A NOTE ON BEUKERS' INTEGRAL

MASAYOSHI HATA

(Received 18 May 1992)

Communicated by J. H. Loxton

Abstract

The aim of this note is to give a sharp lower bound for rational approximations to $\zeta(2) = \pi^2/6$ by using a specific Beukers' integral. Indeed, we will show that π^2 has an irrationality measure less than 6.3489, which improves the earlier result 7.325 announced by D. V. Chudnovsky and G. V. Chudnovsky.

1991 Mathematics subject classification (Amer. Math. Soc.): 11J82.

1. Introduction

After Apéry's remarkable irrationality proofs for $\zeta(2)$ and $\zeta(3)$, Beukers [1] gave elegant proofs using the Legendre polynomials $L_n(x) = (x^n(1-x)^n)^{(n)}/n!$. Our aim in this note is to give a sharp lower bound for rational approximations to $\zeta(2) = \pi^2/6$ using Beukers' double integral

(1.1)
$$\iint_{S} \frac{F(x)G(y)}{1-xy} \, dx \, dy,$$

where S is the unit square $[0, 1] \times [0, 1]$ and F(x), G(y) are non-zero polynomials with integral coefficients. Let D_n be the least common multiple of $\{1, 2, ..., n\}$ and let $\operatorname{ord}_0(F)$ be the order of the zero point of F(x) at the origin. (We put $\operatorname{ord}_0(F) = 0$ if $F(0) \neq 0$.) The double integral (1.1) is very important in the arithmetical study of $\zeta(2)$ by virtue of the following lemma due to Beukers:

LEMMA 1.1. We have

$$\iint\limits_{S} \frac{F(x)G(y)}{1-xy} \, dx \, dy = a\zeta(2) + b,$$

⁽c) 1995 Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

Masayoshi Hata

where

$$a = \frac{1}{2\pi i} \int_C F(z) G\left(\frac{1}{z}\right) \frac{dz}{z}$$

is an integer, C denotes a closed curve enclosing the origin and b is a rational number whose denominator is a divisor of $D_N D_M$ with $M = \max\{\deg(F), \deg(G)\}$ and

 $N = \min \left\{ \max\{ \deg(F), \deg(G) - \operatorname{ord}_0(F) \right\}, \max\{ \deg(G), \deg(F) - \operatorname{ord}_0(G) \} \right\}.$

Note that the expression for N in the above lemma comes from [1, Lemma 1]. In fact, the rational part in the right-hand side of the formula

$$\iint_{S} \frac{(xy)^{n}}{1-xy} \, dx \, dy = \zeta(2) - \frac{1}{1^{2}} - \dots - \frac{1}{n^{2}}$$

belongs to the set \mathbb{Z}/D_N^2 since $n \leq \min\{\deg(F), \deg(G)\} \leq N$. (Note that always $M \geq N$.) Similarly, in the formula

$$\iint_{S} \frac{x^{n} y^{m}}{1 - xy} \, dx \, dy = \frac{1}{|n - m|} \left(\frac{1}{\min\{n, m\} + 1} + \dots + \frac{1}{\max\{n, m\}} \right)$$

for $n \neq m$, the right-hand side belongs to the set $\mathbb{Z}/D_N D_M$, since

 $|n - m| \le \max\{\deg(F) - \operatorname{ord}_0(G), \deg(G) - \operatorname{ord}_0(F)\} \le N$

and $\max\{n, m\} \leq M$, as required.

Beukers has studied the integral (1.1) with $F(x) = L_n(x)$ and $G(y) = (1 - y)^n$, which produces a good irrationality measure for π^2 :

$$\mu = 1 + \frac{\log(2 + \sqrt{5}) + 6/5}{\log(2 + \sqrt{5}) - 6/5} = 11.85078..$$

Taking more complicated polynomials in (1.1), the above measure μ has been pared down to 10.02979... by Dvornicich and Viola [4], to 7.552 by Rukhadze [9], to 7.5252 by the author [6], to 7.398537 by Rhin and Viola [8] and to 7.325 by Chudnovsky and Chudnovsky [2]. (The measures 7.552 and 7.325 were announced without proofs.)

