Quaternions and Some Global Properties of Hyperbolic 5-Manifolds

Ruth Kellerhals

Abstract

We provide an explicit thick and thin decomposition for oriented hyperbolic manifolds M of dimension 5. The result implies improved universal lower bounds for the volume $\operatorname{vol}_{5}(M)$ and, for M compact, new estimates relating the injectivity radius and the diameter of M with $\operatorname{vol}_{5}(M)$. The quantification of the thin part is based upon the identification of the isometry group of the universal space by the matrix group $\mathrm{PS}_{\Delta} \mathrm{L}(2, \mathrm{H})$ of quaternionic 2×2-matrices with Dieudonné determinant Δ equal to 1 and isolation properties of $\mathrm{PS}_{\Delta} \mathrm{L}(2, \mathbb{H})$.

0 Introduction

The Margulis lemma for discrete groups of hyperbolic isometries has important consequences for the geometry and topology of hyperbolic manifolds of dimensions $n \geq 2$. There is a universal constant $\varepsilon=\varepsilon_{n}$ such that for each oriented hyperbolic n-manifold M of finite volume there is a thick and thin decomposition

$$
\begin{equation*}
M=M_{\leq \varepsilon} \cup M_{>\varepsilon} \tag{0.1}
\end{equation*}
$$

of M as follows. The thick part $M_{>\varepsilon}$ having at each point an injectivity radius bigger than $\varepsilon / 2$ is compact. The thin part $M_{\leq \varepsilon}$ of all points $p \in M$ with injectivity radius smaller than or equal to $\varepsilon / 2$ consists of connected components of the following types. The bounded components are neighborhoods of simple closed geodesics in M of length $\leq \varepsilon$ homeomorphic to ball bundles over the circle. The unbounded components are cusp neighborhoods homeomorphic to products of compact flat manifolds with a real half line.

Estimates for the constant ε_{n} induce universal bounds for various characteristic invariants of M such as volume. Explicit values for ε_{n} are known for $n=2$ by work of P. Buser [Bu2, Chapter 4] and for $n=3$ by work of R. Meyerhoff [M]. For $n=4$, partial results are contained in [K3].

The aim of this work is to estimate the constant ε_{5} and to derive some global properties such as new lower volume bounds for hyperbolic 5-manifolds M (cf. Section 2 and Section 3). We show that for $\varepsilon \leq \sqrt{3} / 9 \pi$ there is a decomposition of M according to (0.1). Moreover, we prove the universal bound $\operatorname{vol}_{5}(M)>0.000083$.

To this end, we analyse the thin part of M and construct embedded tubes around simple closed geodesics of length $l \leq \sqrt{3} / 8 \pi$ of radius given by (cf. Section 2.1)

$$
\begin{equation*}
\cosh (2 r)=\frac{1-3 k}{k}, \quad \text { where } k=\frac{2 \pi l}{\sqrt{3}} . \tag{0.2}
\end{equation*}
$$

Received by the editors February 27, 2002; revised July 2, 2002.
Partially supported by Schweizerischer Nationalfonds No. 20-61379.00.
AMS subject classification: 53C22, 53C25, 57N16, 57S30, 51N30, 20G20, 22E40.
(c)Canadian Mathematical Society 2003.

The tubes around distinct closed geodesics of lengths $\leq \sqrt{3} / 9 \pi \simeq 0.0612$ are pairwise disjoint. In the non-compact case, they are also distinct from the canonical cusps associated to parabolic elements in the fundamental group of M.

Our considerations are based upon the identification of hyperbolic space H^{5} and its boundary through quaternions such that $\operatorname{Iso}^{+}\left(H^{5}\right)$ equals the group $\mathrm{PS}_{\Delta} \mathrm{L}(2 ; \mathbb{H})$ of quaternionic 2×2-matrices with Dieudonné determinant $\Delta=1$ as described by $[\mathrm{H}]$ and [Wil] (cf. Section 1.2). In this context, we characterise the isolation of the identity in $\mathrm{PS}_{\Delta} \mathrm{L}(2 ; \mathrm{HI})$ (cf. Section 1.3). The strategies involved are standard and go back to [J], [Be] and [Wat].

The explicit tube construction (0.2) implies comparison results between injectivity radius, diameter and volume of compact hyperbolic 5-manifolds M (cf. Section 3.2). For example, we prove that the injectivity radius $i(M)$ of M satisfies $i(M) \geq$ const $\cdot \operatorname{vol}_{5}(M)^{-1}$ improving results of P. Buser [Bul] and A. Reznikov [Re].

In [CW, Section 9], C. Cao and P. Waterman constructed tubes around closed geodesics in hyperbolic n-manifolds M for $n \geq 2$ and give a lower bound for the in-radius of M by viewing isometries of hyperbolic n-space as Clifford matrices of pseudo-determinant 1. By different methods, Buser [Bu1, Section 4] obtained analogous results for compact hyperbolic manifolds of dimensions >2. Both contributions provide clearly weaker bounds than ours when specialized to $n=5$. As an illustration, the in-radius $r(M)$ measuring the radius of a largest embeddable ball in M is bounded from below by $1 / 65536$ according to [Bu1, Theorem 4.11] and by $1 / 544$ according to [CW, Theorem 9.8] while we obtained the bound 1/30 (cf. Lemma 5).

Acknowledgment The work was completed during a short stay at the Max-PlanckInstitute for Mathematics in Bonn. The author expresses her thanks to the Director, Professor G. Harder, and to Professor F. Hirzebruch for the invitation and the hospitality.

1 The Quaternion Formalism for Isometries of H^{5}

1.1 Loxodromic Isometries of Hyperbolic n-Space

Let $\hat{E}^{n}:=E^{n} \cup\{\infty\}$. A Möbius transformation of \hat{E}^{n} is a finite composition of reflections in spheres or hyperplanes of \hat{E}^{n} and preserves cross ratios

$$
[x, y ; u, v]=\frac{|x-u| \cdot|y-v|}{|x-y| \cdot|u-v|}
$$

for distinct points $x, y, u, v \in \hat{E}^{n}$. The group of all Möbius transformations of \hat{E}^{n} is denoted by $M\left(\hat{E}^{n}\right)$, or by $M(n)$ for short.

Consider hyperbolic space H^{n} in the upper half space E_{+}^{n}, that is,

$$
\begin{equation*}
H^{n}=\left(E_{+}^{n}, d s^{2}=\frac{1}{x_{n}^{2}}\left(d x_{1}^{2}+\cdots+d x_{n}^{2}\right)\right) \tag{1.1}
\end{equation*}
$$

with distance between two points $x, y \in H^{n}$ given by

$$
\begin{equation*}
\cosh d(x, y)=1+\frac{|x-y|^{2}}{2 x_{n} y_{n}} \tag{1.2}
\end{equation*}
$$

By Poincaré extension, every Möbius transformation $T \in M(n-1)$ gives rise to an element in $M\left(E_{+}^{n}\right)$ again denoted by T. In fact, $T \in \operatorname{Iso}\left(H^{n}\right)$ since it leaves invariant the hyperbolic metric (1.2).

According to the fixed point behavior a Möbius transformation is either elliptic, parabolic, or loxodromic. For example, if $T \in M\left(E_{+}^{n}\right)$ has precisely one, resp. two, fixed points in \hat{E}^{n-1} and none in E_{+}^{n}, then T is parabolic, resp. loxodromic.

Let $T \in \operatorname{Iso}\left(H^{n}\right)$ be a loxodromic element, and denote by $q_{1}, q_{2} \in \partial H^{n}$ its two different fixed points. They determine a unique geodesic $a_{T} \subset H^{n}$, the axis of T, along which T acts as a translation. For $p \in a_{T}, d(p, T(p))=: \tau$ is constant and called the translational length of T. Besides, T consists of a rotational part R such that-after a suitable conjugation-we obtain the representation

$$
\begin{equation*}
T=r A, \quad \text { where } r=e^{\tau}, A \in O\left(E^{n-1}\right) \tag{1.3}
\end{equation*}
$$

For later purpose, we prove the following very useful property of T (for $n=4$, see [K3, Lemma 1.3]).

0

Figure 1

Proposition 1 Let $T \in \operatorname{Iso}\left(H^{n}\right)$ be a loxodromic element with axis a_{T}, with rotational part R and with translational length τ. Let $p \in H^{n}$ be such that $p \notin a_{T}$, and assume that the foot of the perpendicular from p to a_{T} is \hat{p}. Denote by $\omega=\omega(p)$ the angle at \hat{p} in the triangle $(p, \hat{p}, R(p))$. Let $d=d(p, T(p))$ and $\delta=d\left(p, a_{T}\right)$. Then,

$$
\begin{equation*}
\cosh d=\cosh \tau+\sinh ^{2} \delta \cdot(\cosh \tau-\cos \omega) \tag{1.4}
\end{equation*}
$$

Proof Without loss of generality, we may assume that $a_{T}=(0, \infty)$. Then, $\hat{p}=|p| e_{n}$. Let $a:=d(p, R(p)), b:=d(R(p), T(p))$, and $c:=d(\hat{p}, T(p))$ (cf. Figure 1).

