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Abstract

We present an interferometry setup and the detailed fringe analysis method for intense short pulse (SP) laser experiments.
The interferometry scheme was refined through multiple campaigns to investigate the effects of pre-plasmas on energetic
electrons at the Jupiter Laser Facility at Lawrence Livermore National Laboratory. The interferometer used a frequency
doubled (λ = 0.527 μm) 0.5 ps long optical probe beam to measure the pre-plasma density, an invaluable parameter to
better understand how varying pre-plasma conditions affect the characteristics of the energetic electrons. The hardware
of the diagnostic, data analysis and example data are presented. The diagnostic setup and the analysis procedure can be
employed for any other SP laser experiments and interferograms, respectively.
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1. Introduction

The relativistic electrons generated from the intense short
pulse (SP) laser interactions have been extensively studied
for a wide range of applications, such as the fast igni-
tion inertial confinement fusion scheme[1] and the laser
driven electron–positron pair production[2]. The exact mech-
anisms generating these energetic electrons are still un-
clear, especially the effects of pre-plasmas on the rela-
tivistic electrons. The pre-plasma scale length is known
to affect the electron acceleration[3, 4], the electron beam
divergence[5] and the laser energy absorption[6]. However,
there are only a few quantitative experimental data avail-
able. In the studies of laser–plasma interactions, the scale
length is often estimated from simulated density profiles
using radiation-hydrodynamic codes, such as HYDRA[7],
MULTI2D[8] and HYADES[9], and further simulations us-
ing particle-in-cell codes are carried out to investigate the
detailed physics. In spite of continuous development in
the radiation-hydrodynamic codes, the codes have to be
benchmarked against measurements. Also, it is not practical
to simulate a large number of target shots using experimental
conditions. Therefore, experimental measurements of the
plasma density are still needed.
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Optical interferometry is the most widely used tech-
nique to measure the plasma electron density in magnetic
confinement plasma experiments[10, 11] and laser plasma
experiments[12–18]. Also, much effort was put in to devise
and improve fringe analysis methods[19–23] and Abel inver-
sion techniques[24–27]. However, the optical interferometry
is underutilized in high-intensity SP laser interactions with
solid targets than it should because (1) setting up the
interferometry is very time consuming and (2) the probe
beam path prevents other diagnostics from being deployed.
This is especially true for experiments at user facilities,
such as the Jupiter Laser Facility (JLF), Livermore, USA. In
addition, most publications on the fringe analysis and Abel
inversion techniques focus on details of specific methods
but does not give an overview of the entire data analysis
procedures assuming that diagnostic users are already
familiar with them. As a result it is very difficult for first
time users to successfully field the diagnostic and analyze
data unless close guidance, for instance advisers to pupils,
is provided. These circumstances motivated this paper to
give detailed information on how to successfully employ an
optical interferometry and analyze data.

The interferometry setup described here employs the mod-
ified Mach–Zehnder (M–Z) interferometer[28] and single
vertical probe beam path to maximize the use of target
chamber space. The data is analyzed by utilizing the Fourier
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transformation (FT)[19] and the linear operator methods[25].
Readers are strongly encouraged to read the references
given in this paper and references therein for more detailed
information.

2. Experimental conditions and setup

The experimental scheme and interferometer setup described
here have been used in multiple campaigns to investigate
the effects of pre-plasmas on energetic electrons generated
in laser–solid interactions on the Titan laser[29] at JLF at
Lawrence Livermore National Laboratory.

Targets made of aluminum (Al), titanium (Ti), copper
(Cu), gold (Au) and plastics (CH) were shaped in disk or
square form. The disk targets were made of single material,
and their dimension varied between 2 and 6 mm in diameter
and 75 μm to 1 mm in thickness. Two different types
of square targets (3 mm × 3 mm) with varying thickness
between 75 μm and 1.28 mm were used for the study: bulk
(CH, Ti, or Cu) and layered. The layered targets had 10 μm
metal foil (Ti or Cu) sandwiched between two plastic layers
with a thinner layer (3–15 μm) on the laser incident side.

2.1. Short pulse laser conditions

The Titan SP laser uses optical parametric chirped pulse
amplification[30] to generate 0.7–20 ps long pulses and
delivers up to 350 J energy on targets when operated at the
fundamental wavelength, 1.054 μm (1ω)[29]. The SP laser
beam is focused to a focal spot of 10–15 μm at the full-
width-half-maximum (FWHM) by an F/3 off-axis parabola,
and the maximum laser intensity of low 1020 W/cm2 is
achievable. The SP laser can be operated at the second
harmonic, 0.527 μm.

