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Abstract

In the general context of ideals in universal algebras, we study varietal properties connected
with ideals that are equivalent both to Mal'cev conditions and congruence properties such as
0-regularity, O-permutability, etc.

1991 Mathematics subject classification (Amer. Math. Soc): 08 A 30, 08 B 99.

This paper continues the investigations of the authors on ideals in general
algebras (see [1], [2], [3], [5], [9], [10], [11]). The general program of this
series of papers can be roughly described as follows.

Let A be an algebra in a variety with a distinguished element 0. A
sequence of successively stronger closure operators is defined on A in such
a way that there is a natural map cp from the congruence lattice of A (or
some other "interesting" sublattice of A 2 ) to the lattice of closed subsets of
A containing 0. Some natural questions are:

(1) When is (p one-to-one?
(2) When is q> onto?
(3) When is q> a homomorphism?

These questions are usually asked in the context of varieties. The object
is to find Mal'cev conditions for these properties and characterizations in
terms of congruence properties such as permutabilty, O-permutability, etc.
Theorem 2.4 is one example of the type of result desired.

Our notation is more or less standard; we use the notation a for a{,... , an
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104 Paolo Agliano and Aldo Ursini [2]

and unless necessary we will write a€ A for a e A" . For general background
in universal algebra we refer to [7].

1. Introduction

As we pointed out above all algebras and varieties considered in this pa-
per belong to a type with a nullary operation (or have a definable constant)
denoted by 0.

DEFINITION 1.1. Given an algebra A , a nonempty subset H of A is a
clot of A if

(1) OeH.
(2) For all positive integers n, for all f(x{, ... , xn) e Pol/I(A) with

/ ( 0 , ..-. , 0) = 0 we have f(hx, ... , hn) e H for all hx,... , hn e H.
DEFINITION 1.2. Let "V be a variety of algebras.
(1) A "V-ideal term in y [4] is a term t(\, y) such that

f ( x , 0 , . . . , ) « 0
holds in 'V.

(2) Given an algebra A e 'V, a subset / of A is a 'V-ideal oi A if for
any 2^-ideal term t(x, y) in y and for any al, ... , am € A , bx, ... , bne I
we have

If "V — V(A) then we will write ideal term and ideal instead of 2
term and 2^-ideal. Some other notations ought to be established right away:
as usual Con(^4) denotes the congruence lattice of A and for X C A, ft(X)
denotes the congruence generated by X x X. Moreover

(1) C1(A) is the set of all the clots of A ,
(2) l(A) is the set of all the ideals of A ,
(3) N(A) = {0/6: 6 e Con(A)} and the sets in N(A) are called normal

sets,
(4) For X C A and Sc Ax A , X/S = {y:(x,y)€S for some x e X} .

Each of C1(A), I(A) and N(A) is an algebraic lattice, where the meet
is the set intersection and the join will be described shortly. The inclusion
relation between them is easily seen to be

N(A) C C1(A) C I(A).

Note that we do not mean to imply that any of these inclusions is a sublattice
inclusion. Trivial examples show that in general the inclusions are proper;
however, if "V is the variety of pointed sets, then N(A) = I(A) for all
A G 'V. By the same token the equality of any two of these sets for all
algebras in a variety is not a Mal'cev condition.
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We now proceed to describe the join in the aforementioned lattices; namely,
for X C A we describe (Ar>N, (A")C1, (X)1, that are respectively the normal
set, the clot and the ideal generated by X.

PROPOSITION 1.3. (1) (X)N = 0/&(X U {0}).

(X)a = {f(a, b ) : *(a, 0 , . . . , 0), a e A, b € X u {0}}.
(X)x = {t(a, b) : t(x, y) an ideal term in y , a € A, b e X} .

All proofs are simple exercises that are really consequences of the fact that
the set of terms in consideration is, in each case, closed under composition.

In the sequel, for a given algebra A , we will often deal with reflexive
subalgebras of A x A and we will call them semicongruences of A . It is
clear that semicongruences form an algebraic lattice under inclusion, denoted
by Sc( A ) . Moreover for any X C A we define

X* = the semicongruence of A generated by {0} x X

and we leave to the reader the easy task of checking that

X* — the subalgebra of A generated by diag(A) u {0} x X.

One might say that this paper is a series of comments to the following
simple and neat result of Mal'cev, implicit in his fundamental work [6].