In this note we consider the following integral

(1.2)
$$\epsilon_n = \iint_{S} \frac{(x(1-x))^{15n} (y(1-y))^{14n}}{(1-xy)^{12n+1}} \, dx \, dy$$

instead of (1.1), which will produce a better irrationality measure of π^2 in the following sense:

144

THEOREM 1.2. There exists a positive integer q_0 such that

$$\left|\pi^2 - \frac{p}{q}\right| \gg q^{-6.3489}$$

for all $p \in \mathbb{Z}$ and any integer $q \ge q_0$. (In other words, π^2 has an irrationality measure less than 6.3489.)

We thus have immediately

COROLLARY 1.3. There exists a positive integer q_1 such that

$$\left|\pi - \frac{p}{q}\sqrt{k}\right| \gg q^{-12.6978}$$

for all $p \in \mathbb{Z}$ and any integer $q \ge q_1$ uniformly in k. $(\pi/\sqrt{k} \text{ has an irrationality} measure less than 12.6978.)$

This will be proved using the same techniques as in [6, Corollary 5.2]. However, better irrationality measures for π/\sqrt{k} for some particular integral values of k are known; for example, 8.016045... and 4.601579... for k = 1 and k = 3 respectively (the author [7]), and 12.11... for k = 640320 (Chudnovsky and Chudnovsky [3]).

After 12*n*-fold partial integration with respect to x, we have, from (1.2),

$$\epsilon_n = \iint\limits_{S} \frac{U(x)V(y)}{1-xy} \, dx \, dy$$

with $U(x) = (x^{15n}(1-x)^{15n})^{(12n)}/(12n)!$ and $V(y) = y^{2n}(1-y)^{14n}$. Hence it follows from Lemma 1.1 that (1.3) $\epsilon_n = a_n \zeta(2) + b_n$

where $a_n \in \mathbb{Z}$ and $b_n \in \mathbb{Z}/D_{16n}D_{18n}$, since $\operatorname{ord}_0(U) = 3n$ and $\operatorname{ord}_0(V) = 2n$.

In Section 2 we will study the asymptotic behaviour of $|\epsilon_n|$ and $|a_n|$. The most essential part of this note is Sections 3 and 4, in which we will show that the denominator of b_n is comparatively small; more precisely, $b_n \in (d_n/D_{16n}D_{18n})\mathbb{Z}$ for some large product d_n consisting of prime numbers less than 15*n*. Then Theorem 1.2 will be proved in Section 5.

2. Estimates of ϵ_n and a_n

From (1.2) it is easily verified that

$$\lim_{n\to\infty}\frac{1}{n}\log|\epsilon_n| = \max_{0< x, y<1}\log\left(\frac{(x(1-x))^{15}(y(1-y))^{14}}{(1-xy)^{12}}\right).$$

Since the maximum α of the right-hand side is attained at $x = (\sqrt{6969} - 27)/96$ and $y = (3\sqrt{6969} - 127)/208$, we get

(2.1)
$$\alpha = \log\left(\frac{5^{15}7^{14}(\sqrt{6969} + 21)^{12}(5\sqrt{6969} - 343)^{15}(99\sqrt{6969} - 7519)^{14}}{2^{257}3^{15}13^{28}17^{12}}\right)$$

< -36.0223.

We now estimate $|a_n|$. Since

$$a_n = \frac{1}{2\pi i} \int_C U(z) V\left(\frac{1}{z}\right) \frac{dz}{z} = \left(\frac{1}{2\pi i}\right)^2 \int_C \int_{C_z} \frac{(w(1-w))^{15n}}{(w-z)^{12n+1}} dw \frac{(1-z)^{14n}}{z^{16n+1}} dz,$$

where C and C_z are circles centered at z = 0 and w = z with radii r and ρ respectively, we have

$$\limsup_{n\to\infty}\frac{1}{n}\log|a_n|\leq \min_{r,\,\rho>0}\log\left(\frac{(1+r)^{14}(r+\rho)^{15}(1+r+\rho)^{15}}{r^{16}\rho^{12}}\right).$$

The minimum β of the right-hand side is attained at $r = (3\sqrt{6969} - 127)/224$ and $\rho = (285 - \sqrt{6969})/336$; therefore we get

(2.2)

$$\beta = \log\left(\frac{5^{15}(\sqrt{6969} + 285)^{12}(3\sqrt{6969} + 97)^{14}(3\sqrt{6969} + 127)^{16}(5\sqrt{6969} + 343)^{15}}{2^{269}3^{15}7^{14}13^{28}17^{12}}\right)$$
<35.4093.

