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Quaternions and Some Global Properties
of Hyperbolic 5-Manifolds

Ruth Kellerhals

Abstract. We provide an explicit thick and thin decomposition for oriented hyperbolic manifolds M

of dimension 5. The result implies improved universal lower bounds for the volume vol5(M) and, for

M compact, new estimates relating the injectivity radius and the diameter of M with vol5(M). The

quantification of the thin part is based upon the identification of the isometry group of the universal

space by the matrix group PS∆ L(2, H) of quaternionic 2 × 2-matrices with Dieudonné determinant

∆ equal to 1 and isolation properties of PS∆ L(2, H).

0 Introduction

The Margulis lemma for discrete groups of hyperbolic isometries has important con-

sequences for the geometry and topology of hyperbolic manifolds of dimensions

n ≥ 2. There is a universal constant ε = εn such that for each oriented hyperbolic

n-manifold M of finite volume there is a thick and thin decomposition

(0.1) M = M≤ε ∪ M>ε

of M as follows. The thick part M>ε having at each point an injectivity radius bigger

than ε/2 is compact. The thin part M≤ε of all points p ∈ M with injectivity ra-

dius smaller than or equal to ε/2 consists of connected components of the following

types. The bounded components are neighborhoods of simple closed geodesics in M

of length≤ ε homeomorphic to ball bundles over the circle. The unbounded compo-

nents are cusp neighborhoods homeomorphic to products of compact flat manifolds

with a real half line.

Estimates for the constant εn induce universal bounds for various characteristic

invariants of M such as volume. Explicit values for εn are known for n = 2 by work

of P. Buser [Bu2, Chapter 4] and for n = 3 by work of R. Meyerhoff [M]. For n = 4,

partial results are contained in [K3].

The aim of this work is to estimate the constant ε5 and to derive some global

properties such as new lower volume bounds for hyperbolic 5-manifolds M (cf. Sec-

tion 2 and Section 3). We show that for ε ≤
√

3/9π there is a decomposition of M

according to (0.1). Moreover, we prove the universal bound vol5(M) > 0.000083.

To this end, we analyse the thin part of M and construct embedded tubes around

simple closed geodesics of length l ≤
√

3/8π of radius given by (cf. Section 2.1)

(0.2) cosh(2r) =
1 − 3k

k
, where k =

2πl√
3
.
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The tubes around distinct closed geodesics of lengths ≤
√

3/9π ' 0.0612 are pair-

wise disjoint. In the non-compact case, they are also distinct from the canonical

cusps associated to parabolic elements in the fundamental group of M.

Our considerations are based upon the identification of hyperbolic space H5 and

its boundary through quaternions such that Iso+(H5) equals the group PS∆L(2; H)

of quaternionic 2 × 2-matrices with Dieudonné determinant ∆ = 1 as described by

[H] and [Wil] (cf. Section 1.2). In this context, we characterise the isolation of the

identity in PS∆L(2; H) (cf. Section 1.3). The strategies involved are standard and go

back to [J], [Be] and [Wat].

The explicit tube construction (0.2) implies comparison results between injec-

tivity radius, diameter and volume of compact hyperbolic 5-manifolds M (cf. Sec-

tion 3.2). For example, we prove that the injectivity radius i(M) of M satisfies i(M) ≥
const · vol5(M)−1 improving results of P. Buser [Bu1] and A. Reznikov [Re].

In [CW, Section 9], C. Cao and P. Waterman constructed tubes around closed

geodesics in hyperbolic n-manifolds M for n ≥ 2 and give a lower bound for the

in-radius of M by viewing isometries of hyperbolic n-space as Clifford matrices of

pseudo-determinant 1. By different methods, Buser [Bu1, Section 4] obtained anal-

ogous results for compact hyperbolic manifolds of dimensions > 2. Both contribu-

tions provide clearly weaker bounds than ours when specialized to n = 5. As an illus-

tration, the in-radius r(M) measuring the radius of a largest embeddable ball in M

is bounded from below by 1/65536 according to [Bu1, Theorem 4.11] and by 1/544

according to [CW, Theorem 9.8] while we obtained the bound 1/30 (cf. Lemma 5).

Acknowledgment The work was completed during a short stay at the Max-Planck-

Institute for Mathematics in Bonn. The author expresses her thanks to the Director,

Professor G. Harder, and to Professor F. Hirzebruch for the invitation and the hospi-

tality.

1 The Quaternion Formalism for Isometries of H5

1.1 Loxodromic Isometries of Hyperbolic n-Space

Let Ên := En ∪ {∞}. A Möbius transformation of Ên is a finite composition of

reflections in spheres or hyperplanes of Ên and preserves cross ratios

[x, y; u, v] =
|x − u| · |y − v|
|x − y| · |u − v|

for distinct points x, y, u, v ∈ Ên. The group of all Möbius transformations of Ên is

denoted by M(Ên), or by M(n) for short.

Consider hyperbolic space Hn in the upper half space En
+, that is,

(1.1) Hn
=

(

En
+ , ds2

=
1

x2
n

(dx2
1 + · · · + dx2

n)
)

with distance between two points x, y ∈ Hn given by

(1.2) cosh d(x, y) = 1 +
|x − y|2
2xn yn

.
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1082 Ruth Kellerhals

By Poincaré extension, every Möbius transformation T ∈ M(n − 1) gives rise to an

element in M(En
+) again denoted by T. In fact, T ∈ Iso(Hn) since it leaves invariant

the hyperbolic metric (1.2).

According to the fixed point behavior a Möbius transformation is either elliptic,

parabolic, or loxodromic. For example, if T ∈ M(En
+) has precisely one, resp. two,

fixed points in Ên−1 and none in En
+, then T is parabolic, resp. loxodromic.