PROPOSITION 1.4. For any algebra A and for any X c A the following
are equivalent.

(1) X e N ( A ) .
(2) X = 0/$(X).
(3) 0 e X and for every unary polynomial g(x) of A , for any a, b e X,

if g(a)eX then g(b) e X.
(4) 0 € X and for every unary polynomial g(x) of A , for any a e X,

g(a) € X if and only if g(0) e X.

2. The theorems

The first result is an analogue of Proposition 1.4 when one considers ideals
instead of normal sets.

THEOREM 2.1. For any algebra A the following are equivalent.

(1) Every ideal is a congruence class, i.e. I(A) = N(A).
(2) (AT), = 0/&(X) for any X C A.
(3) / / # ( / ) = / v ./ for any / , / e I(A).
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(4 ) I / 6 ( J ) = J / 6 ( I ) for a n y I , J e I ( A ) .
(5) The mapping from I(A) to Con(A) sending I \—> 6(1) is one-to-one.
(6) The mapping from Con(A) to I(A) sending 6 \—> 0/6 is onto.

PROOF. (1), (2) and (6) are clearly equivalent. And (2) implies (5) since,
if / , / G I(A) and 6(1) = 6(J), then 0/6(1) = 0/6(J), hence, via (2),
I = J. Assume now (5). We claim that, for any / € I(A), we have
6(1) = 6(0/6(1)). One inclusion is obvious, since / C 0/6(1). Let then
(M, V) e 6(0/6(1)); by the congruence generation theorem, there exists a
positive integer n, a, , . . . , an, bx, ... , bn e 0/6(1) and binary polynomi-
als fx,... , fn such that

u = f(al,bl)
ax) = f2{a2,b2)

Since at, b{ e 0/6(1) for all i, we have

u = / , ( « , , bx) 6(I)cpx(0, 0)6(1) fx(bx, ax)

- f2(a2, b2) 6(1) / 2 (0 , 0) 6(1)... 6(1) fn(an , bn) = v.

So (u, v) e 6(1) and the claim is proved. But via (5) this implies / = 0/6(1)
and hence (2).

Assume now (2). The left-to-right inclusion in (3) is easy, since u e I/6(J)
implies that (/, M) e 6(J) for some i € I. But 0 e / , so (0, /) e 6(1) and
hence (0, u) 6 6(1) V 6(J) c 6(1 V / ) . Hence, by (2) uelv J. On the
other hand, if « e / v J , then, by Proposition 1.3(5), there is an ideal term
t(x,y), a € A, i e / and j e J, such that u = r(a, i, j ) . But then

Therefore u e I/6(J) and the other inclusion is proved.
That (3) implies (4) is obvious. On the other hand if in the equality in

(4) we set J = (0), = {0} we get at once / = I/6({0}) = 0/6(1). Hence (4)
implies (2) and the proof is finished.

The next step is to show that semicongruences are, in some sense, the
natural correspondent of congruences for clots.

PROPOSITION 2.2. Let A be an algebra and X c A. Then conditions
(1), (2) and (3) are equivalent.

(1) X is a clot.
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(2) X = 0/S for some S e Sc( A ) .

(3) X = 0/X*.

Moreover,

(4) / / X, Y C A, we have 0/X* = 0/ Y* if and only if X* = Y*.
(5) If X,Y e C1(A), then X = Y if and only if X* = Y*. In other

words the mapping from C1(A) to Sc(A) defined by X \—> X* is injective.

PROOF. First note that, if S e Sc(A), then 0 /5 is always a clot. In fact if
/ is an n-ary polynomial such that / ( 0 , . . . , 0) = 0 and ax, ... , an e 0/S
then

(0,f(ax,...,an)) =
= / « ( ) , « , ) , . . . , < 0 , a n » e S

since S is a reflexive subalgebra of A 2 . Hence f(ax, ... , an) e 0/S. We
have thus proved that 0 /5 is a clot.

Suppose now that X is a clot; clearly X C 0/X*. Let a e 0/X*; by
definition of X* there is a term t(\) and a{, ... , an, b{, ... , bme A such
that

(0, a) = t((ai, ax), ... , (an, an), (0, br), ... , (0, bj)

Let now / be the w-ary polynomial of A denned by

/ ( * i » • • • . * „ ) = ' K , . . . , « „ , x , , . . . , xm).