3. The denominator of b_n (I)

In this section we investigate the prime factors p of $T_n \equiv b_n D_{16n} D_{18n}$ satisfying $5\sqrt{n} .$

After k-fold and (12n - k)-fold partial integrations with respect to x and y respectively, we obtain, from (1.2),

(3.1)
$$\epsilon_n = {\binom{12n}{k}}^{-1} \iint_{S} \frac{F_k(x)G_k(y)}{1-xy} \, dx \, dy$$

with

$$F_k(x) = x^{k-12n} \left(x^{15n} (1-x)^{15n} \right)^{(k)} / k!, \quad G_k(y) = \left(y^{14n-k} (1-y)^{14n} \right)^{(12n-k)} / (12n-k)!$$

for any integer $k \in [0, 12n]$. Note that $F_k(x) \in \mathbb{Z}[x]$ and $G_k(y) \in \mathbb{Z}[y]$ with $\deg(F_k) = 18n$, $\operatorname{ord}_0(F_k) = 3n$, $\deg(G_k) = 16n$ and $\operatorname{ord}_0(G_k) = 2n$. Then, from Lemma 1.1, (1.3) and (3.1),

$$a_{k,n}\zeta(2) + b_{k,n} = {\binom{12n}{k}}\epsilon_n = {\binom{12n}{k}}\{a_n\zeta(2) + b_n\}$$

for some $a_{k,n} \in \mathbb{Z}$ and $b_{k,n} \in \mathbb{Z}/D_{16n}D_{18n}$. Thus, putting $T_{k,n} \equiv b_{k,n}D_{16n}D_{18n}$, we obtain

$$(3.2) T_{k,n} = \binom{12n}{k} T_n$$

since $\zeta(2)$ is irrational. For any prime p let $v_p(n)$ be the exponent of p in the resolution of n into its prime factors. Hence, from (3.2),

(3.3)
$$v_p(T_{k,n}) = [12\omega] - [12\omega - \kappa] + v_p(T_n)$$

where $\omega = \{n/p\}$ and $\kappa = \{k/p\}$ for any prime $p > 5\sqrt{n}$. (Here $\{x\}$ denotes the fractional part of x.)

On the other hand, it is easily seen from Lemma 1.1 that if p is a common prime factor of all the coefficients of $F_k(x)$, or of $G_k(y)$, then p becomes a divisor of $T_{k,n}$. More precisely, we have

$$\nu_p(T_{k,n}) \geq \min_{0 \leq j \leq 15n} \nu_p(A_{j,k,n}) + \min_{0 \leq l \leq 14n} \nu_p(B_{l,k,n})$$

where

$$A_{j,k,n} = \binom{15n}{j} \binom{15n+j}{k} \quad \text{and} \quad B_{l,k,n} = \binom{14n}{l} \binom{14n-k+l}{12n-k}.$$

Since $v_p(A_{j,k,n}) = [15\omega] - [15\omega - \theta] + [15\omega + \theta] - [15\omega + \theta - \kappa] \equiv I(\omega, \theta, \kappa)$, say, and $v_p(B_{l,k,n}) = [14\omega] - [14\omega - \theta'] + [14\omega - \kappa + \theta'] - [12\omega - \kappa] - [2\omega + \theta'] \equiv J(\omega, \theta', \kappa)$, say, for any $p > 5\sqrt{n}$ where $\theta = \{j/p\}$ and $\theta' = \{l/p\}$, we have

(3.4)
$$\nu_p(T_{k,n}) \ge \min_{0 \le \theta < 1} I(\omega, \theta, \kappa) + \min_{0 \le \theta' < 1} J(\omega, \theta', \kappa)$$

for any $k \in [0, 12n]$.