Let T ∈ Iso(Hn) be a loxodromic element, and denote by q1, q2 ∈ ∂Hn its two

different fixed points. They determine a unique geodesic aT ⊂ Hn, the axis of T,

along which T acts as a translation. For p ∈ aT , d
(

p, T(p)
)

=: τ is constant and

called the translational length of T. Besides, T consists of a rotational part R such

that—after a suitable conjugation—we obtain the representation

(1.3) T = rA, where r = eτ , A ∈ O(En−1).

For later purpose, we prove the following very useful property of T (for n = 4, see

[K3, Lemma 1.3]).

p̂

τ

T( p̂)

T(p)

R(p)

p

δ

δ

δ
ω

∞

0

a

b

c

d

u

v

∆

∆R(p)

.

. .
.

..............
.
.
.
.
.
.
.
.
.
.
.

............
.
.
.
.
.
.
.

.....
....
.......
.
.
.
.
.
.
.
.
.
.
.
.

.

..
..
.
..
..
.
.
.
.
.
.
.
......................................................................................................................................................................................................

.

..

..

..

..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
...
...
...
...
...
...
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

..

..

.

..

..

..

..

..

.

..

..

.

..

..

..

..

.

..

..

.

..

..

.

..

.

..

..

..

.

..

..

..

..

.

..

..

.

..

..

..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

....

...

...

...

...

...

...

..

...

...

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

.

..

.

..

..

..

..

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..
..
..
..
..
..
...
..
..
...
..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
....
....
....
....
....
....
....
.....
.....
.....
.....
.....
.....
.....
......

.....
......

.......
......

........
.......

........
.........

..........
...........

............
..............

.................
.....................

.............................
..............................

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

..

.

..

..

..

.

..

.

..

..

..

.

..

..

..

..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
..
...
..
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
...
....
...
....
....
....
....
....
....
....
....
....
....
....
....
.....
.....
.....
....
.....
.....
.....
......
......
.

.....................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

..

.

..

..

.

..

..
..
..
..
..
..
..
..
..
..
..
....................................................

.

.

.

.

.

.

.

.

.

.

.

..

..

...........

..
..
..
..
..
.
.
.
.

Figure 1

Proposition 1 Let T ∈ Iso(Hn) be a loxodromic element with axis aT , with rotational

part R and with translational length τ . Let p ∈ Hn be such that p /∈ aT , and assume

that the foot of the perpendicular from p to aT is p̂. Denote by ω = ω(p) the angle at p̂

in the triangle
(

p, p̂, R(p)
)

. Let d = d
(

p, T(p)
)

and δ = d(p, aT). Then,

(1.4) cosh d = cosh τ + sinh2 δ · (cosh τ − cos ω).
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Proof Without loss of generality, we may assume that aT = (0,∞). Then, p̂ = |p|en.

Let a := d
(

p, R(p)
)

, b := d
(

R(p), T(p)
)

, and c := d
(

p̂, T(p)
)

(cf. Figure 1).

Hyperbolic trigonometry yields with respect to the triangle
(

p, p̂, R(p)
)

(1.5) cosh a = cosh2 δ − sinh2 δ cos ω = 1 + sinh2 δ(1 − cos ω),

and with respect to the Saccheri quadrangle
(

p̂, T( p̂), T(p), R(p)
)

(1.6) cosh b = cosh τ cosh2 δ − sinh2 δ,

and finally with respect to the right-angled triangle
(

p̂, T( p̂), T(p)
)

(1.7) cosh c = cosh τ cosh δ.

Next, consider the hyperbolic tetrahedron ∆ = ∆
(

p̂, p, R(p), T(p)
)

. The dihe-

dral angle formed by the facets opposite to p and T(p), respectively, and attached at

the edge
(

p̂, R(p)
)

equals π/2. Denote by ∆R(p) the spherical vertex figure of ∆ at

the vertex R(p). ∆R(p) is a right-angled triangle with hypotenuse β, say. Further-

more, let u (resp. v) be the edge of ∆R(p) in the facet opposite to p (resp. T(p)) in ∆.

Then, cos β = cos u cos v.

By hyperbolic trigonometry, we deduce

(1.8) cosh d = cosh a cosh b − sinh a sinh b cos β,

as well as

(1.9)
cosh c = cosh b cosh δ − sinh b sinh δ cos u,

cosh δ = cosh a cosh δ − sinh a sinh δ cos v.

Hence, by (1.7) and (1.9),

cos β = cos u cos v =
cosh b cosh δ − cosh τ cosh δ

sinh b sinh δ
· cosh a cosh δ − cosh δ

sinh a sinh δ

= coth2 δ · cosh b − cosh τ

sinh b
· cosh a − 1

sinh a
.

By using (1.5), (1.6) and (1.8), we obtain

cosh d = cosh a cosh b − coth2 δ(cosh b − cosh τ )(cosh a − 1)

= cosh a cosh b(1 − coth2 δ) + coth2 δ · [cosh b + (cosh a − 1) cosh τ ]

= − 1

sinh2 δ
[cosh2 δ − sinh2 δ cos ω] · cosh b

+ coth2 δ · [cosh b + sinh2 δ(1 − cos ω) cosh τ ]

= cosh b cos ω + cosh2 δ cosh τ (1 − cos ω)

= cosh2 δ cosh τ cos ω − sinh2 δ cos ω + cosh2 δ cosh τ (1 − cos ω)

= cosh τ + sinh2 δ(cosh τ − cos ω).
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Remark Let 0 ≤ α0, . . . , αr < 2π, 0 ≤ r < [ n
2

], with cos α0 ≥ · · · ≥ cos αr denote

the rotation angles of the loxodromic element T ∈ Iso(Hn). Then,

cos α0 ≥ cos ω ≥ cos αr.

To see this, pass to the normal form of the orthogonal part R ∈ O(n − 1) of T and

express p = (p0, . . . , pn−2, t) ∈ Hn with respect to the new basis in En−1
= {t = 0}.