Then from the equalities above / ( 0 , . . . , 0) = 0 so, X being a clot,
f(bl,...,bm)€X.But

a = t{ax ,...,an,bi,...,bm) = f ( b x ,...,bJeX,

and hence X = 0/X*. This proves the equivalence of (1), (2) and (3).
For (4) we assume 0/X* = 0/ Y*, the other implication being trivial. Let

(a, b) e X*. Then, exactly as above, we can find a term t, a{, . . . , an € A
and q , . . . , cm e X, such that

t { a x , . . . , an , 0 , . . . , 0 ) = a t { a x , ... , an, cx, ... , cj = b.

But since (0, ct) e X* for all i <m the hypothesis yields (0, c() 6 Y* and
therefore (a, b) e Y*, the latter being a reflexive subalgebra of A . Hence
X* c Y*, while the reverse inclusion can be obtained with a symmetric
argument. Therefore (4) holds. Finally (5) is an easy consequence of (3) and
(4).
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Note that we are not saying that the S in the above proposition is unique
and easy examples show that this is not always the case. As a matter of fact,
asking that to hold for a whole variety is a rather strong request, as shown in
Theorem 2.7 below.

Let now S e Sc(A). We say that S is 0-symmetric if (0, x) e S if
and only if (x, 0) e S. We say that S is O-transitive if (0, x) e S and
(x, y) € S imples (0, y) e S. If a semicongruence is both 0-symmetric and
O-transitive then it behaves "locally" like a congruence. The impact of this
behavior on clot is displayed in the proposition below.

PROPOSITION 2.3. Let A be an algebra. If every semicongruence of A is
0-symmetric and O-transitive, then N( A) = C1( A ) .

PROOF. Let X e C1(A). Then X = 0/X*. We show that if X* is 0-
symmetric then it is in fact symmetric. Suppose that (a, b) e X*. Then as in
the proof of Proposition 2.2(4) there exist a term t, ae A and bl, ... , bn e
X with

f ( a , 0 , . . . , 0 ) = a , t(z,bl,...,bn) = b.

Since (0, bt) e X* for all i<n, 0-symmetricity yields (bi, 0) € X* for all
i < n and therefore

(b,a) = (t(a,bl,...,bn),t(a,0,...,0))eX*.

Hence X* is symmetric. Let now 6 = #({(0, x) : x e X}). It is clear
that 6 is the transitive closure of X*, and hence, if y e 0/6 there exist
y0 = 0, yx, ... , yk = y such that (yt, yi+l) e X*. It is now obvious that 0-
transitivity yields (0, y) e X*. Hence 0/0 c 0/X*, and the other inclusion
being trivial, we may conclude X = 0/X* = 0/6 . Therefore X e N( A) and
the proof is finished.

Let us point out that the implication in the above proposition cannot be
reversed, where again pointed sets give a counterexample.

If we ask the hypothesis of the above proposition to hold for any algebra in
a whole variety, then again the request is much stronger and not surprisingly
it turns out that 0-symmetricity and O-transitivity are closely related to 0-
permutability. Let us recall [5] that two congruences 6, <p are said to permute
at 0 if {0, x) z6vq> implies (0, y) e 6 and (x, y) € <p for some y. This
is clearly equivalent to saying that if {0, x) € 6 o q> then (0, x) € q> o 6.

THEOREM 2.4. For a variety 7P* the following are equivalent.

(1) For all A 6 f and 6, <p e Con(A) we 0/(6 V <p) = 0/(6 o q>)
(2) Every algebra in *V has 0-permutable congruences.

https://doi.org/10.1017/S1446788700035436 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035436


[7] Ideals and other generalizations 109

(3) There is a binary term s(x, y) of 'V such that

s(x, x) « 0, s(x, 0) « x

hold in T.
(4) There is a ternary term w(x, y, w) of 'V such that

hold in T.
(5) There exists a positive integer m, binary terms dx{x, y), ... , dm{x, y)

and an m + 3-ary term q(x{, ... , xm+3) of 'V such that

d({x, x) « 0 for i=\, ... ,m

q(x,y,0,0,...,0)*0

q{x,y,y,dx{x,y), ... ,dm{x,y))&x

hold in T.
(6) T is ideal-coherent, that is, for all A € 'V, I e I(A), if 0/6 c /

for some 6 € Con(A), then I is a union of 6-blocks.
(7) For all A e ^ , the mapping Con(A) —> I(A) defined by d i—> 0/d

is a complete and onto lattice homomorphism.
(8) For all A 6 5^, every semicongruence of A is 0-symmetric and

O-transitive.
(9) For all A £ ^ , every semicongruence of A is O-transitive.