The pre-plasma experiments were performed using the 1ω

Titan SP laser at its minimum pulse length, and the laser
energy on targets was varied between 110 and 140 J. The
1ω SP laser has a nanosecond scale pre-pulse that generated
pre-plasmas on the target front surface. The pre-pulse energy
history was monitored on each shot with a 20 ps temporal
resolution by using a calibrated fast diode (EOT ET-3500)
and a fast oscilloscope. The fast diode system was calibrated
against a calorimeter placed inside the target chamber under
vacuum. The main SP laser was partially amplified, 100–
200 mJ, and uncompressed, ∼3 ns long. The fast diode
read-out (V) was integrated and normalized to the measured
energy in order to find a scaling factor, J/V. The measured
pre-pulse had a nominal pulse length of 3.3 ± 0.5 ns with
energies between 10 and 70 mJ, which was equivalent to
laser intensity in a range of 1012–1013 W/cm2.

Figure 1 shows a recorded pre-pulse (solid blue curve)
and a linear fit (dotted red line) to it. The sharp rise at
0 ns (vertical dashed black line) is due to the arrival of the

Figure 1. The pre-pulse measured by the calibrated fast diode (solid blue)
and a linear fit (dotted red).

main pulse. The pre-pulse was ∼3.2 ns long and contained
62 ± 6 mJ.

2.2. Sub-picosecond optical probe laser

The interferograms were taken using a laser optical probe.
The optical probe is split from a main SP front end (after
the beam stretcher) and bypasses the amplification system,
which allows the probe laser to arrive prior to the main
SP laser. Upon entering the target area, the probe laser
propagates through an open air compressor which adjusts the
probe laser pulse length for various optical diagnostics. For
the interferometry the probe beam was compressed to the
minimum pulse length of ∼0.5 ps in order to take snapshots
of the pre-plasmas. The probe laser was frequency doubled
(0.527 μm or 2ω) by a beta barium borate (BBO) crystal in
order to increase the maximum measurable plasma density.
The relationship between the index of refraction of plasmas,
ηp, and the plasma density, ne, is given as,

ηplasma =
√

1 − ne

nc
, (1)

where nc is the plasma critical density. The critical density
is inversely proportional to the square of a probe beam
wavelength, nc ≈ 1.12 × 1021/λ2

probe cm−3, where λprobe
is the probe laser wavelength in μm. The critical density for
the frequency doubled probe laser is ∼4 × 1021 cm−3.

2.3. Probe beam path

Figure 2(a) shows a simplified top–down view of the ex-
perimental setup. The SP laser (red shade) is focused by
the F/3 parabola on to a target at ∼16◦ (red dashed arrow)
from the target normal (black dashed line). The 0.5 ps 2ω

probe laser (green arrows) emerging from the compressor
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Figure 2. (a) A simplified experimental scheme and (b) the single vertical
probe beam path at the target position.

propagates through a timing periscope, which is to adjust the
relative timing between the SP and probe lasers at the target
area, and enters the target chamber. Inside the chamber the
probe beam is initially positioned below the SP laser plane
in order to scan pre-plasmas vertically, i.e., perpendicular to
the SP beam plane. Figure 2(b) shows the relative orientation
of a target, the main SP and probe lasers: the SP laser (red
shade) is incident on target at an angle of 16◦ from the target
normal, and the probe laser travels perpendicular to the SP
laser plane (x–z plane). Note that the relative location of
the target within the probe beam is important for any single
probe path: the target has to be placed on one side of the
probe beam in order to make sure a large area of the beam
is not perturbed by plasmas. The unperturbed part of the
probe beam is used as reference to generate fringes by an
interferometer.

The probe beam, after interacting with pre-plasma, is
collected by a lens to form the first image with a small
magnification, ×2 to ×3, outside of the chamber. The
final image is formed by another lens to give ×16 to ×20
magnification with better than 10 μm imaging resolution.
An interferometer was placed between the second lens and
the imaging plane.

The vertical probe path requires extra effort as comparison
to the common coplanar probe beam path. However, it allows
to deploy more diagnostics and maximize the experimental
time: an x-ray pinhole camera, Figure 2(b), and an x-ray
spectrometer (not shown) were used on the SP laser plane
close to the target position.

2.4. Laser relative timing

The relative timing between the SP and probe lasers was
adjusted by controlling the timing periscope, Figure 2(a),
while monitoring the unamplified SP and the probe lasers
using a Hamamatsu visible streak camera, C7700-11[31].
Because two laser paths were orthogonal to each other, a
light scattering target was used in order to scatter the SP laser

Figure 3. An image captured by the streak camera (left top) and laser signals
along the vertical line on the image (right bottom) are shown.

light and propagate the scattered light along the probe beam
path. The light signals from both lasers were collected by
the first lens within the chamber, and the streak camera was
placed at the first imaging plane.