Then, project the triangle
(

p, p̂, R(p)
)

orthogonally down to {t = 0} in order to

compute

cos ω =
(p2

0 + p2
1) cos α0 + · · · + (p2

2r + p2
2r+1) cos αr + p2

2r+2 + · · · + p2
n−2

p2
0 + · · · + p2

n−2

≥ (p2
0 + · · · + p2

n−2) cos αr

p2
0 + · · · + p2

n−2

= cos αr.

1.2 Quaternions and Iso+(H5)

Consider the quaternion algebra H = {q = q0 + q1i + q2 j + q3k | ql ∈ R} with

generators i, j, where k = i j as usual. H is a Euclidean vector space with basis

1, i, j, k. Decompose a quaternion q = q0 + q1i + q2 j + q3k into scalar part Sq := q0

and vector part V q := q1i + q2 j + q3k so that q = Sq + V q. The (quaternionic)

conjugate of q is given by q̄ = Sq − V q and satisfies |q|2 = qq̄ = q̄q. For a unit

quaternion a, we can write

(1.10) a = exp(Iα) := cos α + I sin α for some α ∈ [0, 2π),

where I is a pure unit quaternion, i.e., the scalar part of I vanishes and therefore

I = −Ī, or equivalently I2
= −1. Furthermore, write q =: u + v j with u = q0 + q1i,

v = q2 + q3i ∈ C. Then, there is the correspondence

(1.11) q = (q0 + q1i) + (q2 + q3i) j = u + v j ∼ Q :=

(

u v

−v̄ ū

)

∈ Mat(2; C).

Consider a matrix M ∈ Mat(2; H) and associate to M the complex block matrix

M =

(

A B

C D

)

∈ Mat(4; C)

according to (1.11). The trace Tr M of M is defined by

Tr M :=
1

2
tr M = S(a + d) for M =

(

a b

c d

)

and is obviously conjugacy invariant. In order to establish a determinant of M we

adopt the point of view of J. Dieudonné (cf. [D], [As]) and consider again M. By
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exploiting the correspondence (1.11), one calculates (cf. [Wil, Section 3])

det M = |li j |2 = |ri j |2, 1 ≤ i, j ≤ 2, where(1.12)

l11 = da − dbd−1c, l12 = bdb−1a − bc,

l21 = cac−1d − cb, l22 = ad − aca−1b;

r11 = ad − bd−1cd, r12 = db−1ab − cb,

r21 = ac−1dc − bc, r22 = da − ca−1ba.

(1.13)

In particular, det M ≥ 0, and

(1.14) det M = |ad − aca−1b|2 = |ad|2 + |bc|2 − 2S(ac̄db̄).

The quantity

(1.15) ∆ = ∆(M) :=+

√
det M

is called the Dieudonné determinant of M.

Proposition 2 [Wil, Theorem 1] Let M =

(

a b

c d

)

∈ Mat(2; H) be such that

∆(M) 6= 0. Then, M is invertible, and

M−1
=

(

l−1
11 d −l−1

12 b

−l−1
21 c l−1

22 a

)

=

(

dr−1
11 −br−1

12

−cr−1
21 ar−1

22

)

.

In order to abbreviate, we write

(1.16)

(∼d ∼b
∼c ∼a

)

:=

(

l−1
11 d l−1

12 b

l−1
21 c l−1

22 a

)

,

(

d∼ b∼
c∼ a∼

)

:=

(

dr−1
11 br−1

12

cr−1
21 ar−1

22

)

.

By coefficient comparison in MM−1
= I = M−1M, one obtains the following

useful identities.

Lemma 1 Let M =

(

a b

c d

)

∈ Mat(2; H) be invertible. Then,

(i) ad∼ − bc∼ = da∼ − cb∼ = 1; ∼da − ∼bc =
∼ad − ∼cb = 1.

(ii) a∼d − b∼c = d∼a − c∼b = 1; d∼a − b∼c = a∼d − c∼b = 1.

(iii) ab∼ = ba∼, cd∼ = dc∼; ∼ac =
∼ca, ∼bd =

∼db.

(iv) a∼b = b∼a, c∼d = d∼c; a∼c = c∼a, b∼d = d∼b.

By Lemma 1, the group S∆L(2; H) of all quaternionic 2 × 2-matrices with

Dieudonné determinant ∆ = 1 can be identified according to1

S∆L(2; H) =

{

T =

(

a b

c d

)

∈ Mat(2; H)
∣

∣

∣
ad∼ − bc∼ = 1

}

.

1Following L. Ahlfors [Al], SL(2; H) is used to denote the group of quaternionic Clifford matrices of
pseudo-determinant equal to 1.
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There is a close relationship to the group Iso+(H5) of orientation preserving isom-

etries of H5 in the following way (cf. [H], [Wil]). Take the hyperbolic 5-space H5

with its canonical orientation and parametrize the space with the aid of H by writing

E5
+ = H × R+ so that ∂Hn

= Ĥ (cf. (1.1)). The group S∆L(2; H) acts on Ĥ by linear

fractional transformations

T(x) = (ax + b)(cx + d)−1

with T(∞) = ∞ for c = 0, and with T(∞) = ac−1 and T(−c−1d) = ∞ for c 6= 0.

By passing to the projectivized group

PS∆L(2; H) := S∆L(2; H)/{±E},

one gets the isomorphism

PS∆L(2; H) ' Iso+(H5).

In the following, we do not distinguish in the notation between elements of these

groups.

Let T ∈ Iso+(H5) be a loxodromic element with rotational part R (cf. (1.3)). Since

T is orientation preserving, R is the Poincaré extension of the composition of either

one or two rotations in planes of H. In fact, R ∈ SO(4) is given by (cf. [C2, (6.78)],

[C1], [Po])

R(x) = axb with a, b ∈ H, |a| = |b| = 1.

In particular, the rotation through the angles ±α + β ∈ [0, 2π), 0 ≤ α ≤ β < π,

about two completely orthogonal planes is given by

(1.17)

(

exp(αI) 0

0 exp(−β J)

)

for some unit pure elements I, J ∈ H. Finally, consider a parabolic element X ∈
Iso+(H5) which acts as a translation. Modulo conjugation in PS∆L(2; H), X can be

written in the form

X =

(

1 µ
0 1

)

with µ ∈ H ∼= E4.