(10) The semicongruences of any algebra in *V permute at 0.

PROOF. That (1), (2), (3) and (4) are equivalent has been proved explicitly
or implicitly in [5]. Moreover (3) implies (5) if one puts m - 1, d{ (x, y) =
s{x, y) and q(x ,y, z, w) = s(x, s(s{x, z), w)).

Assume then (5). Let / e I(A), 6 G Con(A) and 0/6 C / . Let v € /
w i t h ( u , v) G 6; t h e n f o r a l l i < m w e h a v e d ^ u , v ) 6 d t ( v , v ) = 0, a n d
hence dj{u,v)el. Note that q{x, y, z) is an ideal term in z, so we must
have

u = q(u,v,v, dx{u,v), ... ,dm(u,v)) el.

Hence (5) implies (6). For the converse, assume that 'V is ideal-coherent
and look at Y y(x, y). Let 6f be the congruence associated with the en-
domorphism of ¥^-(x,y) denned by f{x) = f{y) = x and /(0) = 0.
Let

/ = ( M u {d(x ,y)eF^(x,y):d(x,y)€ 0/0,}),.

Then clearly 0 /0 , C / , y e I and {x, y) G 0 , . Thus ideal-coherency yields
x G / . By Proposition 1.3(4), there is an ideal term t(x, y, z) in yliz and
dl(x,y),...,dm(x,y)e0/6f with

t(u,y, dx{x,y), ... , dm{x,y)) = x.
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Since any Uj = Uj(x, y) we do get an (m + 3)-ary term by setting

q(x,y,y,zl,...,zm) = t(u,y,zl,..., zj.

But then q(x,y,0,0,...,0) = 0, since q is an ideal term in j> U z. As
shown above q{x ,y,y,d{{x,y), ... , dm(x, y)) = x and finally, for all i,
dt(x, y) 6 0/8 f, which yields dt(x, x) = f(dt(x, y)) = /(0) = 0. Therefore
(5) and (6) are equivalent.

Assume again (5). Let A e f , 0, <p G Con(A) and a G 0/(0 o q>).
Then there is a b G A with (0, b) G 0 and (b, a) e q>. Hence we get
d{(a, b) <p dt(b ,b)q>0 for all i. So

0 = q(a,b,0,0,...,0)

(pq{a,b,O,dx{a,b),...,dm{a,b))

dq(a,b,b,dl(a,b),...,dm(a,b)) = a,

and hence (0, a) e <pod and "V is 0-permutable. Therefore (5) implies (2).
Assume now (3). Let A e "V, 6, <p e Con( A) and a e 0/(0 V (p). Then

there are a{, ... , an e A with

a6al (p a2 6 ... danq>0.

Let us set t(x, y, z,) = s(x, s(s(x, y), z,)) and let us induct on n . If
n — 1 then a8a{ <p0. Hence s(a, ax)60, therefore

a = t(a,al,s(a,al))e0/(6v<p),

t(x, y, z) being an ideal term in y, z. Let us now assume the statement
true for n and let

ada{g>a2 8 ... 8an<pan+l 80.

Then s(a, an+l)<ps(a, an) 8 ... 8s(a, a) = 0, so, by the induction hypoth-
esis, s(a, an+l) e 0/6 V 0/<p . But since an+l e 0/8 we get again

a = t(a, an+l, s(a, an+l)) e 0/8 v 0/<p.

The case an+l <p 0 is totally similar and hence we conclude that 0/(8 V <p) C
0/6 V 0/q>. For the converse let a e 0/6 V 0/<p ; then there is an ideal term
p(\, y, z) in yUz, a G A, u G 0/6 and v G 0/(p with a —p(a, u, v). If we
now set b = p(a, u, 0, . . . , 0) we get (b, 0) G 8 and (a, b) G <p . Therefore
a G 0/(8 V <p). We have thus proved that the mapping is a homomorphism.
Let now / G I( A ) ; we will prove that it is a congruence class by using
the "Mal'cev criterion" (Proposition 1.4). Let then a, b e I, and let g(x)
be a unary polynomial of A and assume that g(a) G / . Clearly g(x) =
t(a{, ... , an, x) for some term t and al, ... , an G A. Now

w(yl, r(x, ,...,xn,y2), t(x{,... ,xn, y3))
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is an ideal term in yl, y2, y3. Therefore

c = w(g{b), t{ax, ... , an , a), t(ax, ... , an, a)) e I.