We now distinguish four cases, as follows:

CASE I: We take k = 12n giving $\kappa = \{12\omega\}$. From (3.3), $\nu_p(T_{12n,n}) = \nu_p(T_n)$. Suppose now that $2\{15\omega\} < \{12\omega\}$. Then clearly

$$I(\omega, \theta, \{12\omega\}) = [15\omega] - [15\omega - \theta] + [15\omega + \theta] - [12\omega] - [3\omega + \theta]$$

$$\geq 2[15\omega] - [12\omega] - [18\omega] = \{12\omega\} + \{18\omega\} - 2\{15\omega\}$$

$$> \{18\omega\} \ge 0$$

for any $\theta \in [0, 1)$; hence we have $\nu_p(T_n) \ge 1$ from (3.4), since $I(\omega, \theta, \kappa) \in \mathbb{Z}$.

[5]

CASE II: We take k = 0 giving $\kappa = 0$. From (3.3), $v_p(T_{0,n}) = v_p(T_n)$. Suppose now that $2\{14\omega\} < \{12\omega\}$. Then

$$J(\omega, \theta', 0) = [14\omega] - [14\omega - \theta'] + [14\omega + \theta'] - [12\omega] - [2\omega + \theta']$$

$$\geq 2[14\omega] - [12\omega] - [16\omega] = \{12\omega\} + \{16\omega\} - 2\{14\omega\}$$

$$> \{16\omega\} \geq 0$$

for any $\theta' \in [0, 1)$; hence $\nu_p(T_n) \ge 1$ from (3.4).

CASE III: From (3.3) we have always $v_p(T_n) \ge v_p(T_{k,n}) - 1$. Suppose that $\{2\omega\} + \{12\omega\} < 1, \{2\omega\} + \{14\omega\} < 1$ and $2\{15\omega\} < \{14\omega\}$. Since p < 14n, one can take $k = k(p) \equiv 14n - [14n/p]p$; hence $\kappa = \kappa_{\omega} \equiv \{2\omega\} + \{12\omega\}$. Then, for any $\theta, \theta' \in [0, 1)$,

$$I(\omega, \theta, \kappa_{\omega}) = [15\omega] - [15\omega - \theta] + [15\omega + \theta] - [14\omega] - [\omega + \theta]$$

$$\geq 2[15\omega] - [14\omega] - [16\omega] = \{14\omega\} + \{16\omega\} - 2\{15\omega\}$$

$$> \{16\omega\} \geq 0$$

and

$$J(\omega, \theta', \kappa_{\omega}) = [14\omega] - [14\omega - \theta'] + 1 + [2\omega] - [2\omega + \theta']$$

$$\geq 1 + [2\omega] + [14\omega] - [16\omega] = 1 + \{16\omega\} - \{2\omega\} - \{14\omega\}$$

$$> \{16\omega\} \geq 0.$$

Hence $v_p(T_{k(p),n}) \ge 2$ from (3.4) and so $v_p(T_n) \ge 1$. CASE IV: The same argument as in Case III can be applied to the following expression:

(3.5)
$$\epsilon_n = {\binom{12n}{k}}^{-1} \iint\limits_{S} \frac{U_k(x)V_k(y)}{1-xy} \, dx \, dy$$

with

$$U_k(x) = \frac{\left(x^{15n-k}(1-x)^{15n}\right)^{(12n-k)}}{(12n-k)!}, \qquad V_k(y) = \frac{y^{k-12n}\left(y^{14n}(1-y)^{14n}\right)^{(k)}}{k!}$$

for any integer $k \in [0, 12n]$, which comes from k-fold and (12n - k)-fold partial integrations with respect to y and x respectively. Then, by taking k = 15n - [15n/p]p, it can be seen that $v_p(T_n) \ge 1$ for any ω satisfying $\{3\omega\} + \{12\omega\} < 1$, $\{3\omega\} + \{15\omega\} < 1$ and $2\{14\omega\} < \{15\omega\}$. We have thus proved the following

LEMMA 3.1. Suppose a prime $p \in (5\sqrt{n}, 15n)$ satisfies one of the following four conditions:

(I) $2\{15\omega\} < \{12\omega\};$ (II) $2\{14\omega\} < \{12\omega\};$ (III) $\{2\omega\} + \{12\omega\} < 1, \{2\omega\} + \{14\omega\} < 1 \text{ and } 2\{15\omega\} < \{14\omega\};$ (IV) $\{3\omega\} + \{12\omega\} < 1, \{3\omega\} + \{15\omega\} < 1 \text{ and } 2\{14\omega\} < \{15\omega\}.$

Then p must divide T_n .

