] is monotone. In the other words, for all

x, y ∈ X,

〈
−−−→
T xx −

−−→
Tyy,−→yx〉 ≥ 0.

Proof. Let x, y ∈ X. Then

〈
−−−→
T xx −

−−→
Tyy,−→yx〉 = 〈

−−−−→
T xTy +

−−→
Tyy + −→yx −

−−→
Tyy,−→yx〉

= 〈
−−−−→
T xTy,−→yx〉 + 〈−→yx,−→yx〉

≥ d2(x, y) − d(T x,Ty)d(x, y)

= d(x, y)(d(x, y) − d(T x,Ty))

≥ 0,

which is the desired result. �

Lemma 6.2. Let X be a Hadamard space and let T : X → X be an arbitrary
nonexpansive mapping. For every x ∈ X and every λ > 0, there exists a unique y ∈ X
such that 〈

[
−−→
Tyy] −

[1
λ
−→yx

]
,−→yz

〉
≥ 0 ∀z ∈ X. (6.1)
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Proof. Let x ∈ X and λ > 0 be fixed. Define F : X → X with Fu = (1/(1 + λ))x ⊕
(λ/(1 + λ))Tu. Then

d(Fu, Fv) = d
( 1
1 + λ

x ⊕
λ

1 + λ
Tu,

1
1 + λ

x ⊕
λ

1 + λ
Tv

)
≤

λ

1 + λ
d(Tu,Tv) ≤

λ

1 + λ
d(u, v).

Thus F is a contraction. Hence, by Banach contraction principle, F has a unique fixed
point. Let Fy = y. Therefore y = (1/1 + λ)x ⊕ (λ/1 + λ)Ty. For all z ∈ X,

2
〈
[
−−→
Tyy] −

[1
λ
−→yx

]
,−→yz

〉
= 2

〈−−−−−−−−−−−−−−−−−−−−−→
Ty

( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
,

−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
z
〉

− 2
1
λ

〈−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
x,
−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
z
〉

= d2(Ty, z) − d2
(
Ty,

1
1 + λ

x ⊕
λ

1 + λ
Ty

)
− d2

( 1
1 + λ

x ⊕
λ

1 + λ
Ty, z

)
−

1
λ

(
d2

( 1
1 + λ

x ⊕
λ

1 + λ
Ty, z

)
+ d2

(
x,

1
1 + λ

x ⊕
λ

1 + λ
Ty

)
− d2(x, z)

)
= d2(Ty, z) −

1
1 + λ

d2(Ty, x) +
1
λ

d2(x, z)

−
1 + λ

λ
d2

( 1
1 + λ

x ⊕
λ

1 + λ
Ty, z

)
≥ d2(Ty, z) −

1
1 + λ

d2(Ty, x) +
1
λ

d2(x, z)

−
1 + λ

λ

1
1 + λ

d2(x, z) −
1 + λ

λ

λ

1 + λ
d2(Ty, z)

+
1 + λ

λ

1
1 + λ

λ

1 + λ
d2(Ty, x)

= 0.

Thus
〈
−−→
Tyy −

1
λ
−→yx,−→yz〉 ≥ 0 ∀z ∈ X.

Now, suppose that y1, y2 ∈ X are solutions of (6.1). Then〈
[
−−−−→
Ty1y1] −

[1
λ
−−→y1x

]
,−−−→y1y2

〉
≥ 0

and 〈
[
−−−−→
Ty2y2] −

[1
λ
−−→y2x

]
,−−−→y2y1

〉
≥ 0.

A simple computation by Lemma 6.1 implies that y1 = y2. �
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Proposition 6.3. Let X be a Hadamard space and let T : X → X be an arbitrary
nonexpansive mapping. If the monotone operator Az = [

−−→
Tzz] is maximal, then Az =

[
−−→
Tzz] satisfies the range condition.

Proof. By Lemma 6.2, for every x ∈ X and λ ∈ (0,∞), there exists y ∈ X such that〈
[
−−→
Tyy] −

[1
λ
−→yx

]
,−→yz

〉
≥ 0 ∀z ∈ X.

On the other hand, by Lemma 6.1,

〈[
−−→
Tzz] − [

−−→
Tyy],−→yz〉 ≥ 0 ∀z ∈ X.

Hence, for every x ∈ X and λ ∈ (0,∞), there exists y ∈ X such that, for all z ∈ X,〈
[
−−→
Tzz] −

[1
λ
−→yx

]
,−→yz

〉
= 〈[
−−→
Tzz] − [

−−→
Tyy],−→yz〉 +

〈
[
−−→
Tyy] −

[1
λ
−→yx

]
,−→yz

〉
≥ 0,

which, by maximal monotonicity of A, implies that [(1/λ)−→yx] = Ay = [
−−→
Tyy]. Thus,

for every x ∈ X and λ ∈ (0,∞), there exists y ∈ X such that [(1/λ)−→yx] = Ay = [
−−→
Tyy].

Consequently, the operator Az = [
−−→
Tzz] satisfies the range condition. �

We have just proved that a monotone operator of nonexpansive type (that is, of the
form x 7→ [

−−−→
T xx]) satisfies the range condition if it is maximal monotone. We note that,

in Hilbert spaces, each monotone operator of nonexpansive type is maximal monotone
and therefore satisfies the range condition. In the following proposition, we show
that it is only in flat CAT(0) spaces that a monotone operator of nonexpansive type
satisfies the range condition. Therefore the maximality condition in Proposition 6.3 is
necessary.