But c = w(g(b), g(a), g(a)) = g(b). Hence g{b) e / and we conclude that
/ is a block of a congruence. Therefore (3) implies (7).

That (7) implies (2) follows from the fact that a e 0/(0 V <p) implies
a e 0/0 V 0/<p , hence (a, 0) e 6 o y .

Assume now (4). Let A € T~ and S e Sc(A). If (0,a) e S, then
(0, 0),(a,a) eS as well, so

(a, 0) = (w(a, 0, 0), w(a, a, 0)) = w((a, a), (0, a), (0, 0)) e 5

since S is a subalgebra of A 2 . Similarly, if (a,0) e S we get (0, a) e S,
and hence S is 0-symmetric. Next if (0, a), (a, b) € S then

(0, b) = {w(a, a, 0),w(b,a,a)) = w((a,b), (a, a), (0, a)) e S

so we conclude that S1 is 0-transitive as well and (4) implies (8). Next (8)
implies (9) a fortiori. Assume (9) and let S be the semicongruence generated
by {{y, y), {y, x), (0, y)} in F ^(x, y). Since S is 0-transitive we must
have (0, JC) e S. From here a standard Mal'cev argument yields the existence
of a ternary term w(x, y, z) satisfying the desired identities. Hence (9) and
(4) are equivalent.

Finally it is clear that (10) implies (2). On the other hand assume (4) and
let S, R e Sc(A), {0,a)eS°R. This implies the existence of b 6 A with
(0, b) e S and (b,a) eR. But then

0 = w ( b , b , 0 ) R w { a , b , O ) S w ( a , b , b ) = a ,

where we have used only the reflexivity of R and 5 . Hence (4) implies (10)
and the proof is finished.

Via Proposition 2.3, if 'V is a variety satisfying any of the equivalent
statements of Theorem 2.4, then for any A e y we have N( A) — Cl( A ) .
Note that we had no hope of finding the latter as an equivalent condition in
the theorem above, since we have already seen that it cannot be expressed by
a Mal'cev condition.

We have pointed out that, given an algebra A , the normal set 0/6 is an
ideal for any 6 e Con(A) and the set 0/5 is a clot for any S e Sc(A). It
is only natural to ask what happens if any of these correspondences is one-
to-one and onto for all the algebras in a variety and it is not a surprise that
this property is related to another congruence property, 0-regularity. We say
that an algebra A has 0-regular congruences [4] if for any 6, <p e Con( A ) ,
0/6 = 0/<p implies 6 = </>. The next two theorems show the equivalence of
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any of the properties above to several statements. In particular any of them
is expressible by a Mal'cev condition. The case of ideals has already been
treated in [5] and we refer to that paper for the proof of Theorem 2.6 below.

DEFINITION 2.5. Let 'V be a variety.

(1) [5] T~ is ideal-determined if, for all A € "V, I e I(A), there is
exactly one 0 e Con(A) with 1 = 0/6.

(2) T is clot-determined if for all A eT~, X e C1(A) there is exactly
one 5 € Sc(A) such that X = 0/S.

THEOREM 2.6 [5]. For a variety 7^ the following are equivalent.

(1) 'V is ideal determined.
(2) Any algebra in *V has 0-regular and O-permutable congruences.
(3) There exist a natural number m, binary terms dx{x,y),... , dm{x,y)

and an (m + 3)-term q such that

dj(x j ) » 0 for i=\,... ,m implies x « y,

di(x,x)&0 for i= 1, . . . , m,

q(x,y,0,0,...,0)&0,

q(x,y,y,d{(x,y),... ,dm{x,y))Kx

hold in ^ .
(4) The mapping from Con(A) —> I(A) defined by 8 i—> 0/8 is a lattice

isomorphism.

THEOREM 2.7. For a variety 'V the following are equivalent.