Hyperbolic trigonometry yields with respect to the triangle $(p, \hat{p}, R(p))$

$$
\begin{equation*}
\cosh a=\cosh ^{2} \delta-\sinh ^{2} \delta \cos \omega=1+\sinh ^{2} \delta(1-\cos \omega) \tag{1.5}
\end{equation*}
$$

and with respect to the Saccheri quadrangle $(\hat{p}, T(\hat{p}), T(p), R(p))$

$$
\begin{equation*}
\cosh b=\cosh \tau \cosh ^{2} \delta-\sinh ^{2} \delta \tag{1.6}
\end{equation*}
$$

and finally with respect to the right-angled triangle $(\hat{p}, T(\hat{p}), T(p))$

$$
\begin{equation*}
\cosh c=\cosh \tau \cosh \delta \tag{1.7}
\end{equation*}
$$

Next, consider the hyperbolic tetrahedron $\Delta=\Delta(\hat{p}, p, R(p), T(p))$. The dihedral angle formed by the facets opposite to p and $T(p)$, respectively, and attached at the edge $(\hat{p}, R(p))$ equals $\pi / 2$. Denote by $\Delta_{R(p)}$ the spherical vertex figure of Δ at the vertex $R(p) . \Delta_{R(p)}$ is a right-angled triangle with hypotenuse β, say. Furthermore, let u (resp. v) be the edge of $\Delta_{R(p)}$ in the facet opposite to $p($ resp. $T(p))$ in Δ. Then, $\cos \beta=\cos u \cos v$.

By hyperbolic trigonometry, we deduce

$$
\begin{equation*}
\cosh d=\cosh a \cosh b-\sinh a \sinh b \cos \beta \tag{1.8}
\end{equation*}
$$

as well as

$$
\begin{align*}
& \cosh c=\cosh b \cosh \delta-\sinh b \sinh \delta \cos u \\
& \cosh \delta=\cosh a \cosh \delta-\sinh a \sinh \delta \cos v \tag{1.9}
\end{align*}
$$

Hence, by (1.7) and (1.9),

$$
\begin{aligned}
\cos \beta & =\cos u \cos v=\frac{\cosh b \cosh \delta-\cosh \tau \cosh \delta}{\sinh b \sinh \delta} \cdot \frac{\cosh a \cosh \delta-\cosh \delta}{\sinh a \sinh \delta} \\
& =\operatorname{coth}^{2} \delta \cdot \frac{\cosh b-\cosh \tau}{\sinh b} \cdot \frac{\cosh a-1}{\sinh a}
\end{aligned}
$$

By using (1.5), (1.6) and (1.8), we obtain

$$
\begin{aligned}
\cosh d= & \cosh a \cosh b-\operatorname{coth}^{2} \delta(\cosh b-\cosh \tau)(\cosh a-1) \\
= & \cosh a \cosh b\left(1-\operatorname{coth}^{2} \delta\right)+\operatorname{coth}^{2} \delta \cdot[\cosh b+(\cosh a-1) \cosh \tau] \\
= & -\frac{1}{\sinh ^{2} \delta}\left[\cosh ^{2} \delta-\sinh ^{2} \delta \cos \omega\right] \cdot \cosh b \\
& \quad+\operatorname{coth}^{2} \delta \cdot\left[\cosh b+\sinh ^{2} \delta(1-\cos \omega) \cosh \tau\right] \\
= & \cosh b \cos \omega+\cosh ^{2} \delta \cosh \tau(1-\cos \omega) \\
= & \cosh ^{2} \delta \cosh \tau \cos \omega-\sinh ^{2} \delta \cos \omega+\cosh ^{2} \delta \cosh \tau(1-\cos \omega) \\
= & \cosh \tau+\sinh ^{2} \delta(\cosh \tau-\cos \omega)
\end{aligned}
$$

Remark Let $0 \leq \alpha_{0}, \ldots, \alpha_{r}<2 \pi, 0 \leq r<\left[\frac{n}{2}\right]$, with $\cos \alpha_{0} \geq \cdots \geq \cos \alpha_{r}$ denote the rotation angles of the loxodromic element $T \in \operatorname{Iso}\left(H^{n}\right)$. Then,

$$
\cos \alpha_{0} \geq \cos \omega \geq \cos \alpha_{r}
$$

To see this, pass to the normal form of the orthogonal part $R \in O(n-1)$ of T and express $p=\left(p_{0}, \ldots, p_{n-2}, t\right) \in H^{n}$ with respect to the new basis in $E^{n-1}=\{t=0\}$. Then, project the triangle $(p, \hat{p}, R(p))$ orthogonally down to $\{t=0\}$ in order to compute

$$
\begin{aligned}
\cos \omega & =\frac{\left(p_{0}^{2}+p_{1}^{2}\right) \cos \alpha_{0}+\cdots+\left(p_{2 r}^{2}+p_{2 r+1}^{2}\right) \cos \alpha_{r}+p_{2 r+2}^{2}+\cdots+p_{n-2}^{2}}{p_{0}^{2}+\cdots+p_{n-2}^{2}} \\
& \geq \frac{\left(p_{0}^{2}+\cdots+p_{n-2}^{2}\right) \cos \alpha_{r}}{p_{0}^{2}+\cdots+p_{n-2}^{2}}=\cos \alpha_{r} .
\end{aligned}
$$

1.2 Quaternions and $\mathrm{Iso}^{+}\left(H^{5}\right)$

Consider the quaternion algebra $\mathbb{H I}=\left\{q=q_{0}+q_{1} i+q_{2} j+q_{3} k \mid q_{l} \in \mathbb{R}\right\}$ with generators i, j, where $k=i j$ as usual. \mathbb{H} is a Euclidean vector space with basis $1, i, j, k$. Decompose a quaternion $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$ into scalar part $S q:=q_{0}$ and vector part $V q:=q_{1} i+q_{2} j+q_{3} k$ so that $q=S q+V q$. The (quaternionic) conjugate of q is given by $\bar{q}=S q-V q$ and satisfies $|q|^{2}=q \bar{q}=\bar{q} q$. For a unit quaternion a, we can write

$$
\begin{equation*}
a=\exp (I \alpha):=\cos \alpha+I \sin \alpha \quad \text { for some } \alpha \in[0,2 \pi) \tag{1.10}
\end{equation*}
$$

where I is a pure unit quaternion, i.e., the scalar part of I vanishes and therefore $I=-\bar{I}$, or equivalently $I^{2}=-1$. Furthermore, write $q=: u+v j$ with $u=q_{0}+q_{1} i$, $v=q_{2}+q_{3} i \in \mathbb{C}$. Then, there is the correspondence

$$
q=\left(q_{0}+q_{1} i\right)+\left(q_{2}+q_{3} i\right) j=u+v j \sim Q:=\left(\begin{array}{cc}
u & v \tag{1.11}\\
-\bar{v} & \bar{u}
\end{array}\right) \in \operatorname{Mat}(2 ;(\mathbb{C})
$$

Consider a matrix $M \in \operatorname{Mat}(2 ; \mathbb{H})$ and associate to M the complex block matrix

$$
\mathcal{M}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Mat}(4 ;(\mathbb{C})
$$

according to (1.11). The trace $\operatorname{Tr} M$ of M is defined by

$$
\operatorname{Tr} M:=\frac{1}{2} \operatorname{tr} \mathcal{M}=S(a+d) \quad \text { for } M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and is obviously conjugacy invariant. In order to establish a determinant of M we adopt the point of view of J. Dieudonné (cf. [D], [As]) and consider again \mathcal{M}. By
exploiting the correspondence (1.11), one calculates (cf. [Wil, Section 3])

$$
\begin{align*}
& \operatorname{det} \mathcal{M}=\left|l_{i j}\right|^{2}=\left|r_{i j}\right|^{2}, \quad 1 \leq i, j \leq 2 \text {, where } \tag{1.12}\\
& l_{11}=d a-d b d^{-1} c, \quad l_{12}=b d b^{-1} a-b c, \\
& l_{21}=c a c^{-1} d-c b, \quad l_{22}=a d-a c a^{-1} b ; \\
& r_{11}=a d-b d^{-1} c d, \quad r_{12}=d b^{-1} a b-c b, \tag{1.13}\\
& r_{21}=a c^{-1} d c-b c, \quad r_{22}=d a-c a^{-1} b a .
\end{align*}
$$

In particular, $\operatorname{det} \mathcal{M} \geq 0$, and

$$
\begin{equation*}
\operatorname{det} \mathcal{M}=\left|a d-a c a^{-1} b\right|^{2}=|a d|^{2}+|b c|^{2}-2 S(a \bar{c} d \bar{b}) \tag{1.14}
\end{equation*}
$$