1.3 Isolation of the Identity in PS∆L(2, H)

Consider a non-elementary discrete two generator subgroup 〈S, T〉 of PSL(2, C). By

Jørgensen’s trace inequality [J],

(1.18) | tr2 T − 4| + | tr[S, T] − 2| ≥ 1,

where [S, T] = STS−1T−1. By specializing, for example to an element

T =

(

λ 0

0 λ−1

)

with |λ| 6= 1,
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the inequality (1.18) takes the form

(1.19) |λ − λ−1|2 · (1 + |bc|) ≥ 1.

By writing λ =: e
1
2

(τ+iα), (1.19) turns into

(1.20) 2(cosh τ − cos α) · (1 + |bc|) ≥ 1.

Formulas avoiding trace such as (1.19) and (1.20) allow generalizations for Iso+(Hn)

of geometrical relevance. In [Wat], P. Waterman presents various versions of (1.19)

for the group PSL(2; Cn−2) of Clifford matrices associated to the Clifford algebra

Cn−2 with n − 2 generators.

Here, we derive a formula analogous to (1.20) for PS∆L(2; H) ' Iso+(H5) and for

an element

T =

(

eτ/2 exp(Iα) 0

0 e−τ/2 exp(− Jβ)

)

with rotational part according to (1.17) by adapting suitably standard methods (cf.

[Be], [Wat] and [K3]).

Proposition 3 Let

S =

(

a b

c d

)

, T =

(

eτ/2 exp(Iα) 0

0 e−τ/2 exp(− Jβ)

)

∈ PS∆L(2; H)

be loxodromic elements generating a non-elementary discrete subgroup. Then,

(1.21) 2
(

cosh τ − cos(α + β)
)

· (1 + |bc|) ≥ 1.

Proof We follow the strategy of [Wat, Theorem I]. Suppose that

(1.22) µ := 2
(

cosh τ − cos(α + β)
)

· (1 + |bc|) < 1,

and write ρ := eτ/2 for short, as well as

T =:

(

A 0

0 B−1

)

.

Consider the Shimizu-Leutbecher sequence defined inductively by

S0 =

(

a0 b0

c0 d0

)

:= S =

(

a b

c d

)

;

Sn+1 =

(

an+1 bn+1

cn+1 dn+1

)

:= SnTS−1
n for n ≥ 0.
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By Section 1.2, Proposition 2 and (1.16), one computes

Sn+1 =

(

an bn

cn dn

) (

A 0

0 B−1

) ( ∼dn −∼bn

−∼cn
∼an

)

=

(

anA∼dn − bnB−1∼cn −anA∼bn + bnB−1∼an

cnA∼dn − dnB−1∼cn −cnA∼bn + dnB−1∼an

)

.

Since ∆(Sn) = 1, we deduce that |an| = |an∼| = |∼an| and so forth. Therefore,

(1.23)
|bn+1cn+1| = |(−anA∼bn + bnB−1∼an) · (cnA∼dn − dnB−1∼cn)|

= |anbncndn| · |A − a−1
n bnB−1∼an

∼b−1
n | · |A − c−1

n dnB−1∼cn
∼d−1

n |.

For the middle factor in (1.23), for example, one gets the estimate (cf. Section 1.2)

|A − a−1
n bnB−1∼an

∼b−1
n | = |SA + VA − (SB−1) · a−1

n bn
∼an

∼b−1
n

− a−1
n bn(V B−1)∼an

∼b−1
n |

= |S(A − B−1) + VA − a−1
n bn(V B−1)∼an

∼b−1
n |

= {S(A − B−1)2 + |VA − a−1
n bn(V B−1)∼an

∼b−1
n |2}1/2

≤ {(ρ cos α − ρ−1 cos β)2 + (|VA| + |V B−1|)2}1/2

= {(ρ cos α − ρ−1 cos β)2 + (ρ| sin α| + ρ−1| sin β|)2}1/2

= {ρ2 + ρ−2 − 2c(α, β)}1/2

=
{

2(cosh τ − c
(

α, β)
)} 1/2

,

where we used the notation

c(α, β) :=

{

cos(α + β) if α, β ∈ [0, π] or α, β ∈ [π, 2π),

cos(α − β) else.

Hence, c(0, β) = cos β, and by (1.17), c(α, β) ≥ cos(α + β). The same estimate

results for the third factor in (1.23). Therefore,

|bn+1cn+1| ≤ |anbncndn| ·
{

2
(

cosh τ − cos(α + β)
)}

.

Since |andn| ≤ 1 + |bncn| by Lemma 1(i), we obtain by induction

|bn+1cn+1| ≤ µn|bc|,

and therefore, by (1.22), bncn∼ → 0 and andn∼ → 1. Since

|an+1| = |anA∼dn − bnB−1∼cn|, |dn+1| = | − cnA∼bn − dnB−1∼an|,
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we deduce that |an| → ρ and |dn| → ρ−1. Moreover, we get the estimate

|bn+1| ≤ |anbn| ·
{

2(cosh τ − cos
(

α + β)
)}

,

and by induction
|bn|
ρn

, |cn| · ρn → 0.

Next, consider the elements

Tn : = T−nS2nTn
=

(

A−n 0

0 Bn

) (

a2n b2n

c2n d2n

) (

An 0

0 B−n

)

=

(

A−na2nAn A−nb2nB−n

Bnc2nAn Bnd2nB−n

)

=:

(

αn βn

γn δn

)

for n ≥ 0.

The sequence {Tn}n≥0 has a convergent subsequence since

|αn| = |a2n| → ρ

|δn| = |d2n| → ρ−1

|βn| =
|b2n|
ρ2n

→ 0

|γn| = |c2n| · ρ2n → 0.