Proposition 6.4. Let X be a Hadamard space. For every nonexpansive mapping
T : X → X, the operator Az = [

−−→
Tzz] satisfies the range condition if and only if

d2(αx ⊕ (1 − α)y, z) = αd2(x, z) + (1 − α)d2(y, z) − α(1 − α)d2(x, y)

for all x, y, z ∈ X.

Proof. If, for every nonexpansive mapping T : X→ X, the operator Az = [
−−→
Tzz] satisfies

the range condition, then, for every nonexpansive mapping T , x ∈ X and λ ∈ (0,∞),
there exists u ∈ X such that [1/λ−→ux] = [

−−−→
Tuu]. Thus we get 0 = 〈[

−−−→
Tuu] − [1/λ−→ux],−→uz〉

for all z ∈ X, which, by Lemma 6.2, implies that u = 1/1 + λx ⊕ λ/1 + λTu. Hence,
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for all z ∈ X, we obtain

0 = 2
〈
[
−−−→
Tuu] −

[1
λ
−→ux

]
,−→uz

〉
= 2

〈−−−−−−−−−−−−−−−−−−−−−→
Tu

( 1
1 + λ

x ⊕
λ

1 + λ
Tu

)
,

−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Tu

)
z
〉

− 2
1
λ

〈−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Tu

)
x,
−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Tu

)
z
〉

= d2(Tu, z) − d2
(
Tu,

1
1 + λ

x ⊕
λ

1 + λ
Tu

)
− d2

( 1
1 + λ

x ⊕
λ

1 + λ
Tu, z

)
−

1
λ

(
d2

( 1
1 + λ

x ⊕
λ

1 + λ
Tu, z

)
+ d2

(
x,

1
1 + λ

x ⊕
λ

1 + λ
Tu

)
− d2(x, z)

)
= d2(Tu, z) −

1
1 + λ

d2(Tu, x) +
1
λ

d2(x, z) −
1 + λ

λ
d2

( 1
1 + λ

x ⊕
λ

1 + λ
Tu, z

)
.

Therefore, for every nonexpansive mapping T , x ∈ X and λ ∈ (0,∞), there exists u ∈ X
such that, for all z ∈ X,

d2
( 1
1 + λ

x ⊕
λ

1 + λ
Tu, z

)
=

1
1 + λ

d2(x, z) +
λ

1 + λ
d2(Tu, z) −

λ

(1 + λ)2 d2(Tu, x). (6.2)

Now suppose that y ∈ X and α ∈ (0, 1) are arbitrary elements. If we apply equality
(6.2) for λ = (1 − α)/α and the constant mapping Tz = y for all z ∈ X, we obtain

d2(αx ⊕ (1 − α)y, z) = αd2(x, z) + (1 − α)d2(y, z) − α(1 − α)d2(x, y) ∀x, y, z ∈ X.

Now suppose the inverse. Let the nonexpansive mapping T : X → X be arbitrary and
let x ∈ X and λ > 0 be fixed. Define F : X → X with Fu = (1/1 + λ)x ⊕ (λ/1 + λ)Tu.
By the proof of Lemma 6.1, F is a contraction. Hence, by Banach contraction
principle, F has a unique fixed point. Let Fy = y. Therefore y = (1/1 + λ)x ⊕
(λ/1 + λ)Ty. By the assumptions, for all z ∈ X,

2
〈
[
−−→
Tyy] −

[1
λ
−→yx

]
,−→yz

〉
= 2

〈−−−−−−−−−−−−−−−−−−−−−→
Ty

( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
,

−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
z
〉

− 2
1
λ

〈−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
x,
−−−−−−−−−−−−−−−−−−−→( 1
1 + λ

x ⊕
λ

1 + λ
Ty

)
z
〉

= d2(Ty, z) − d2
(
Ty,

1
1 + λ

x ⊕
λ

1 + λ
Ty

)
− d2

( 1
1 + λ

x ⊕
λ

1 + λ
Ty, z

)
−

1
λ

(
d2

( 1
1 + λ

x ⊕
λ

1 + λ
Ty, z

)
+ d2

(
x,

1
1 + λ

x ⊕
λ

1 + λ
Ty

)
− d2(x, z)

)
= d2(Ty, z) −

1
1 + λ

d2(Ty, x) +
1
λ

d2(x, z)

−
1 + λ

λ
d2

( 1
1 + λ

x ⊕
λ

1 + λ
Ty, z

)
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= d2(Ty, z) −
1

1 + λ
d2(Ty, x) +

1
λ

d2(x, z)

−
1 + λ

λ

1
1 + λ

d2(x, z) −
1 + λ

λ

λ

1 + λ
d2(Ty, z)

+
1 + λ

λ

1
1 + λ

λ

1 + λ
d2(Ty, x)

= 0.

Thus 〈
[
−−→
Tyy] −

[1
λ
−→yx

]
,−→yz

〉
= 0 ∀z ∈ X,

which, by the definition of the equivalence relation, implies that[1
λ
−→yx

]
= [
−−→
Tyy].

Hence the operator Az = [
−−→
Tzz] satisfies the range condition. �

By Proposition 6.4, if X is a Hadamard space such that there exist x, y, z ∈ X, which
satisfy

d2(αx ⊕ (1 − α)y, z) < αd2(x, z) + (1 − α)d2(y, z) − α(1 − α)d2(x, y),

then there exists a nonexpansive mapping T such that the operator Az = [
−−→
Tzz] does not

satisfy the range condition and hence, by Proposition 6.3, it is not maximal monotone.
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