The quantity

$$
\begin{equation*}
\Delta=\Delta(M):={ }_{+} \sqrt{\operatorname{det} \mathcal{M}} \tag{1.15}
\end{equation*}
$$

is called the Dieudonné determinant of M.
Proposition 2 [Wil, Theorem 1] Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Mat}(2 ; H I)$ be such that $\Delta(M) \neq 0$. Then, M is invertible, and

$$
M^{-1}=\left(\begin{array}{cc}
l_{11}^{-1} d & -l_{12}^{-1} b \\
-l_{21}^{-1} c & l_{22}^{-1} a
\end{array}\right)=\left(\begin{array}{cc}
d r_{11}^{-1} & -b r_{12}^{-1} \\
-c r_{21}^{-1} & a r_{22}^{-1}
\end{array}\right)
$$

In order to abbreviate, we write

$$
\left(\begin{array}{cc}
\sim{ }^{\sim} d & \sim_{b} \tag{1.16}\\
\sim_{c} & \sim_{a}
\end{array}\right):=\left(\begin{array}{ll}
l_{11}^{-1} d & l_{12}^{-1} b \\
l_{21}^{-1} c & l_{22}^{-1} a
\end{array}\right), \quad\left(\begin{array}{ll}
d_{\sim} & b_{\sim} \\
c_{\sim} & a_{\sim}
\end{array}\right):=\left(\begin{array}{ll}
d r_{11}^{-1} & b r_{12}^{-1} \\
c r_{21}^{-1} & a r_{22}^{-1}
\end{array}\right)
$$

By coefficient comparison in $M M^{-1}=I=M^{-1} M$, one obtains the following useful identities.
Lemma 1 Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{Mat}(2 ; H I)$ be invertible. Then,
(i) $\quad a d_{\sim}-b c_{\sim}=d a_{\sim}-c b_{\sim}=1 ; \quad \sim d a-{ }^{\sim} b c={ }^{\sim} a d-{ }^{\sim} c b=1$.
(ii) $\quad a^{\sim} d-b^{\sim} c=d^{\sim} a-c^{\sim} b=1 ; \quad d_{\sim} a-b_{\sim} c=a_{\sim} d-c_{\sim} b=1$.
(iii) $a b_{\sim}=b a_{\sim}, \quad c d_{\sim}=d c_{\sim} ; \quad \sim a c={ }^{\sim} c a, \quad \sim b d=\sim d b$.
(iv) $\quad a^{\sim} b=b^{\sim} a, \quad c^{\sim} d=d^{\sim} c ; \quad a_{\sim} c=c_{\sim} a, \quad b_{\sim} d=d_{\sim} b$.

By Lemma 1, the group $S_{\Delta} L(2 ; H)$ of all quaternionic 2×2-matrices with Dieudonné determinant $\Delta=1$ can be identified according to ${ }^{1}$

$$
S_{\Delta} L(2 ; H \mathbb{H})=\left\{\left.T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}(2 ; \mathbb{H}) \right\rvert\, a d_{\sim}-b c_{\sim}=1\right\}
$$

[^0]There is a close relationship to the group $\operatorname{Iso}^{+}\left(H^{5}\right)$ of orientation preserving isometries of H^{5} in the following way ($c f .[\mathrm{H}]$, [Wil]). Take the hyperbolic 5-space H^{5} with its canonical orientation and parametrize the space with the aid of $\mathbb{H I}$ by writing $E_{+}^{5}=\mathbb{H} \times \mathbb{R}_{+}$so that $\partial H^{n}=\mathbb{H} I\left(c f\right.$. (1.1)). The group $S_{\Delta} L(2 ; \mathbb{H})$ acts on $\hat{H} I$ by linear fractional transformations

$$
T(x)=(a x+b)(c x+d)^{-1}
$$

with $T(\infty)=\infty$ for $c=0$, and with $T(\infty)=a c^{-1}$ and $T\left(-c^{-1} d\right)=\infty$ for $c \neq 0$. By passing to the projectivized group

$$
\mathrm{PS}_{\Delta} \mathrm{L}(2 ; \mathbb{H}):=S_{\Delta} L(2 ; H \mathbb{H}) /\{ \pm E\}
$$

one gets the isomorphism

$$
\mathrm{PS}_{\Delta} \mathrm{L}(2 ; \mathbb{H}) \simeq \operatorname{Iso}^{+}\left(H^{5}\right)
$$

In the following, we do not distinguish in the notation between elements of these groups.

Let $T \in \operatorname{Iso}^{+}\left(H^{5}\right)$ be a loxodromic element with rotational part R (cf. (1.3)). Since T is orientation preserving, R is the Poincaré extension of the composition of either one or two rotations in planes of \mathbb{H}. In fact, $R \in \mathrm{SO}(4)$ is given by (cf. [C2, (6.78)], [C1], [Po])

$$
R(x)=a x b \quad \text { with } a, b \in \mathbb{H},|a|=|b|=1
$$

In particular, the rotation through the angles $\pm \alpha+\beta \in[0,2 \pi), 0 \leq \alpha \leq \beta<\pi$, about two completely orthogonal planes is given by

$$
\left(\begin{array}{cc}
\exp (\alpha I) & 0 \tag{1.17}\\
0 & \exp (-\beta J)
\end{array}\right)
$$

for some unit pure elements $I, J \in \mathbb{H}$. Finally, consider a parabolic element $X \in$ Iso $^{+}\left(H^{5}\right)$ which acts as a translation. Modulo conjugation in $\mathrm{PS}_{\Delta} \mathrm{L}(2 ; H), X$ can be written in the form

$$
X=\left(\begin{array}{cc}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { with } \mu \in \mathbb{H} \cong E^{4}
$$

1.3 Isolation of the Identity in $\mathrm{PS}_{\Delta} \mathrm{L}(2, \mathrm{H})$

Consider a non-elementary discrete two generator subgroup $\langle S, T\rangle$ of $\operatorname{PSL}(2, \mathbb{C})$. By Jørgensen's trace inequality [J],

$$
\begin{equation*}
\left|\operatorname{tr}^{2} T-4\right|+|\operatorname{tr}[S, T]-2| \geq 1 \tag{1.18}
\end{equation*}
$$

where $[S, T]=S T S^{-1} T^{-1}$. By specializing, for example to an element

$$
T=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) \quad \text { with }|\lambda| \neq 1
$$

the inequality (1.18) takes the form

$$
\begin{equation*}
\left|\lambda-\lambda^{-1}\right|^{2} \cdot(1+|b c|) \geq 1 \tag{1.19}
\end{equation*}
$$

By writing $\lambda=: e^{\frac{1}{2}(\tau+i \alpha)}$, (1.19) turns into

$$
\begin{equation*}
2(\cosh \tau-\cos \alpha) \cdot(1+|b c|) \geq 1 \tag{1.20}
\end{equation*}
$$

Formulas avoiding trace such as (1.19) and (1.20) allow generalizations for $\operatorname{Iso}^{+}\left(H^{n}\right)$ of geometrical relevance. In [Wat], P. Waterman presents various versions of (1.19) for the group $\operatorname{PSL}\left(2 ; C_{n-2}\right)$ of Clifford matrices associated to the Clifford algebra C_{n-2} with $n-2$ generators.

Here, we derive a formula analogous to (1.20) for $\mathrm{PS}_{\Delta} \mathrm{L}(2 ; \mathbb{H I}) \simeq \operatorname{Iso}^{+}\left(H^{5}\right)$ and for an element

$$
T=\left(\begin{array}{cc}
e^{\tau / 2} \exp (I \alpha) & 0 \\
0 & e^{-\tau / 2} \exp (-J \beta)
\end{array}\right)
$$

with rotational part according to (1.17) by adapting suitably standard methods (cf. [Be], [Wat] and [K3]).