If we can show that the elements Tn are all distinct, then the group 〈S, T〉 is not

discrete which yields the desired contradiction.

Suppose on the contrary that the sequence {Tn}n≥0 stabilises, that is, βn = γn =

0. Then, b2n = c2n = 0. Let Tn+1 be the first element such that bn+1 = cn+1 = 0. Since

ρ 6= 1, (1.23) yields anbn = 0 and cndn = 0. But det Sn = |andn − ancna−1
n bn| = 1,

which leaves only two possibilities. In the first case, bn = cn = 0 which is impossible.

In the second case, an = dn = 0. For n > 0, 0 = Tr Sn = S(an + dn) = S(A + B−1) =

ρ cos α + ρ−1 cos β. It is easy to see that this contradicts 2
(

cosh τ − cos(α + β)
)

< 1

given by the assumption (1.22). Therefore, n = 0 and a = d = 0. This is impossible

since the group 〈S, T〉 is supposed to be non-elementary.

Proposition 4 Let S =

(

a b

c d

)

, T =

(

A 0

0 B−1

)

∈ PS∆L(2; H) be loxodromic

elements such that 2r := dist(aT , aSTS−1 ) > 0. Then,

(1.24) cosh r ≥ |bc|1/2.

Proof Denote by p the common perpendicular of the axes aT , aSTS−1 whose end

points equal 0, ∞, S(0), S(∞) in ∂H5. Choose a Möbius transformation

V =

(

α β
γ δ

)

∈ PS∆L(2, H)
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such that 0,∞, S(0), S(∞) are mapped to −w, w,−1, 1 with |w| > 1, say. That is, p

is mapped to the positive t-axis, and 2r = dist(aT , aSTS−1 ) = log |w|. For the cross

ratios, we obtain

|1 − w|2
4|w| = [−1, 1,−w, w] = [bd−1, ac−1, 0,∞] =

|bd−1|
|bd−1 − ac−1| .

By (1.12) and (1.13), this means that

|1 − w|2
4|w| = |bc|.

By (1.10), we can write w = ρ exp(Iω) in E4 for some ω ∈ [0, 2π) and a unit pure

element I ∈ H. Hence, 2r = log ρ. Putting z := (2r + Iω)/2, we deduce

w = e2r exp(Iω) =: exp(2r + Iω) = exp(2z).

Next, define

sinh z :=
1

2
{exp(z) − exp(−z)}.

It follows that

| sinh z|2 =
1

4
|(1 − w)2w−1| =

1

2

(

cosh(2r) − cos ω
)

≤ 1

2

(

cosh(2r) + 1
)

.

Thus,

cosh2 r =
1

2

(

cosh(2r) + 1
)

≥ | sinh z|2 = |bc|.

Proposition 5 Let S =

(

a b

c d

)

and T =

(

1 µ
0 1

)

∈ PS∆L(2; H) with µ ∈ E4

generate a non-elementary discrete subgroup. Then,

(1.25) |c| · |µ| ≥ 1.

The proof is a slight modification of the proof of [K3, Theorem 1.2] by using

Lemma 1.

2 A Thick and Thin Decomposition for Hyperbolic 5-manifolds

Let M denote an oriented complete hyperbolic 5-manifold of finite volume which

consequently will be called hyperbolic 5-manifold for short. That is, M is a Clifford-

Klein space form H5/Γ where Γ < PS∆ L(2, H) is discrete, torsion-free and cofinite.

In particular, Γ is non-elementary. Denote by i p(M) the injectivity radius of M at p.

By the Margulis Lemma for discrete groups of hyperbolic isometries (cf. [BGS, Sec-

tion 9–10], [T], [R1]), there is a universal positive constant ε such that there is a thick

and thin decomposition

(2.1) M = M≤ε ∪ M>ε
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of M as follows. The thick part M>ε = {p ∈ M | i p(M) > ε
2
} of M is compact.

The thin part M≤ε = {p ∈ M | i p(M) ≤ ε
2
} in (2.1) consists of connected

components of the following types. The bounded components are neighborhoods

N of simple (i.e. with no self-intersection) closed geodesics g through p ∈ M≤ε in

M of length l(g) ≤ ε homeomorphic to ball bundles over the circle. In fact, N is a

quotient U/ΓU by an infinite cyclic group ΓU < Γ of loxodromic type with common

axis projecting to g and leaving precisely invariant some component U ⊂ H5 lying

above N . The unbounded components are cusp neighborhoods homeomorphic to

products of compact flat manifolds with a real half line. Each cusp neighborhood can

be written in the form C = Cq = Vq/Γq with Γq < Γ of parabolic type fixing some

point q ∈ ∂H5 and leaving precisely invariant some horoball Vq ⊂ H5 based at q.

In fact, to each subgroup Γq < Γ of parabolic type corresponds a particular ex-

tremal horoball Bq such that Bq/Γq embeds in M. We describe it for the case q = ∞,

only. Denote by µ 6= 0 a shortest vector in the translational lattice Λ < Γ∞ here

identified with E4. Then,

B(µ) = B∞(µ) :=
{

x ∈ H5
∣

∣ x5 > |µ|
}

is called the canonical horoball of Γ∞. B(µ) is precisely invariant with respect to Γ∞
and gives rise to a cusp neighborhood in M. Moreover, canonical horoballs associated

to inequivalent parabolic transformations in Γ are disjoint. The proofs are slight

variations of those of [K3, Lemma 2.7] and [K3, Lemma 2.8].

2.1 The Thin Part of a Hyperbolic 5-manifold

In the following, we construct neighborhoods of sufficiently small simple closed

geodesics in M such that they are disjoint from canonical cusp neighborhoods. If

g is a simple closed geodesic in M, denote by rg the injectivity radius for the expo-

nential map of the normal bundle of g into M. For r ≤ rg , the set Tg(r) = {p ∈ M |
dist(p, g) < r} is called a tube around g of radius r. By making use of the description

Iso+(H5) ' PS∆ L(2, H), we construct tubes as follows.