4. The denominator of b_n (II)

In this section we investigate prime factors $p \in (5\sqrt{n}, 15n)$ of T_n satisfying $p^2|T_n$. Suppose now that $\{2\omega\} + \{12\omega\} \ge 1$. In the expression (3.1), one can take $k = k(p) \equiv 14n - [14n/p]p$; thus $\kappa = \tilde{\kappa}_{\omega} \equiv \{2\omega\} + \{12\omega\} - 1$. Hence, from (3.3), $\nu_p(T_{k(p),n}) = \nu_p(T_n)$. Suppose further that $\{2\omega\} + \{14\omega\} < 1$ and $2\{15\omega\} < \{14\omega\}$. Then, for any $\theta, \theta' \in [0, 1)$,

$$I(\omega, \theta, \tilde{\kappa}_{\omega}) = [15\omega] - [15\omega - \theta] + [15\omega + \theta] - 1 - [2\omega] - [12\omega] - [\omega + \theta]$$

$$\geq 2[15\omega] - [14\omega] - [16\omega] = \{14\omega\} + \{16\omega\} - 2\{15\omega\}$$

$$> \{16\omega\} \geq 0$$

and

$$J(\omega, \theta', \tilde{\kappa}_{\omega}) = [14\omega] - [14\omega - \theta'] + [2\omega] + 1 - [2\omega + \theta']$$

$$\geq 1 + [2\omega] + [14\omega] - [16\omega] = 1 + \{16\omega\} - \{2\omega\} - \{14\omega\}$$

$$> \{16\omega\} \geq 0.$$

Therefore $\nu_p(T_{k(p),n}) \ge 2$ from (3.4); hence $\nu_p(T_n) \ge 2$.

A similar argument to that above can be applied to the expression (3.5). By taking k = 15n - [15n/p]p, we can show that $v_p(T_n) \ge 2$ if ω satisfies $\{3\omega\} + \{12\omega\} \ge 1$, $\{3\omega\} + \{15\omega\} < 1$ and $2\{14\omega\} < \{15\omega\}$.

We have thus proved the following

LEMMA 4.1. Suppose a prime $p \in (5\sqrt{n}, 15n)$ satisfies one of the following two conditions:

(V) $\{2\omega\} + \{12\omega\} \ge 1, \{2\omega\} + \{14\omega\} < 1 \text{ and } 2\{15\omega\} < \{14\omega\},$

(VI) $\{3\omega\} + \{12\omega\} \ge 1, \{3\omega\} + \{15\omega\} < 1 \text{ and } 2\{14\omega\} < \{15\omega\}.$

Then p^2 must divide T_n .

5. Proof of Theorem 1.2

Let Ω_1 and Ω_2 be the sets of $\omega \in [0, 1)$ satisfying one of the conditions stated in Lemma 3.1 (I, II, III or IV) and in Lemma 4.1 (V or VI) respectively. Then it is easily

verified that the set Ω_1 consists of the following intervals:

Similarly the set Ω_2 consists of the following intervals:

$$\left[\frac{1}{14}, \frac{1}{13}\right), \left[\frac{1}{7}, \frac{2}{13}\right), \left[\frac{3}{14}, \frac{2}{9}\right), \left[\frac{11}{15}, \frac{3}{4}\right), \left[\frac{4}{5}, \frac{13}{16}\right), \left[\frac{13}{15}, \frac{7}{8}\right), \text{ and } \left[\frac{14}{15}, \frac{15}{16}\right).$$