Proposition 3 Let

$$
S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), T=\left(\begin{array}{cc}
e^{\tau / 2} \exp (I \alpha) & 0 \\
0 & e^{-\tau / 2} \exp (-J \beta)
\end{array}\right) \in \mathrm{PS}_{\Delta} \mathrm{L}(2 ; H \mathrm{H})
$$

be loxodromic elements generating a non-elementary discrete subgroup. Then,

$$
\begin{equation*}
2(\cosh \tau-\cos (\alpha+\beta)) \cdot(1+|b c|) \geq 1 \tag{1.21}
\end{equation*}
$$

Proof We follow the strategy of [Wat, Theorem I]. Suppose that

$$
\begin{equation*}
\mu:=2(\cosh \tau-\cos (\alpha+\beta)) \cdot(1+|b c|)<1 \tag{1.22}
\end{equation*}
$$

and write $\rho:=e^{\tau / 2}$ for short, as well as

$$
T=:\left(\begin{array}{cc}
A & 0 \\
0 & B^{-1}
\end{array}\right)
$$

Consider the Shimizu-Leutbecher sequence defined inductively by

$$
\begin{gathered}
S_{0}=\left(\begin{array}{ll}
a_{0} & b_{0} \\
c_{0} & d_{0}
\end{array}\right):=S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
S_{n+1}=\left(\begin{array}{ll}
a_{n+1} & b_{n+1} \\
c_{n+1} & d_{n+1}
\end{array}\right):=S_{n} T S_{n}^{-1} \quad \text { for } n \geq 0
\end{gathered}
$$

By Section 1.2, Proposition 2 and (1.16), one computes

$$
\begin{aligned}
S_{n+1} & =\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & B^{-1}
\end{array}\right)\left(\begin{array}{cc}
\sim d_{n} & -\sim b_{n} \\
-^{\sim} c_{n} & \sim a_{n}
\end{array}\right) \\
& =\left(\begin{array}{ll}
a_{n} A^{\sim} d_{n}-b_{n} B^{-1 \sim} c_{n} & -a_{n} A^{\sim} b_{n}+b_{n} B^{-1 \sim} a_{n} \\
c_{n} A^{\sim} d_{n}-d_{n} B^{-1 \sim} c_{n} & -c_{n} A^{\sim} b_{n}+d_{n} B^{-1 \sim} a_{n}
\end{array}\right)
\end{aligned}
$$

Since $\Delta\left(S_{n}\right)=1$, we deduce that $\left|a_{n}\right|=\left|a_{n \sim}\right|=\left|\sim a_{n}\right|$ and so forth. Therefore, (1.23)

$$
\begin{aligned}
\left|b_{n+1} c_{n+1}\right| & =\left|\left(-a_{n} A^{\sim} b_{n}+b_{n} B^{-1 \sim} a_{n}\right) \cdot\left(c_{n} A^{\sim} d_{n}-d_{n} B^{-1 \sim} c_{n}\right)\right| \\
& =\left|a_{n} b_{n} c_{n} d_{n}\right| \cdot\left|A-a_{n}^{-1} b_{n} B^{-1 \sim} a_{n}{ }^{\sim} b_{n}^{-1}\right| \cdot\left|A-c_{n}^{-1} d_{n} B^{-1 \sim} c_{n}{ }^{\sim} d_{n}^{-1}\right| .
\end{aligned}
$$

For the middle factor in (1.23), for example, one gets the estimate (cf. Section 1.2)

$$
\begin{aligned}
\left|A-a_{n}^{-1} b_{n} B^{-1 \sim} a_{n}{ }^{\sim} b_{n}^{-1}\right|= & \mid S A+V A-\left(S B^{-1}\right) \cdot a_{n}^{-1} b_{n}{ }^{\sim} a_{n}{ }^{\sim} b_{n}^{-1} \\
& -a_{n}^{-1} b_{n}\left(V B^{-1}\right)^{\sim} a_{n}{ }^{\sim} b_{n}^{-1} \mid \\
= & \left|S\left(A-B^{-1}\right)+V A-a_{n}^{-1} b_{n}\left(V B^{-1}\right)^{\sim} a_{n}{ }^{\sim} b_{n}^{-1}\right| \\
= & \left\{S\left(A-B^{-1}\right)^{2}+\left|V A-a_{n}^{-1} b_{n}\left(V B^{-1}\right)^{\sim} a_{n}{ }^{\sim} b_{n}^{-1}\right|^{2}\right\}^{1 / 2} \\
\leq & \left\{\left(\rho \cos \alpha-\rho^{-1} \cos \beta\right)^{2}+\left(|V A|+\left|V B^{-1}\right|\right)^{2}\right\}^{1 / 2} \\
= & \left\{\left(\rho \cos \alpha-\rho^{-1} \cos \beta\right)^{2}+\left(\rho|\sin \alpha|+\rho^{-1}|\sin \beta|\right)^{2}\right\}^{1 / 2} \\
= & \left\{\rho^{2}+\rho^{-2}-2 c(\alpha, \beta)\right\}^{1 / 2} \\
= & \{2(\cosh \tau-c(\alpha, \beta))\}^{1 / 2},
\end{aligned}
$$

where we used the notation

$$
c(\alpha, \beta):= \begin{cases}\cos (\alpha+\beta) & \text { if } \alpha, \beta \in[0, \pi] \text { or } \alpha, \beta \in[\pi, 2 \pi) \\ \cos (\alpha-\beta) & \text { else }\end{cases}
$$

Hence, $c(0, \beta)=\cos \beta$, and by (1.17), $c(\alpha, \beta) \geq \cos (\alpha+\beta)$. The same estimate results for the third factor in (1.23). Therefore,

$$
\left|b_{n+1} c_{n+1}\right| \leq\left|a_{n} b_{n} c_{n} d_{n}\right| \cdot\{2(\cosh \tau-\cos (\alpha+\beta))\}
$$

Since $\left|a_{n} d_{n}\right| \leq 1+\left|b_{n} c_{n}\right|$ by Lemma 1(i), we obtain by induction

$$
\left|b_{n+1} c_{n+1}\right| \leq \mu^{n}|b c|
$$

and therefore, by (1.22), $b_{n} c_{n \sim} \rightarrow 0$ and $a_{n} d_{n \sim} \rightarrow 1$. Since

$$
\left|a_{n+1}\right|=\left|a_{n} A^{\sim} d_{n}-b_{n} B^{-1 \sim} c_{n}\right|, \quad\left|d_{n+1}\right|=\left|-c_{n} A^{\sim} b_{n}-d_{n} B^{-1 \sim} a_{n}\right|
$$

we deduce that $\left|a_{n}\right| \rightarrow \rho$ and $\left|d_{n}\right| \rightarrow \rho^{-1}$. Moreover, we get the estimate

$$
\left|b_{n+1}\right| \leq\left|a_{n} b_{n}\right| \cdot\{2(\cosh \tau-\cos (\alpha+\beta))\}
$$

and by induction

$$
\frac{\left|b_{n}\right|}{\rho^{n}}, \quad\left|c_{n}\right| \cdot \rho^{n} \rightarrow 0
$$

Next, consider the elements

$$
\begin{aligned}
T_{n}: & =T^{-n} S_{2 n} T^{n}=\left(\begin{array}{cc}
A^{-n} & 0 \\
0 & B^{n}
\end{array}\right)\left(\begin{array}{ll}
a_{2 n} & b_{2 n} \\
c_{2 n} & d_{2 n}
\end{array}\right)\left(\begin{array}{cc}
A^{n} & 0 \\
0 & B^{-n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{-n} a_{2 n} A^{n} & A^{-n} b_{2 n} B^{-n} \\
B^{n} c_{2 n} A^{n} & B^{n} d_{2 n} B^{-n}
\end{array}\right) \\
& =:\left(\begin{array}{ll}
\alpha_{n} & \beta_{n} \\
\gamma_{n} & \delta_{n}
\end{array}\right) \quad \text { for } n \geq 0
\end{aligned}
$$

The sequence $\left\{T_{n}\right\}_{n \geq 0}$ has a convergent subsequence since

$$
\begin{aligned}
& \left|\alpha_{n}\right|=\left|a_{2 n}\right| \rightarrow \rho \\
& \left|\delta_{n}\right|=\left|d_{2 n}\right| \rightarrow \rho^{-1} \\
& \left|\beta_{n}\right|=\frac{\left|b_{2 n}\right|}{\rho^{2 n}} \rightarrow 0 \\
& \left|\gamma_{n}\right|=\left|c_{2 n}\right| \cdot \rho^{2 n} \rightarrow 0
\end{aligned}
$$

If we can show that the elements T_{n} are all distinct, then the group $\langle S, T\rangle$ is not discrete which yields the desired contradiction.