Proposition 6 Let l0 =

√
3

8π ' 0.068916. Then, each simple closed geodesic g in M of

length l(g) ≤ l0 has a tube Tg(r) of radius r satisfying

(2.2) cosh(2r) =
1 − 3k

k
, where k =

2πl(g)√
3

.

Proof Consider two different lifts g̃1, g̃2 of g in H5. They give rise to Γ-conjugate

loxodromic elements T1, T2 with disjoint axes aT1
, aT2

but equal translational length

τ and rotational angles ±α + β with 0 ≤ α ≤ β < π. Denote by p the common

perpendicular of aT1
and aT2

. We have to study the length 2r of p in terms of τ = l(g).

Without loss of generality assume that (cf. (1.17))

T1 =

(

eτ/2 exp(Iα) 0

0 e−τ/2 exp(− Jβ)

)

,

T2 = ST1S−1 with S =

(

a b

c d

)

,
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for some unit pure quaternions I, J. Since 〈T1, T2〉 is non-elementary, 〈T1, S〉 is non-

elementary as well. By Proposition 3, (1.21), applied to 〈T1, S〉, we obtain

(2.3) 2k · (1 + |bc|) ≥ 1, where k = cosh τ − cos(α + β).

Now, (1.24) of Proposition 4 yields cosh2 r ≥ |bc|, that is,

(2.4) cosh(2r) ≥ 1 − 3k

k
,

which is nontrivial if

(2.5) k = k(τ ; α, β) = cosh τ − cos(α + β) ≤ 1

4
.

Next, observe that (2.4) remains valid for k(nτ ; nα, nβ) by considering n-th iterates

of T1, T2 for arbitrary n ∈ N. In this situation, we make use of the modified Zagier

inequality [CGM, Lemma 3.4] which says that for arbitrary 0 < ρ ≤ π
√

3 and

ν ∈ [0, 2π), there exists a number n0 ∈ N such that

(2.6) cosh(n0ρ) − cos(n0ν) ≤ 2πρ√
3

.

By choosing τ = ρ ≤
√

3
8π and ν = α + β according to (2.3), (2.5) and (2.6) imply

that

k(n0τ ; n0α, n0β) ≤ 1

4
.

Lemma 2 Let g denote a simple closed geodesic in M of length l(g) ≤ l0 with tube Tg(r)

of radius r satisfying (2.2). Then,

(a) r = r(l) is strictly decreasing.

(b) The volume vol5

(

Tg(r)
)

is strictly decreasing with respect to l.

Proof Part (a) is obvious. As to part (b), observe that the volume of Tg(r) equals the

volume of a cylinder Cyl(r, l) of radius r with axis of length l which in general is given

by (cf. [K3, Lemma 2.4])

voln
(

Cyl(r, l)
)

=
2π

n − 1
· l · sinhn−1 r.

Hence,

(2.7) vol5
(

Tg(r)
)

=
π

2
· l · sinh4 r =

sinh2 r

2
· vol3

(

Cyl(r, l)
)

.

By (2.2),

vol3
(

Cyl(r, l)
)

= π · l · sinh2 r =

√
3

4
− 2πl,
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which is a strictly decreasing function of l.

Remark Cao and Waterman [CW] obtained tubes around short closed geodesics

of lengths ≤ ln in hyperbolic manifolds M of arbitrary dimensions n ≥ 2. They

made use of certain extremal values associated to the rotational part of loxodromic

elements losing much accuracy when estimating the tube radius. For example, for

n = 5, a closed geodesic g of length l5 ' 0.0045 in M has a tube of radius ' 0.9885

and volume ' 0.01269 according to [CW, Corollary 9.5] while g has a tube of radius

' 2.3786 and volume ' 5.7846 according to (2.2).

Lemma 3 Let g, g ′ denote two simple closed geodesics in M of lengths l, l ′ ≤ l1 :=√
3/9π ' 0.061258 which do not intersect. Then, the tubes Tg , Tg ′ of radii r, r ′ subject

to (2.2) are disjoint.

Proof Write M = H5/Γ, and let g̃, g̃ ′ be lifts to H5 of g, g ′ which are the axes of

loxodromic elements T, T ′ ∈ Γ with translational lengths τ and τ ′ and angles of

rotation ±α + β and ±α ′ + β ′ as usually. Let δ = dist(g̃, g̃ ′). We must prove that

δ ≥ r + r ′.
For this, conjugate T, T ′ in PS∆L(2, H) in order to obtain the elements

X =

(

eτ/2 exp(Iα) 0

0 e−τ/2 exp(− Jβ)

)

, Y =

(

a b

c d

)

.

The axis aY XY −1 = Y (aX) of the element Y XY−1 is disjoint from aX and aY . Let

p ∈ aX denote the point such that δ = dist(aX , aY ) = dist(p, aY ), that is, p is the

foot point on aX of the common perpendicular of aX , aY . By construction, d :=

dist
(

p,Y (p)
)

≥ 2r. Denote by k ′ := k(Y ) = cosh τ ′ − cos(α ′ + β ′). Then, Propo-

sition 1 implies that

cosh(2r) ≤ cosh d = cosh τ ′ + sinh2 δ(cosh τ ′ − cos ω).

Remark Section 1.1 yields cos ω ≥ cos(α ′ + β ′). Therefore,

cosh(2r) ≤ cosh τ ′ + sinh2 δ
(

cosh τ ′ − cos(α ′ + β ′)
)

≤ k ′ + 1 + sinh2 δ · k ′
= cosh2 δ · k ′ + 1.

By Proposition 6, we deduce that

cosh(2δ) = 2 cosh2 δ − 1 ≥ 2 · cosh(2r) − 1

k ′ − 1 = 2 · 1 − 4k

kk ′ − 1

=
1 − 4k

kk ′ +
1 − 4k − kk ′

kk ′ .