Figure 3 shows an image recorded by the streak camera
(top left) and line-out along the temporal axis (bottom right).
The image was recorded by a charge-coupled device (CCD)
with 1024 × 1024 pixels and a 500 ps sweeping window.
The curvature of streaked lines is due to the edge effect of
high voltage applied to the sweep plates within the streak
camera. The upper (earlier) streak is the probe beam which
was partially blocked by the scattering target (indicated with
an arrow).

The plot shows signals from the probe beam (left) and the
SP laser (right). The probe beam had a large tail, possibly,
due to (1) a part of the probe beam doubly reflected within
the BBO crystal, (2) the unconverted 1ω probe beam whose
pulse length was slightly larger than the green light, (3) an
artifact of the streak camera, etc. A Gaussian fit with three
terms, two for the probe and one for the SP, were used to
find the peak locations. The light signals are separated by
∼47 pixels, equivalent to ∼23 ps.

2.5. Modified Mach–Zehnder interferometer

The Nomarski interferometer[32] and the modified M–Z
interferometer[28] have been used in earlier experiments.
However, the modified M–Z interferometer was chosen for
later experiments for the following reasons.

The Nomarski interferometer uses a Wollaston prism to
split the probe laser into two orthogonally polarized beams
and a pair of polarizers, before and after the prism, to control
the probe laser polarization in order to generate fringes.
The Nomarski interferometer is easy to work, especially
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Figure 4. A modified M–Z interferometer setup.

with a sub-picosecond probe laser, because the orthogo-
nally polarized beams have equal path lengths and generate
fringes where they overlap. However, control of the image
separation (from the separated beams) and the fringe gap
are interlinked via the angle at which the prism splits the
probe laser; both the image separation and fringe gap become
smaller or larger as the prism is brought closer to or further
away from the final imaging plane, respectively (Figure 1 in
Ref. [32]). Therefore, achieving adequate image separation
and fringe density could be difficult in cases of relatively
large (∼1 mm) targets or plasmas with high magnification
(×15 or larger) due to image blurring caused by overlapped
images.

The M–Z interferometer uses a pair of beam splitters to
separate a probe laser into two arms (probing and reference
arms) and merge them back to generate fringes, which
requires extra attention in order to generate fringes. On
the other hand, the M–Z interferometer offers much better
control over the image separation and fringe gap than the
Nomarski interferometer does. Note that the conventional
M–Z interferometer setup of using a pair of mirrors and
beam splitters also suffers from the interlinked control of
the image separation and fringe spacing. This restriction can
be easily removed if a pair of mirrors are replaced with two
pentaprisms or two periscopes while keeping the versatility
of the M–Z interferometer[28]. The details of the diagnostic
setup and fringe adjustment are given below.

Figure 4 shows the modified M–Z interferometer with a
pair of beam splitters and periscopes as well as images before
and after entering the diagnostic. The separation of target
images and the fringe spacing at the final imaging plane are
controlled rotating both beam splitters (BS1 and BS2) by un-
equal amounts for the following reasons. Rotating only one
beam splitter can lead to unrecognizably small fringes before
reaching an appropriate image separation. On the other hand,
rotating the beam splitters by equal amounts easily separates
the images but does not change the fringe spacing. Therefore,
two beam splitters have to be rotated by unequal amounts in

order to separate the images and control the fringe spacing.
Keep in mind, however, that unequal amounts of rotations
will result in low contrast fringes or loss of fringes when
an SP probe laser is used because the split probe beams
no longer temporally overlap at the final imaging plane.
The co-arrival of the split beams (and fringe generation) is
achieved by mounting one periscope on a translation stage
(Periscope 1 in Figure 4) and simultaneously adjusting its
position while rotating the beam splitters.

3. Fringe analysis

The index of refraction through plasmas differ from that
of vacuum or air. The difference in the index of refraction
causes the probe beam to experience different optical path
length and shifts fringes. Therefore, the fringe analysis is
done in two stages: estimation of (1) the probe beam path
length change and (2) the index of refraction. Once the
refractivity is found, the plasma density is estimated using
the relationship given in Equation (1).

Note that fringe data analysis procedures are to find
the index of refraction, and a physical variable of interest
depends on how the index of refraction is expressed. For
instance, one can estimate the plasma density (as in this
paper) while others estimate temperatures if the index of
refraction is expressed in terms of temperature[33].

3.1. Phase map: Fourier transformation method

The path length difference can be estimated by counting
the number of fringe shift, N = ΔP . However, counting
fringes could be erroneous and time consuming. Takeda
et al.[19] suggested a more elegant way of estimating the
phase difference, Δφ = (2π/λprobe)ΔP, at each point on
interferograms by using the FT method. The FT method is
not only faster than the direct fringe shift counting method
but also reduces noises from interferograms. In addition, the
phase difference estimated by using the FT method forms
a smooth curve at the target boundary and beyond, as seen
in Figures 5(b) and 5(c), while the direct counting method
would result in an abrupt change in the estimated phase
difference. As result, the FT method helps eliminating spiky
features when the Abel inversion is used to extracted profiles
(the plasma density profile in this paper). Note that a proper
mask should be employed in order to separate the erroneous
regions out of the unfolded density profile as the phase
difference beyond boundaries are not correct values.