Suppose on the contrary that the sequence $\left\{T_{n}\right\}_{n \geq 0}$ stabilises, that is, $\beta_{n}=\gamma_{n}=$ 0 . Then, $b_{2 n}=c_{2 n}=0$. Let T_{n+1} be the first element such that $b_{n+1}=c_{n+1}=0$. Since $\rho \neq 1,(1.23)$ yields $a_{n} b_{n}=0$ and $c_{n} d_{n}=0$. But $\operatorname{det} S_{n}=\left|a_{n} d_{n}-a_{n} c_{n} a_{n}^{-1} b_{n}\right|=1$, which leaves only two possibilities. In the first case, $b_{n}=c_{n}=0$ which is impossible. In the second case, $a_{n}=d_{n}=0$. For $n>0,0=\operatorname{Tr} S_{n}=S\left(a_{n}+d_{n}\right)=S\left(A+B^{-1}\right)=$ $\rho \cos \alpha+\rho^{-1} \cos \beta$. It is easy to see that this contradicts $2(\cosh \tau-\cos (\alpha+\beta))<1$ given by the assumption (1.22). Therefore, $n=0$ and $a=d=0$. This is impossible since the group $\langle S, T\rangle$ is supposed to be non-elementary.
Proposition 4 Let $S=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), T=\left(\begin{array}{cc}A & 0 \\ 0 & B^{-1}\end{array}\right) \in \mathrm{PS}_{\Delta} \mathrm{L}(2 ; \mathrm{H})$ be loxodromic elements such that $2 r:=\operatorname{dist}\left(a_{T}, a_{S T S^{-1}}\right)>0$. Then,

$$
\begin{equation*}
\cosh r \geq|b c|^{1 / 2} \tag{1.24}
\end{equation*}
$$

Proof Denote by p the common perpendicular of the axes $a_{T}, a_{S T S^{-1}}$ whose end points equal $0, \infty, S(0), S(\infty)$ in ∂H^{5}. Choose a Möbius transformation

$$
V=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathrm{PS}_{\Delta} \mathrm{L}(2, \mathbb{H})
$$

such that $0, \infty, S(0), S(\infty)$ are mapped to $-w, w,-1,1$ with $|w|>1$, say. That is, p is mapped to the positive t-axis, and $2 r=\operatorname{dist}\left(a_{T}, a_{S T S^{-1}}\right)=\log |w|$. For the cross ratios, we obtain

$$
\frac{|1-w|^{2}}{4|w|}=[-1,1,-w, w]=\left[b d^{-1}, a c^{-1}, 0, \infty\right]=\frac{\left|b d^{-1}\right|}{\left|b d^{-1}-a c^{-1}\right|}
$$

By (1.12) and (1.13), this means that

$$
\frac{|1-w|^{2}}{4|w|}=|b c|
$$

By (1.10), we can write $w=\rho \exp (I \omega)$ in E^{4} for some $\omega \in[0,2 \pi)$ and a unit pure element $I \in \mathbb{H}$. Hence, $2 r=\log \rho$. Putting $z:=(2 r+I \omega) / 2$, we deduce

$$
w=e^{2 r} \exp (I \omega)=: \exp (2 r+I \omega)=\exp (2 z)
$$

Next, define

$$
\sinh z:=\frac{1}{2}\{\exp (z)-\exp (-z)\}
$$

It follows that

$$
|\sinh z|^{2}=\frac{1}{4}\left|(1-w)^{2} w^{-1}\right|=\frac{1}{2}(\cosh (2 r)-\cos \omega) \leq \frac{1}{2}(\cosh (2 r)+1)
$$

Thus,

$$
\cosh ^{2} r=\frac{1}{2}(\cosh (2 r)+1) \geq|\sinh z|^{2}=|b c|
$$

Proposition 5 Let $S=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $T=\left(\begin{array}{cc}1 & \mu \\ 0 & 1\end{array}\right) \in \mathrm{PS}_{\Delta} \mathrm{L}(2 ; \mathrm{H})$ with $\mu \in E^{4}$ generate a non-elementary discrete subgroup. Then,

$$
\begin{equation*}
|c| \cdot|\mu| \geq 1 \tag{1.25}
\end{equation*}
$$

The proof is a slight modification of the proof of [K3, Theorem 1.2] by using Lemma 1.

2 A Thick and Thin Decomposition for Hyperbolic 5-manifolds

Let M denote an oriented complete hyperbolic 5-manifold of finite volume which consequently will be called hyperbolic 5-manifold for short. That is, M is a CliffordKlein space form H^{5} / Γ where $\Gamma<\mathrm{PS}_{\Delta} L(2, \mathrm{HI})$ is discrete, torsion-free and cofinite. In particular, Γ is non-elementary. Denote by $i_{p}(M)$ the injectivity radius of M at p. By the Margulis Lemma for discrete groups of hyperbolic isometries (cf. [BGS, Section 9-10], [T], [R1]), there is a universal positive constant ε such that there is a thick and thin decomposition

$$
\begin{equation*}
M=M_{\leq \varepsilon} \cup M_{>\varepsilon} \tag{2.1}
\end{equation*}
$$

of M as follows. The thick part $M_{>\varepsilon}=\left\{p \in M \left\lvert\, i_{p}(M)>\frac{\varepsilon}{2}\right.\right\}$ of M is compact.
The thin part $M_{\leq \varepsilon}=\left\{p \in M \left\lvert\, i_{p}(M) \leq \frac{\varepsilon}{2}\right.\right\}$ in (2.1) consists of connected components of the following types. The bounded components are neighborhoods N of simple (i.e. with no self-intersection) closed geodesics g through $p \in M_{\leq \varepsilon}$ in M of length $l(g) \leq \varepsilon$ homeomorphic to ball bundles over the circle. In fact, N is a quotient U / Γ_{U} by an infinite cyclic group $\Gamma_{U}<\Gamma$ of loxodromic type with common axis projecting to g and leaving precisely invariant some component $U \subset H^{5}$ lying above N. The unbounded components are cusp neighborhoods homeomorphic to products of compact flat manifolds with a real half line. Each cusp neighborhood can be written in the form $C=C_{q}=V_{q} / \Gamma_{q}$ with $\Gamma_{q}<\Gamma$ of parabolic type fixing some point $q \in \partial H^{5}$ and leaving precisely invariant some horoball $V_{q} \subset H^{5}$ based at q.

In fact, to each subgroup $\Gamma_{q}<\Gamma$ of parabolic type corresponds a particular extremal horoball B_{q} such that B_{q} / Γ_{q} embeds in M. We describe it for the case $q=\infty$, only. Denote by $\mu \neq 0$ a shortest vector in the translational lattice $\Lambda<\Gamma_{\infty}$ here identified with E^{4}. Then,

$$
B(\mu)=B_{\infty}(\mu):=\left\{x \in H^{5}\left|x_{5}>|\mu|\right\}\right.
$$

is called the canonical horoball of $\Gamma_{\infty} . B(\mu)$ is precisely invariant with respect to Γ_{∞} and gives rise to a cusp neighborhood in M. Moreover, canonical horoballs associated to inequivalent parabolic transformations in Γ are disjoint. The proofs are slight variations of those of [K3, Lemma 2.7] and [K3, Lemma 2.8].

2.1 The Thin Part of a Hyperbolic 5-manifold

In the following, we construct neighborhoods of sufficiently small simple closed geodesics in M such that they are disjoint from canonical cusp neighborhoods. If g is a simple closed geodesic in M, denote by r_{g} the injectivity radius for the exponential map of the normal bundle of g into M. For $r \leq r_{g}$, the set $T_{g}(r)=\{p \in M \mid$ $\operatorname{dist}(p, g)<r\}$ is called a tube around g of radius r. By making use of the description $\mathrm{Iso}^{+}\left(H^{5}\right) \simeq \mathrm{PS}_{\Delta} L(2, \mathrm{HI})$, we construct tubes as follows.
Proposition 6 Let $l_{0}=\frac{\sqrt{3}}{8 \pi} \simeq 0.068916$. Then, each simple closed geodesic g in M of length $l(g) \leq l_{0}$ has a tube $T_{g}(r)$ of radius r satisfying

$$
\begin{equation*}
\cosh (2 r)=\frac{1-3 k}{k}, \quad \text { where } k=\frac{2 \pi l(g)}{\sqrt{3}} \tag{2.2}
\end{equation*}
$$

Proof Consider two different lifts $\tilde{g}_{1}, \tilde{g}_{2}$ of g in H^{5}. They give rise to Γ-conjugate loxodromic elements T_{1}, T_{2} with disjoint axes $a_{T_{1}}, a_{T_{2}}$ but equal translational length τ and rotational angles $\pm \alpha+\beta$ with $0 \leq \alpha \leq \beta<\pi$. Denote by p the common perpendicular of $a_{T_{1}}$ and $a_{T_{2}}$. We have to study the length $2 r$ of p in terms of $\tau=l(g)$. Without loss of generality assume that (cf. (1.17))

$$
\begin{gathered}
T_{1}=\left(\begin{array}{cc}
e^{\tau / 2} \exp (I \alpha) & 0 \\
0 & e^{-\tau / 2} \exp (-J \beta)
\end{array}\right), \\
T_{2}=S T_{1} S^{-1} \quad \text { with } S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{gathered}
$$

for some unit pure quaternions I, J. Since $\left\langle T_{1}, T_{2}\right\rangle$ is non-elementary, $\left\langle T_{1}, S\right\rangle$ is nonelementary as well. By Proposition 3, (1.21), applied to $\left\langle T_{1}, S\right\rangle$, we obtain

$$
\begin{equation*}
2 k \cdot(1+|b c|) \geq 1, \quad \text { where } k=\cosh \tau-\cos (\alpha+\beta) \tag{2.3}
\end{equation*}
$$

Now, (1.24) of Proposition 4 yields $\cosh ^{2} r \geq|b c|$, that is,

$$
\begin{equation*}
\cosh (2 r) \geq \frac{1-3 k}{k} \tag{2.4}
\end{equation*}
$$

which is nontrivial if

$$
\begin{equation*}
k=k(\tau ; \alpha, \beta)=\cosh \tau-\cos (\alpha+\beta) \leq \frac{1}{4} \tag{2.5}
\end{equation*}
$$