(1) 2^ is clot determined.
(2) For all A e V and S e Sc( A) , we have S = (0/5)*.
(3) W is ideal determined and has permutable congruences.
(4) 'V is 0-regular and has permutable congruences.
(5) For every A e ^ , A is 0-regular and Con( A) = Sc( A) .
(6) There exist a natural number m, binary terms dx(x, y), ... , dm(x, y)

and an (m + 2)-term q such that

dt{x, x) « 0 for i = l,...,m,

q(x,y, 0, ... , 0) « x ,

q{x,y, dx(x,y), ... , dm{x,y))^y

hold in V.
(7) The mapping from Sc(A) —* C1(A) defined by S i—> 0/S is a

lattice isomorphism.
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PROOF. First we show that (1), (2) and (7) are equivalent. Assume (1);
then the mapping S \—> 0/S is one-to-one and it is also onto by Proposition
2.2. Moreover it is order preserving and its inverse X \—» X* is also order
preserving. These are well-known to be sufficient conditions for a mapping
between lattices to be an isomorphism. Hence (1) implies (7). It is straight-
forward to check that (7) implies (2) and (2) implies (1), and hence they
are equivalent. From the fact that in a congruence permutable variety any
semicongruence is a congruence [12], it follows that (3) implies (1) and the
equivalence of (3), (4) and (5) as well.

Let us then show that (1) implies (6). Consider once again F ^-{x, y), and
let M = {d(x, y): d(x, x) = 0} . For d € M, let Sd be the semicongruence
generated by the single pair (0, d(x, y)) and let SM - \JdeMSd . Let / be
the endomorphism of F ^ ( x , y) denned by f{x) — f{y) — x, /(0) — 0.
Let Sj- be the semicongruence generated by {(0, M) : / («) = 0} , i.e. Sj- =

CLAIM. SJ- is the semicongruence R generated by (x, y).

It is easily seen that /~ ' (0) is a clot and hence O/Sj- = /~ ' (0) by Propo-
sition 2.2. Let (0, h) e R; then for a suitable term t and for u e F ^{x, y)
we have 0 = t(u, x, ... , x) and h = t(u, y, ... , y). Then

= t(f{u),x, ... , x)

that is, A e f ' ( O ) . Conversely if f(u) = 0, say u = u(x, y), then 0 =
/(«) = f(d(x,y)) = d(x,x) and hence (0, u) - (d(x, x), d(x, y)) =
d({x, x), {x, y)) e R. Hence the claim is proved.

With an argument close to the one above we can show that SM = Sj- and
hence SM is a compact in Sc( A ) . Then there are dx, ... , dm€ M with

SM = sd, v ••' vSdM = «<°> dt(x,y)): i = 1, . . . , m})Sc.

Now, since {x, y) e ({(0, dt{x, y)) : i = I, ... , m})Sc, the usual Mal'cev
argument yields the existence of a term q satisfying the identities in (6).

Assume now (6). If we define

t{x,y, z) = q(x, z,dx(y, z), ... , dm{y, z))

it is clear that t(x, y, z) satisfies the Mal'cev identities for permutability.
Moreover if dt(x, y) — 0 for all i < m, then x = y, and hence "V is
0-regular [4]. So (6) implies (4) and the proof is finished.
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Finally let us quote two examples showing that the classes of varieties

denned by Theorems 2.4, 2.6 and 2.7 are distinct. The variety of implication

algebras is a variety with one binary operation satisfying

(xy)x « x, (xy)y = (yx)x, x(yz) « y(xz).

It has been observed in [5] that this variety, with regard to the equationally de-

finable constant xx, is ideal determined but it is not congruence permutable

(see also [8]). Hence it satisfies the equivalent conditions of Theorem 2.6 but

not of Theorem 2.7.

For the other counterexample, let A = ( { 0 , 1 , 2 , 3 , 4 , 5 } , s,0), where

s is binary and defined as

fx if^O
s(x, y) — <

[ 0 otherwise.

It is clear that A generates a 0-permutable variety and that every partition

of A to which {0} belongs is in fact a congruence. If the variety generated

by A were ideal determined, then it would be also congruence modular [5],

but this is not the case since Con(A) is not modular, as the reader can easily

check. Hence it satisfies the equivalent conditions of Theorem 2.4 but not of

Theorem 2.6.
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