Note that $\Omega_2 \subset \Omega_1$. Putting

$$\Delta_i = \prod_{\substack{p: \text{ prime} \\ 5\sqrt{n}$$

for i = 1, 2, it follows from Lemmas 3.1 and 4.1 that the integer $d_n \equiv \Delta_1 \Delta_2$ must divide T_n ; that is,

$$(5.1) b_n \in \frac{d_n}{D_{16n} D_{18n}} \mathbb{Z}$$

Note that d_n is a divisor of $D_{16n}D_{18n}$. Then, as in [6, 7], it follows from the prime number theorem that

$$\lim_{n\to\infty}\frac{1}{n}\log d_n=\int_{\Omega_1}d\psi(x)+\int_{\Omega_2}d\psi(x)\equiv\gamma,\quad \text{say},$$

where $\psi(x) = \Gamma'(x)/\Gamma(x)$ is the digamma function. The above Stieltjes integrals can be expressed as sums of values of some elementary functions, by virtue of Gauss' formula. (See, for example, Erdélyi *et al.* [5, p. 19].) Numerically one obtains

(5.2)
$$\gamma > 9.22875.$$

Now, putting $K_n = D_{16n} D_{18n} / d_n \in \mathbb{Z}$, we have, from (1.3) and (5.1),

$$K_n a_n \zeta(2) - K_n \epsilon_n = -K_n b_n \in \mathbb{Z}.$$

Then we get

$$\limsup_{n\to\infty}\frac{1}{n}\log|K_na_n|\leq 34-\gamma+\beta\equiv\sigma,\quad \text{say},$$

and

$$\lim_{n\to\infty}\frac{1}{n}\log|K_n\epsilon_n|=34-\gamma+\alpha\equiv-\tau,\quad\text{say},$$

Therefore it follows from (2.1), (2.2) and (5.2) that π^2 has an irrationality measure

$$1 + \frac{\sigma}{\tau} = 1 - \frac{34 - \gamma + \beta}{34 - \gamma + \alpha} < \frac{35.4093 + 36.0223}{9.22875 - 34 + 36.0223} < 6.3489.$$

This completes the proof.

Addendum

Using the birational diffeomorphism τ : $(0, 1)^2 \rightarrow (0, 1)^2$ defined by

$$\tau(x, y) = \left(1 - xy, \frac{1 - x}{1 - xy}\right),$$

it follows that the double integral (1.2) can also be written as

(*)
$$\epsilon_n = \iint_{S} \frac{x^{17n} (1-x)^{14n} y^{15n} (1-y)^{14n}}{(1-xy)^{13n+1}} \, dx \, dy.$$

The transformation τ , satisfying $\tau = \tau^{-1}$, was essentially used in Rhin and Viola [8], although their transformation generates a cyclic group of order 5. The above expression (*) gives us further information about the denominator of $b_n \in \mathbb{Q}$ so that we can obtain

THEOREM. There exists a positive integer q_0 such that

$$\left|\pi^2 - \frac{p}{q}\right| \gg q^{-5.687}$$

for all $p \in \mathbb{Z}$ and any integer $q \geq q_0$.

PROOF. After k-fold and (13n - k)-fold partial integration with respect to x and y respectively in (*), it can be seen that

$$v_p(T_n) \ge [13\omega - \kappa] - [13\omega] + \min_{0 \le \theta < 1} \tilde{I}(\omega, \theta, \kappa) + \min_{0 \le \theta' < 1} \tilde{J}(\omega, \theta', \kappa)$$

with

$$I(\omega, \theta, \kappa) = [14\omega] - [14\omega - \theta] + [17\omega + \theta] - [17\omega + \theta - \kappa],$$

$$\tilde{J}(\omega, \theta', \kappa) = [14\omega] - [14\omega - \theta'] + [15\omega - \kappa + \theta'] - [13\omega - \kappa] - [2\omega + \theta']$$

for any integer $k \in [0, 13n]$ and for any prime $p > 6\sqrt{n}$, where $\omega = \{n/p\}$, $\kappa = \{k/p\}$. Using this estimate for $\nu_p(T_n)$, Lemmas 3.1 and 4.1 can now be improved as follows.