Next, observe that (2.4) remains valid for $k(n \tau ; n \alpha, n \beta)$ by considering n-th iterates of T_{1}, T_{2} for arbitrary $n \in \mathbb{N}$. In this situation, we make use of the modified Zagier inequality [CGM, Lemma 3.4] which says that for arbitrary $0<\rho \leq \pi \sqrt{3}$ and $\nu \in[0,2 \pi)$, there exists a number $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\cosh \left(n_{0} \rho\right)-\cos \left(n_{0} \nu\right) \leq \frac{2 \pi \rho}{\sqrt{3}} \tag{2.6}
\end{equation*}
$$

By choosing $\tau=\rho \leq \frac{\sqrt{3}}{8 \pi}$ and $\nu=\alpha+\beta$ according to (2.3), (2.5) and (2.6) imply that

$$
k\left(n_{0} \tau ; n_{0} \alpha, n_{0} \beta\right) \leq \frac{1}{4}
$$

Lemma 2 Let g denote a simple closed geodesic in M of length $l(g) \leq l_{0}$ with tube $T_{g}(r)$ of radius r satisfying (2.2). Then,
(a) $r=r(l)$ is strictly decreasing.
(b) The volume $\operatorname{vol}_{5}\left(T_{g}(r)\right)$ is strictly decreasing with respect to l.

Proof Part (a) is obvious. As to part (b), observe that the volume of $T_{g}(r)$ equals the volume of a cylinder $\operatorname{Cyl}(r, l)$ of radius r with axis of length l which in general is given by (cf. [K3, Lemma 2.4])

$$
\operatorname{vol}_{n}(\operatorname{Cyl}(r, l))=\frac{2 \pi}{n-1} \cdot l \cdot \sinh ^{n-1} r
$$

Hence,

$$
\begin{equation*}
\operatorname{vol}_{5}\left(T_{g}(r)\right)=\frac{\pi}{2} \cdot l \cdot \sinh ^{4} r=\frac{\sinh ^{2} r}{2} \cdot \operatorname{vol}_{3}(\operatorname{Cyl}(r, l)) \tag{2.7}
\end{equation*}
$$

By (2.2),

$$
\operatorname{vol}_{3}(\operatorname{Cyl}(r, l))=\pi \cdot l \cdot \sinh ^{2} r=\frac{\sqrt{3}}{4}-2 \pi l
$$

which is a strictly decreasing function of l.

Remark Cao and Waterman [CW] obtained tubes around short closed geodesics of lengths $\leq l_{n}$ in hyperbolic manifolds M of arbitrary dimensions $n \geq 2$. They made use of certain extremal values associated to the rotational part of loxodromic elements losing much accuracy when estimating the tube radius. For example, for $n=5$, a closed geodesic g of length $l_{5} \simeq 0.0045$ in M has a tube of radius $\simeq 0.9885$ and volume $\simeq 0.01269$ according to [CW, Corollary 9.5] while g has a tube of radius $\simeq 2.3786$ and volume $\simeq 5.7846$ according to (2.2).

Lemma 3 Let g, g^{\prime} denote two simple closed geodesics in M of lengths $l, l^{\prime} \leq l_{1}:=$ $\sqrt{3} / 9 \pi \simeq 0.061258$ which do not intersect. Then, the tubes $T_{g}, T_{g^{\prime}}$ of radii r, r^{\prime} subject to (2.2) are disjoint.

Proof Write $M=H^{5} / \Gamma$, and let $\tilde{g}, \tilde{g}^{\prime}$ be lifts to H^{5} of g, g^{\prime} which are the axes of loxodromic elements $T, T^{\prime} \in \Gamma$ with translational lengths τ and τ^{\prime} and angles of rotation $\pm \alpha+\beta$ and $\pm \alpha^{\prime}+\beta^{\prime}$ as usually. Let $\delta=\operatorname{dist}\left(\tilde{g}, \tilde{g}^{\prime}\right)$. We must prove that $\delta \geq r+r^{\prime}$.

For this, conjugate T, T^{\prime} in $\mathrm{PS}_{\Delta} \mathrm{L}(2, H)$ in order to obtain the elements

$$
X=\left(\begin{array}{cc}
e^{\tau / 2} \exp (I \alpha) & 0 \\
0 & e^{-\tau / 2} \exp (-J \beta)
\end{array}\right), \quad Y=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

The axis $a_{Y X Y^{-1}}=Y\left(a_{X}\right)$ of the element $Y X Y^{-1}$ is disjoint from a_{X} and a_{Y}. Let $p \in a_{X}$ denote the point such that $\delta=\operatorname{dist}\left(a_{X}, a_{Y}\right)=\operatorname{dist}\left(p, a_{Y}\right)$, that is, p is the foot point on a_{X} of the common perpendicular of a_{X}, a_{Y}. By construction, $d:=$ $\operatorname{dist}(p, Y(p)) \geq 2 r$. Denote by $k^{\prime}:=k(Y)=\cosh \tau^{\prime}-\cos \left(\alpha^{\prime}+\beta^{\prime}\right)$. Then, Proposition 1 implies that

$$
\cosh (2 r) \leq \cosh d=\cosh \tau^{\prime}+\sinh ^{2} \delta\left(\cosh \tau^{\prime}-\cos \omega\right)
$$

Remark Section 1.1 yields $\cos \omega \geq \cos \left(\alpha^{\prime}+\beta^{\prime}\right)$. Therefore,

$$
\begin{aligned}
\cosh (2 r) & \leq \cosh \tau^{\prime}+\sinh ^{2} \delta\left(\cosh \tau^{\prime}-\cos \left(\alpha^{\prime}+\beta^{\prime}\right)\right) \\
& \leq k^{\prime}+1+\sinh ^{2} \delta \cdot k^{\prime}=\cosh ^{2} \delta \cdot k^{\prime}+1
\end{aligned}
$$

By Proposition 6, we deduce that

$$
\begin{aligned}
\cosh (2 \delta) & =2 \cosh ^{2} \delta-1 \geq 2 \cdot \frac{\cosh (2 r)-1}{k^{\prime}}-1=2 \cdot \frac{1-4 k}{k k^{\prime}}-1 \\
& =\frac{1-4 k}{k k^{\prime}}+\frac{1-4 k-k k^{\prime}}{k k^{\prime}}
\end{aligned}
$$

Suppose that $k^{\prime} \geq k$ (otherwise, exchange the role of X and Y). Then, we obtain

$$
\cosh (2 \delta) \geq \frac{\sqrt{1-4 k}}{k} \cdot \frac{\sqrt{1-4 k^{\prime}}}{k^{\prime}}+\frac{1-4 k-k k^{\prime}}{k k^{\prime}}
$$

By assumption, $l \leq l_{1}=\frac{\sqrt{3}}{9 \pi}$ so that, by Proposition 6,

$$
k=\frac{2 \pi l}{\sqrt{3}}<2 / 9
$$

Hence,

$$
\cosh (2 r)=\frac{1-3 k}{k}<\frac{\sqrt{1-4 k}}{k}
$$

and similarly for $\cosh \left(2 r^{\prime}\right)$. In order to conclude that $\cosh (2 \delta) \geq \cosh \left(2 r+2 r^{\prime}\right)$, it suffices to show that

$$
\frac{1-4 k-k k^{\prime}}{k k^{\prime}} \geq \frac{\sqrt{1-4 k-k^{2}}}{k} \cdot \frac{\sqrt{1-4 k^{\prime}-k^{\prime 2}}}{k^{\prime}} \geq \sinh (2 r) \cdot \sinh \left(2 r^{\prime}\right)
$$

The verification is left to the reader (for details, cf. [K3, p. 64]).
Lemma 4 Let M denote a non-compact hyperbolic 5-manifold. Then, the canonical cusps and the tubes around closed geodesics according to (2.2) do not intersect in M.

The proof of Lemma 4 is basically a consequence of Proposition 5. For details we refer to the analogous proof of [K3, Theorem 2.9].

2.2 A Thick and Thin Decomposition

Let M be a hyperbolic 5-manifold, and consider the thin and thick parts

$$
M_{\leq \varepsilon}=\left\{p \in M \mid i_{p}(M) \leq \varepsilon / 2\right\} \quad \text { and } \quad M_{>\varepsilon}=\left\{p \in M \mid i_{p}(M)>\varepsilon / 2\right\}
$$

of M as in (2.1).
Theorem I For $\varepsilon \leq \sqrt{3} / 9 \pi \simeq 0.0612$, the thin part $M_{\leq \varepsilon}$ is a finite disjoint union of canonical cusps and tubes $T_{g}(r)$ around simple closed geodesics g of length $\leq \varepsilon$ according to (2.2).