Suppose that k ′ ≥ k (otherwise, exchange the role of X and Y ). Then, we obtain

cosh(2δ) ≥
√

1 − 4k

k
·
√

1 − 4k ′

k ′ +
1 − 4k − kk ′

kk ′ .
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By assumption, l ≤ l1 =

√
3

9π so that, by Proposition 6,

k =
2πl√

3
< 2/9.

Hence,

cosh(2r) =
1 − 3k

k
<

√
1 − 4k

k
,

and similarly for cosh(2r ′). In order to conclude that cosh(2δ) ≥ cosh(2r + 2r ′), it

suffices to show that

1 − 4k − kk ′

kk ′ ≥
√

1 − 4k − k2

k
·
√

1 − 4k ′ − k ′2

k ′ ≥ sinh(2r) · sinh(2r ′).

The verification is left to the reader (for details, cf. [K3, p. 64]).

Lemma 4 Let M denote a non-compact hyperbolic 5-manifold. Then, the canonical

cusps and the tubes around closed geodesics according to (2.2) do not intersect in M.

The proof of Lemma 4 is basically a consequence of Proposition 5. For details we

refer to the analogous proof of [K3, Theorem 2.9].

2.2 A Thick and Thin Decomposition

Let M be a hyperbolic 5-manifold, and consider the thin and thick parts

M≤ε = {p ∈ M | i p(M) ≤ ε/2} and M>ε = {p ∈ M | i p(M) > ε/2}

of M as in (2.1).

Theorem I For ε ≤
√

3/9π ' 0.0612, the thin part M≤ε is a finite disjoint union of

canonical cusps and tubes Tg(r) around simple closed geodesics g of length ≤ ε according

to (2.2).

Proof We take up an idea of Meyerhoff [M]. Write M = H5/Γ, where Γ < Iso+(H5)

is discrete, torsion-free and cofinite. The canonical cusps C and the tubes T around

simple closed geodesics of lengths ≤
√

3
9π ' 0.0612 in M as constructed in Section 2

are mutually disjoint. Hence, we must show that any cusp, resp. any bounded com-

ponent in M≤ε, ε ≤ 0.0612, is contained in a canonical cusp C , resp. in a tube T. It

is easy to verify the assertion for the canonical cusps (cf. Section 2).

Let p ∈ M≤ε providing a loxodromic element X ∈ Γ with distance d :=

d
(

p, X(p)
)

≤ 0.0612. Assume without loss of generality that X has axis aX with end

points 0,∞, and denote by τ > 0 the translational length and by±α+β ∈ [0, 2π) the

angles of rotation of X. Let R be the rotational part of X. We show that p ∈ TaX
(r),

where the tube radius is given by (2.3) and (2.4), that is,

(2.8) cosh(2r) =
1 − 3k

k
with k = k(X) = cosh τ − cos(α + β).
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Let δ = d(p, aX), and suppose that δ > 0. By Proposition 1,

(2.9) cosh d = cosh τ + (cosh τ − cos ω) · sinh2 δ,

where ω = ω(p) denotes the angle at the foot point p̂ of the perpendicular from p to

aX in the triangle
(

p, p̂, R(p)
)

. Observe that cos(α + β) ≤ cos ω ≤ cos(α − β).

By (2.9), we must show that for d
(

p, X(p)
)

≤ d0 := 0.0612

(2.10)
cosh d − cosh τ

cosh τ − cos ω
= sinh2 δ ≤ sinh2 r =

1 − 4k

2k
,

where we may work with k = k(Xn) < 1/4 for any integer n ≥ 1 (cf. proof of

Proposition 6) and especially with

(2.11) k = k(Xn0 ) ≤ 2πτ√
3

for n0 ∈ N as given by (2.6). Now, write p = (p1, . . . , p5) ∈ H5 and consider the

circular locus of all points q ∈ H5 with q5 = p5 and d(q, aX) = δ. Varying over all

such q, we find d−, d+ such that 0 < τ < d− ≤ d ≤ d+ ≤ d0 and (cf. (2.9) and

Remark, Section 1.1)

(2.12)
cosh d+ − cosh τ

cosh τ − cos(α + β)
= sinh2 δ =

cosh d− − cosh τ

cosh τ − cos(α − β)
.

Therefore, it suffices to check that

(2.13)
cosh d0 − cosh τ

cosh τ − cos(α + β)
≤ 1 − 4k

2k
.

In order to verify (2.13), we distinguish between two cases.

Consider first the case cos(α + β) > 1 − τ . Choose k according to (2.8). Then,

(2.13) simplifies to

cosh d0 ≤ cosh τ +
1 − 4k

2
.

Since k < cosh τ + τ − 1 < cosh d0 + d0 − 1 =: k0 with cosh d0 ' 1.00187, we see

that the inequality

cosh d0 ≤ 1 +
1 − 4k0

2
implying (2.13) is verified.

Next, suppose that cos(α+β) ≤ 1−τ . Choose k according to (2.11). Then, (2.13)

turns into

cosh d0 ≤ cosh τ + (cosh τ + τ − 1) ·
√

3 − 8πτ

4πτ
.

Since cosh τ + τ − 1 > τ , it suffices to verify

(2.14) 1.0019 < 1 + τ ·
√

3 − 8πτ

4πτ
.

The last term in (2.14) is strictly decreasing. Since τ < d0, we obtain the bound
√

3 − 8πτ

4π
>

√
3 − 8πd0

4π
' 0.0154,

which proves (2.14).
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3 Consequences

3.1 Volume Bounds

As first application, we derive some volume bounds.

Proposition 7 Let M be a hyperbolic 5-manifold M with m cusps and n distinct simple

closed geodesics of lengths ≤ 0.059. Then,

(3.1) vol5(M) >
m + n

96
.