Masayoshi Hata

LEMMA 1. Suppose a prime $p \in (6\sqrt{n}, 15n)$ satisfies one of the conditions (I), (II), (II), (VII) or (VIII), the latter two being:

(VII) $\{14\omega\} + \{17\omega\} < \{13\omega\},\$

(VIII) $\{2\omega\} + \{13\omega\} < 1, \{2\omega\} + \{14\omega\} < 1 \text{ and } \{14\omega\} + \{17\omega\} < \{2\omega\} + \{13\omega\}.$ Then p must divide T_n .

LEMMA 2. Suppose a prime $p \in (6\sqrt{n}, 15n)$ satisfies one of the conditions (V), (VI) or

(IX) $\{2\omega\} + \{14\omega\} < 1 \text{ and } 1 + \{14\omega\} + \{17\omega\} < \{2\omega\} + \{13\omega\}.$

Then p^2 must divide T_n .

The above lemmas can be easily verified as above by taking k = 13n in Case (VII) and k = 15n - [15n/p]p in Cases (VIII) and (IX). Thus the sets Ω_1 and Ω_2 can be replaced by

$$\begin{split} \tilde{\Omega}_1 &= \Omega_1 \cup \left[\frac{1}{17}, \frac{1}{16}\right)^* \cup \left[\frac{2}{17}, \frac{1}{8}\right) \cup \left[\frac{3}{17}, \frac{3}{16}\right) \cup \left[\frac{9}{17}, \frac{8}{15}\right) \cup \left[\frac{10}{17}, \frac{3}{5}\right) \cup \left[\frac{13}{17}, \frac{10}{13}\right), \\ \tilde{\Omega}_2 &= \Omega_2 \cup \left[\frac{5}{17}, \frac{4}{13}\right) \cup \left[\frac{5}{14}, \frac{3}{8}\right) \cup \left[\frac{3}{7}, \frac{7}{16}\right) \end{split}$$

respectively. Here the contribution of the interval $\left[\frac{1}{17}, \frac{1}{16}\right)^*$ to the corresponding Stieltjes integral must be treated differently as follows:

$$\int_{\left[\frac{1}{17},\frac{1}{16}\right]^*} d\psi(x) = \sum_{n=1}^{\infty} \frac{1}{(16n+1)(17n+1)} = \psi\left(\frac{1}{16}\right) - \psi\left(\frac{1}{17}\right) - 1,$$

since p < 15n. Consequently we obtain a better exponent $\tilde{\gamma} > 10.5383$. Therefore π^2 has an irrationality measure less than

$$\frac{35.4093 + 36.0223}{10.5383 - 34 + 36.0223} < 5.687,$$

which completes the proof.

References

- [1] F. Beukers, 'A note on the irrationality of $\zeta(2)$ and $\zeta(3)$ ', Bull. London Math. Soc. 11 (1979), 268-272.
- [2] D. V. Chudnovsky and G. V. Chudnovsky, Padé and rational approximations to systems of functions and their arithmetic applications Lecture Notes in Mathematics 1052 (Springer, Berlin, 1984) pp. 37-84.

- [3] ——, 'Transcendental methods and theta-functions', in: Proc. Sympos. Pure Math. 49 (Amer. Math. Soc., Providence, 1989), pp. 167–232.
- [4] R. Dvornicich and C. Viola, 'Some remarks on Beukers' integrals', Colloq. Math. Soc. János Bolyai 51 (1987), 637–657.
- [5] A. Erdélyi et al., Higher transcendental functions, volume 1 (McGraw-Hill, New York, 1953).
- [6] M. Hata, 'Legendre type polynomials and irrationality measures', J. Reine Angew. Math. 407 (1990), 99–125.
- [7] ——, 'Rational approximations to π and some other numbers', Acta Arithmetica 63 (1993), 335–349.
- [8] G. Rhin and C. Viola, 'On the irrationality measure of $\zeta(2)$ ', Ann. Inst. Fourier (Grenoble) 43 (1993), 85–109.
- [9] E. A. Rukhadze, 'A lower bound for the approximation of ln 2 by rational numbers', Vestnik Moskov. Univ. Ser. 1 Mat. Mekh. 6 (1987), 25–29 in Russian.

Institute of Mathematics Yoshida College Kyoto University