Proof We take up an idea of Meyerhoff [M]. Write $M=H^{5} / \Gamma$, where $\Gamma<\operatorname{Iso}^{+}\left(H^{5}\right)$ is discrete, torsion-free and cofinite. The canonical cusps C and the tubes T around simple closed geodesics of lengths $\leq \frac{\sqrt{3}}{9 \pi} \simeq 0.0612$ in M as constructed in Section 2 are mutually disjoint. Hence, we must show that any cusp, resp. any bounded component in $M_{\leq \varepsilon}, \varepsilon \leq 0.0612$, is contained in a canonical cusp C, resp. in a tube T. It is easy to verify the assertion for the canonical cusps (cf. Section 2).

Let $p \in M_{\leq \varepsilon}$ providing a loxodromic element $X \in \Gamma$ with distance $d:=$ $d(p, X(p)) \leq 0.0612$. Assume without loss of generality that X has axis a_{X} with end points $0, \infty$, and denote by $\tau>0$ the translational length and by $\pm \alpha+\beta \in[0,2 \pi)$ the angles of rotation of X. Let R be the rotational part of X. We show that $p \in T_{a_{X}}(r)$, where the tube radius is given by (2.3) and (2.4), that is,

$$
\begin{equation*}
\cosh (2 r)=\frac{1-3 k}{k} \quad \text { with } k=k(X)=\cosh \tau-\cos (\alpha+\beta) \tag{2.8}
\end{equation*}
$$

Let $\delta=d\left(p, a_{X}\right)$, and suppose that $\delta>0$. By Proposition 1 ,

$$
\begin{equation*}
\cosh d=\cosh \tau+(\cosh \tau-\cos \omega) \cdot \sinh ^{2} \delta \tag{2.9}
\end{equation*}
$$

where $\omega=\omega(p)$ denotes the angle at the foot point \hat{p} of the perpendicular from p to a_{X} in the triangle $(p, \hat{p}, R(p))$. Observe that $\cos (\alpha+\beta) \leq \cos \omega \leq \cos (\alpha-\beta)$.

By (2.9), we must show that for $d(p, X(p)) \leq d_{0}:=0.0612$

$$
\begin{equation*}
\frac{\cosh d-\cosh \tau}{\cosh \tau-\cos \omega}=\sinh ^{2} \delta \leq \sinh ^{2} r=\frac{1-4 k}{2 k} \tag{2.10}
\end{equation*}
$$

where we may work with $k=k\left(X^{n}\right)<1 / 4$ for any integer $n \geq 1$ (cf. proof of Proposition 6) and especially with

$$
\begin{equation*}
k=k\left(X^{n_{0}}\right) \leq \frac{2 \pi \tau}{\sqrt{3}} \tag{2.11}
\end{equation*}
$$

for $n_{0} \in \mathbb{N}$ as given by (2.6). Now, write $p=\left(p_{1}, \ldots, p_{5}\right) \in H^{5}$ and consider the circular locus of all points $q \in H^{5}$ with $q_{5}=p_{5}$ and $d\left(q, a_{X}\right)=\delta$. Varying over all such q, we find d^{-}, d^{+}such that $0<\tau<d^{-} \leq d \leq d^{+} \leq d_{0}$ and (cf. (2.9) and Remark, Section 1.1)

$$
\begin{equation*}
\frac{\cosh d^{+}-\cosh \tau}{\cosh \tau-\cos (\alpha+\beta)}=\sinh ^{2} \delta=\frac{\cosh d^{-}-\cosh \tau}{\cosh \tau-\cos (\alpha-\beta)} \tag{2.12}
\end{equation*}
$$

Therefore, it suffices to check that

$$
\begin{equation*}
\frac{\cosh d_{0}-\cosh \tau}{\cosh \tau-\cos (\alpha+\beta)} \leq \frac{1-4 k}{2 k} \tag{2.13}
\end{equation*}
$$

In order to verify (2.13), we distinguish between two cases.
Consider first the case $\cos (\alpha+\beta)>1-\tau$. Choose k according to (2.8). Then, (2.13) simplifies to

$$
\cosh d_{0} \leq \cosh \tau+\frac{1-4 k}{2}
$$

Since $k<\cosh \tau+\tau-1<\cosh d_{0}+d_{0}-1=: k_{0}$ with $\cosh d_{0} \simeq 1.00187$, we see that the inequality

$$
\cosh d_{0} \leq 1+\frac{1-4 k_{0}}{2}
$$

implying (2.13) is verified.
Next, suppose that $\cos (\alpha+\beta) \leq 1-\tau$. Choose k according to (2.11). Then, (2.13) turns into

$$
\cosh d_{0} \leq \cosh \tau+(\cosh \tau+\tau-1) \cdot \frac{\sqrt{3}-8 \pi \tau}{4 \pi \tau}
$$

Since $\cosh \tau+\tau-1>\tau$, it suffices to verify

$$
\begin{equation*}
1.0019<1+\tau \cdot \frac{\sqrt{3}-8 \pi \tau}{4 \pi \tau} \tag{2.14}
\end{equation*}
$$

The last term in (2.14) is strictly decreasing. Since $\tau<d_{0}$, we obtain the bound

$$
\frac{\sqrt{3}-8 \pi \tau}{4 \pi}>\frac{\sqrt{3}-8 \pi d_{0}}{4 \pi} \simeq 0.0154
$$

which proves (2.14).

3 Consequences

3.1 Volume Bounds

As first application, we derive some volume bounds.
Proposition 7 Let M be a hyperbolic 5-manifold M with m cusps and n distinct simple closed geodesics of lengths ≤ 0.059. Then,

$$
\begin{equation*}
\operatorname{vol}_{5}(M)>\frac{m+n}{96} \tag{3.1}
\end{equation*}
$$

Proof Replace each of the m cusps by the canonical cusp neighborhood $C_{i}, 1 \leq$ $i \leq m$, as described above. C_{1}, \ldots, C_{m} are pairwise disjoint. By methods based on results of Bieberbach and a sphere packing argument including the lattice constant computation $\delta_{4}=\pi^{2} / 16$ of Korkine-Zolotareff (cf. [K2, Remark (a), p. 726]), one has

$$
\operatorname{vol}_{5}\left(C_{i}\right)>\frac{1}{96} \quad \text { for } i=1, \ldots, m
$$

whence

$$
\operatorname{vol}_{5}\left(\bigcup_{i=1}^{m} C_{i}\right)=\sum_{i=1}^{m} \operatorname{vol}_{5}\left(C_{i}\right)>\frac{m}{96}
$$

Suppose that M carries $n \geq 1$ distinct simple closed geodesics of lengths ≤ 0.059 $\left(<l_{1}<l_{0}\right)$. By Proposition 6, Lemma 2, Lemma 3 and (2.7), M contains n mutually disjoint tubes $T_{j}, 1 \leq j \leq n$, of total volume

$$
\operatorname{vol}_{5}\left(\bigcup_{j=1}^{n} T_{j}\right)=\sum_{j=1}^{n} \operatorname{vol}_{5}\left(T_{j}\right)>n \cdot 0.01042>\frac{n}{96}
$$

Finally, by Lemma 4, the canonical cusps and the tubes are pairwise disjoint. This finishes the proof.

Remark Let M be a (possibly non-orientable) hyperbolic 5-manifold M with $m \geq 1$ cusps. In [K2] and by methods based on the theory of (horo-)sphere packings, we deduced the much better bound

$$
\begin{equation*}
\operatorname{vol}_{5}(M)>m \cdot 0.3922 \tag{3.2}
\end{equation*}
$$

Adjusting suitably the estimate (3.1) requires to lower the upper length bound 0.059.
Lemma 5 Let M be a hyperbolic 5-manifold. Then, there is a point $p \in M$ such that the injectivity radius $i_{p}(M)$ of M at p satisfies

$$
\begin{equation*}
i_{p}(M)>0.0343>1 / 30 \tag{3.3}
\end{equation*}
$$

Proof Suppose that a shortest closed geodesic of M has length $l \leq l_{2}:=0.0687526<$ l_{0}. Then, by Proposition 6, there is a tube T embedded in M of radius $r=r(l)$ according to (2.2). By a result of A. Przeworski (cf. [Pr, Proposition 4.1]), there
is an embedded ball $B_{p}(\rho)$ centered at some point $p \in M$ which is of radius $\rho=$ $\operatorname{arcsinh}(\tanh (r) / 2)$. Since $r(l)$ is strictly monotonically decreasing, it follows that $\rho \geq \rho\left(l_{2}\right) \simeq 0.03439$ and hence $i_{p}(M) \geq 0.03439$. If a shortest closed geodesics on M is of length $>l_{2}$, then $i_{p}(M)>l_{2} / 2 \simeq 0.03437$ for all $p \in M$. By comparison, the result (3.3) follows.
Theorem II For a hyperbolic 5-manifold M,

$$
\begin{equation*}
\operatorname{vol}_{5}(M)>0.000083 \tag{3.4}
\end{equation*}
$$