Proof Replace each of the m cusps by the canonical cusp neighborhood C i , 1 ≤
i ≤ m, as described above. C1, . . . ,Cm are pairwise disjoint. By methods based on

results of Bieberbach and a sphere packing argument including the lattice constant

computation δ4 = π2/16 of Korkine-Zolotareff (cf. [K2, Remark (a), p. 726]), one

has

vol5(Ci) >
1

96
for i = 1, . . . , m,

whence

vol5

(

m
⋃

i=1

Ci

)

=

m
∑

i=1

vol5(Ci) >
m

96
.

Suppose that M carries n ≥ 1 distinct simple closed geodesics of lengths ≤ 0.059

(< l1 < l0). By Proposition 6, Lemma 2, Lemma 3 and (2.7), M contains n mutually

disjoint tubes T j , 1 ≤ j ≤ n, of total volume

vol5

(

n
⋃

j=1

T j

)

=

n
∑

j=1

vol5(T j) > n · 0.01042 >
n

96
.

Finally, by Lemma 4, the canonical cusps and the tubes are pairwise disjoint. This

finishes the proof.

Remark Let M be a (possibly non-orientable) hyperbolic 5-manifold M with m ≥ 1

cusps. In [K2] and by methods based on the theory of (horo-)sphere packings, we

deduced the much better bound

(3.2) vol5(M) > m · 0.3922.

Adjusting suitably the estimate (3.1) requires to lower the upper length bound 0.059.

Lemma 5 Let M be a hyperbolic 5-manifold. Then, there is a point p ∈ M such that

the injectivity radius i p(M) of M at p satisfies

(3.3) i p(M) > 0.0343 > 1/30.

Proof Suppose that a shortest closed geodesic of M has length l ≤ l2 := 0.0687526 <
l0. Then, by Proposition 6, there is a tube T embedded in M of radius r = r(l)

according to (2.2). By a result of A. Przeworski (cf. [Pr, Proposition 4.1]), there
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is an embedded ball Bp(ρ) centered at some point p ∈ M which is of radius ρ =

arcsinh
(

tanh(r)/2
)

. Since r(l) is strictly monotonically decreasing, it follows that

ρ ≥ ρ(l2) ' 0.03439 and hence i p(M) ≥ 0.03439. If a shortest closed geodesics on

M is of length > l2, then i p(M) > l2/2 ' 0.03437 for all p ∈ M. By comparison, the

result (3.3) follows.

Theorem II For a hyperbolic 5-manifold M,

(3.4) vol5(M) > 0.000083.

Proof If M is non-compact, the estimate follows from (3.2). Suppose that M is com-

pact. By Lemma 5, M contains a ball B of radius at least 0.0343. This yields the

estimate

(3.5) vol5(M) ≥ vol5(B) > 0.00000025,

which we improve as follows. Consider the in-radius r(M) = maxp∈M i p(M) of

M. Let Sreg ⊂ H5 denote a regular hyperbolic simplex of edge length 2r(M) with

spherical vertex simplex sreg of dimension 4. By [K1, Theorem], there is the volume

bound

(3.6) vol5(M) ≥ 4π2

9
· vol5(Sreg )

vol4(sreg )
.

By means of [K1, Lemma 4] and [K1, Lemma 5], the quotient vol5(Sreg )/ vol4(sreg ) in

(3.6) can be estimated in terms of the dihedral angle 2α as given by the edge length

2r(M) (cf. [K1, (3)]). Since r(M) > 0.0343, this leads to the asserted volume bound

vol5(M) > 0.000083.

Remarks (a) Cao and Waterman derived the bound r(M) ≥ 1/544 for the in-radius

of a hyperbolic 5-manifold M (cf. [CW, Theorem 9.8]). By exploiting (3.6) as above,

this yields the volume bound vol5(M) > 0.00000023.

(b) Ratcliffe and Tschantz (cf. [R2]) announced a geometrical construction of a

non-orientable hyperbolic 5-manifold with 10 cusps which is of volume 28ζ(3) '
33.6576. By passing to its oriented double cover one obtains a hyperbolic 5-manifold

of volume 56ζ(3) which to our knowledge represents the smallest known volume

hyperbolic 5-manifold. Therefore, a smallest volume hyperbolic 5-manifold M0 sat-

isfies 0.000083 < vol5(M0) ≤ 67.3152. Moreover, by Proposition 6 and Lemma 2, a

shortest closed geodesic in M0 has length > 0.00043.

3.2 Injectivity Radius Versus Volume and Diameter

Let M be a compact hyperbolic 5-manifold. Denote by i(M) = minp∈M i p(M) the

injectivity radius of M and by diam(M) = maxp,q∈M dist(p, q) the diameter of M.

The injectivity radius i(M) equals one half of the length of a shortest simple closed

geodesic in M. By results of P. Buser [Bu1, Corollary 4.15] and A. Reznikov [R,

Theorem],

i(M) ≥ const · vol5(M)−3.
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We improve this estimate as follows.

Proposition 8 For a compact hyperbolic 5-manifold M,

(3.7) i(M) ≥ const · vol5(M)−1.

Proof Assume that there is a short simple closed geodesic g of length l in M. Then,

there is a tube Tg(r) around g of radius r given by (cf. Proposition 6, (2.2))

sinh2 r =
1

2k
− 2, where k =

2πl√
3
.

This implies

vol5(M) ≥ vol5
(

Tg(r)
)

=
π

2
· l · sinh4 r.

Since sinh4 r ∼ const ·l−2 for small l, we deduce l ≥ const · vol5(M)−1 as desired.

Proposition 9 For a compact hyperbolic 5-manifold M,

(3.8) i(M) ≥ const · sinh(diam(M))−2.

Proof Let g denote a simple closed geodesic in M. By a result due to E. Heintze and

H. Karcher [HK, Corollary 2.3.2], the length l of g is bounded from below as follows.

l ≥ 2

π2
· vol5(M)

sinh4
(

diam(M)
) .

This together with Proposition 8, (3.7), yields

l ≥ const · 1

i(M) · sinh4
(

diam(M)
) ,

which implies the desired result.
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