Proof If M is non-compact, the estimate follows from (3.2). Suppose that M is compact. By Lemma 5, M contains a ball B of radius at least 0.0343 . This yields the estimate

$$
\begin{equation*}
\operatorname{vol}_{5}(M) \geq \operatorname{vol}_{5}(B)>0.00000025 \tag{3.5}
\end{equation*}
$$

which we improve as follows. Consider the in-radius $r(M)=\max _{p \in M} i_{p}(M)$ of M. Let $S_{\text {reg }} \subset H^{5}$ denote a regular hyperbolic simplex of edge length $2 r(M)$ with spherical vertex simplex $s_{\text {reg }}$ of dimension 4. By [K1, Theorem], there is the volume bound

$$
\begin{equation*}
\operatorname{vol}_{5}(M) \geq \frac{4 \pi^{2}}{9} \cdot \frac{\operatorname{vol}_{5}\left(S_{\mathrm{reg}}\right)}{\operatorname{vol}_{4}\left(s_{\mathrm{reg}}\right)} \tag{3.6}
\end{equation*}
$$

By means of [K1, Lemma 4] and [K1, Lemma 5], the quotient $\operatorname{vol}_{5}\left(S_{\text {reg }}\right) / \operatorname{vol}_{4}\left(s_{\mathrm{reg}}\right)$ in (3.6) can be estimated in terms of the dihedral angle 2α as given by the edge length $2 r(M)(c f .[K 1,(3)])$. Since $r(M)>0.0343$, this leads to the asserted volume bound $\operatorname{vol}_{5}(M)>0.000083$.

Remarks (a) Cao and Waterman derived the bound $r(M) \geq 1 / 544$ for the in-radius of a hyperbolic 5-manifold M (cf. [CW, Theorem 9.8]). By exploiting (3.6) as above, this yields the volume bound $\operatorname{vol}_{5}(M)>0.00000023$.
(b) Ratcliffe and Tschantz (cf. [R2]) announced a geometrical construction of a non-orientable hyperbolic 5-manifold with 10 cusps which is of volume $28 \zeta(3) \simeq$ 33.6576. By passing to its oriented double cover one obtains a hyperbolic 5-manifold of volume $56 \zeta(3)$ which to our knowledge represents the smallest known volume hyperbolic 5-manifold. Therefore, a smallest volume hyperbolic 5-manifold M_{0} satisfies $0.000083<\operatorname{vol}_{5}\left(M_{0}\right) \leq 67.3152$. Moreover, by Proposition 6 and Lemma 2, a shortest closed geodesic in M_{0} has length >0.00043.

3.2 Injectivity Radius Versus Volume and Diameter

Let M be a compact hyperbolic 5-manifold. Denote by $i(M)=\min _{p \in M} i_{p}(M)$ the injectivity radius of M and by $\operatorname{diam}(M)=\max _{p, q \in M} \operatorname{dist}(p, q)$ the diameter of M. The injectivity radius $i(M)$ equals one half of the length of a shortest simple closed geodesic in M. By results of P. Buser [Bu1, Corollary 4.15] and A. Reznikov [R, Theorem],

$$
i(M) \geq \text { const } \cdot \operatorname{vol}_{5}(M)^{-3}
$$

We improve this estimate as follows.
Proposition 8 For a compact hyperbolic 5-manifold M,

$$
\begin{equation*}
i(M) \geq \text { const } \cdot \operatorname{vol}_{5}(M)^{-1} \tag{3.7}
\end{equation*}
$$

Proof Assume that there is a short simple closed geodesic g of length l in M. Then, there is a tube $T_{g}(r)$ around g of radius r given by (cf. Proposition 6, (2.2))

$$
\sinh ^{2} r=\frac{1}{2 k}-2, \quad \text { where } k=\frac{2 \pi l}{\sqrt{3}}
$$

This implies

$$
\operatorname{vol}_{5}(M) \geq \operatorname{vol}_{5}\left(T_{g}(r)\right)=\frac{\pi}{2} \cdot l \cdot \sinh ^{4} r
$$

Since $\sinh ^{4} r \sim$ const $\cdot l^{-2}$ for small l, we deduce $l \geq$ const $\cdot \operatorname{vol}_{5}(M)^{-1}$ as desired.

Proposition 9 For a compact hyperbolic 5-manifold M,

$$
\begin{equation*}
i(M) \geq \text { const } \cdot \sinh (\operatorname{diam}(M))^{-2} \tag{3.8}
\end{equation*}
$$

Proof Let g denote a simple closed geodesic in M. By a result due to E. Heintze and H. Karcher [HK, Corollary 2.3.2], the length l of g is bounded from below as follows.

$$
l \geq \frac{2}{\pi^{2}} \cdot \frac{\operatorname{vol}_{5}(M)}{\sinh ^{4}(\operatorname{diam}(M))}
$$

This together with Proposition 8, (3.7), yields

$$
l \geq \text { const } \cdot \frac{1}{i(M) \cdot \sinh ^{4}(\operatorname{diam}(M))}
$$

which implies the desired result.

References

[Al] L. V. Ahlfors, Möbius transformations and Clifford numbers. In: Differential geometry and complex analysis. A volume dedicated to the memory of Harry Ernest Rauch. Eds. I. Chavel and H. M. Farkas. Springer-Verlag, Berlin, 1985.
[As] H. Aslaksen, Quaternionic determinants. Math. Intelligencer, 18(1996), 57-65.
[BGS] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of nonpositive curvature. Birkhäuser, 1985.
[Be] A. F. Beardon, The geometry of discrete groups. Springer-Verlag, 1983.
[Bu1] P. Buser, On Cheeger's inequality, $\lambda_{1} \geq h^{2} / 4$. In: Geometry of the Laplace operator, 29-77, Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc., Providence, R.I., 1980.
[Bu2] , Geometry and spectra of compact Riemann surfaces. Birkhäuser, 1992.
[CGM] C. Cao, F. W. Gehring and G. J. Martin, Lattice constants and a lemma of Zagier. In: Lipa's legacy. Proceedings of the 1st Bers Colloquium. Eds. J. Dodziuk et al. Contemp. Math. 211(1997), 107-120.
[CW] C. Cao and P. L. Waterman, Conjugacy invariants of Möbius groups. In: Quasiconformal Mappings and Analysis, A collection of papers honoring F. W. Gehring. Eds. Peter Duren, et al., Springer-Verlag, New York, 1998.
[C1] H. S. M. Coxeter, Quaternions and reflections. Amer. Math. Monthly 53(1946), 136-146.
[C2] , Regular complex polytopes. Cambridge University Press, 1974.
[D] J. Dieudonné, Les déterminants sur un corps non-commutatif. Bull. Soc. Math. France 71(1943), 27-45.
[HK] E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. École Norm. Sup. 11(1978), 451-470.
[H] Y. Hellegouarch, Quaternionic homographies: application to Ford hyperspheres. C. R. Math. Rep. Acad. Sci. Canada 11(1989), 165-170.
[J] T. Jørgensen, On discrete groups of Möbius transformations. Amer. J. Math. 98(1976), 739-749.
[K1] R. Kellerhals, Regular simplices and lower volume bounds for hyperbolic n-manifolds. Ann. Global Anal. Geom. 13(1995), 377-392.
[K2] \longrightarrow, Volumes of cusped hyperbolic manifolds. Topology 37(1998) 719-734.
[K3] , Collars in PSL(2, HH). Ann. Acad. Sci. Fenn. Math. 26(2001), 51-72.
[M] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds. Canad. J. Math. 39(1987), 1038-1056.
[Po] I. R. Porteous, Topological geometry. Cambridge University Press, 1981.
[Pr] A. Przeworski, Cones embedded in hyperbolic manifolds. J. Differential Geom. 58(2001), 219-232.
[R1] J. G. Ratcliffe, Foundations of hyperbolic manifolds. Springer-Verlag, 1994.
[R2] , Hyperbolic manifolds. In: Handbook of geometric topology. Eds., R. J. Daverman and R. B. Sher, Elsevier, 2001.
[Re] A. Reznikov, The volume and the injectivity radius of a hyperbolic manifold. Topology 34(1995), 477-479.
[T] W. P. Thurston, Three-dimensional geometry and topology, vol. 1. Princeton University Press, 1997.
[Wat] P. L. Waterman, Möbius transformations in several dimensions. Adv. in Math. 101(1993), 87-113.
[Wil] J. B. Wilker, The quaternion formalism for Möbius groups in four and fewer dimensions. Linear Algebra Appl. 190(1993), 99-136.

University of Fribourg
Department for Mathematics
CH-1700 Fribourg
Switzerland
e-mail: Ruth.Kellerhals@unifr.ch

[^0]: ${ }^{1}$ Following L. Ahlfors [Al], SL $(2 ; H \mathrm{HI})$ is used to denote the group of quaternionic Clifford matrices of pseudo-determinant equal to 1 .