The FT method uses the oscillatory nature of fringes
to estimate the phase value in four steps: (1) forward FT
of an interferogram, FTinter, (2) selection of one side in
the frequency domain, (3) inverse FT of one-sided fre-
quency spectrum, FT−1

inter and (4) the phase value extraction.
When interferograms are Fourier transformed, there are
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Figure 5. Interferogram and phase maps. The red dotted line in (a) indicates
the original target–vacuum interface.

three distinctive peaks: at the zero frequency and at the
nascent frequencies, ± fo. Selecting one side of spectrum
with an adequate width, fo ± Δ f , and performing the
inverse FT reduces noise with components faster or slower
than the fringe frequency but retains the fringes. The phase
at each point is found by taking the imaginary part after
applying the natural logarithm to the inverse FT of one-
sided frequency spectrum, fo + f1 = Im[ln(FT−1

inter)], where
f1 is due to the fringe shift. The real part, Re[FT−1

inter],
reconstructs interferograms with reduced noise, which can
be used to check the adequacy of the frequency width,
±Δ f [24]. Consult[19] and appendix in Ref. [34] for more
detailed information.

Figure 5 shows an interferogram recorded by a CCD with
7.4 μm per pixel and an estimated phase map by using the
FT method. The red dotted line in Figure 5(a) indicates
the original target surface, and the bright spot is caused
by the plasma emission near the probe beam wavelength,
0.527 μm. A few different methods were employed in order
to reduce the recorded plasma emission. First, 2ω specific
optics, such as mirrors, lens, beam splitters and 527 ± 5 nm
filters, were used along the probe path after the target area.
Second, a waveplate and a polarizer were used before and
after the target area, respectively, in order to remove 2ω

plasma emission at different polarization. Also, an aperture
was used at the light converging point of the first lens.

Notice that the phase values oscillate between 0 and 2π

(or −π and π ), Figure 5(b). Therefore, it is necessary to
remove the discontinuities between 0 and 2π by adding or
subtracting 2π , ‘phase unwrapping’[35], in order to find the
phase difference, Δφ. Figure 5(c) shows the final unwrapped
phase map of the interferogram.

Figure 6. A cylindrical geometry and the Abel transformation variables.

Once unwrapped phase maps are obtained from the ref-
erence and shot interferograms, the phase difference is esti-
mated by subtracting the two, ‖Δφ‖ = ‖φreference − φshot‖.
Note that the phase difference could be either positive or neg-
ative depending on how fringes shift, convex or concave, and
the order of the phase subtraction. Therefore, the absolute
value of the phase difference is used here in order to remove
any ambiguity due to the sign convention.

Notice that the word ‘phase’ was used for two different
things: the phase of fringes and the probe beam path length
(difference). Readers should be mindful how ‘phase’ is used
in the context and which definition it refers to.

3.2. Plasma index of refraction: linear operator method

The phase of the probe laser propagating through plasmas
with a cylindrical symmetry, Figure 6, can be expressed by
the Abel transform, and the plasma index of refraction, η, can
be estimated by performing the inverse Abel transform. The
Abel forward and inverse transform equations are expressed
as, respectively,

φ = 2π

λprobe

∫ xi

−xi

η(r) dr,

= 4π

λprobe

∫ Ro

y j

η(r)r dr√
r2 − y2

j

, (2)

η = 2λprobe

∫ R0

r

δφ/δy√
y2 − r2

dy, (3)

where a target surface is on the X–Z plane. The Abel
inversion has two short comings: it requires the derivatives
of the phase, δφ/δy, and the integrand diverges along the
symmetric axis, y → r . These problems can be overcome if
a linear operator method is used.

Dasch[25] showed that the inverse Abel transform could be
represented as a linear operator if any line-of-sight projected
data is taken at equal spacing,

ηplasma(ri ) = 1
Δr

∞∑
j=0

Di jφ(ri j ), (4)

where Δr is the data spacing (CCD pixel size/magnification),
ri = iΔr is the distance from the symmetric axis, and
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Figure 7. Two dimensional plasma density (cm−3) profile extracted from
the interferogram shown in Figure 5. The white color indicates densities
below 5 × 1018 cm−3.

Di j are the linear operator coefficients. The coefficients
depend on the numerical algorithm used to calculate but
are independent of the data spacing. Therefore, they can be
pre-calculated and stored for future use.

The change in the index of refraction due to plasmas,
‖Δη‖, is estimated by applying the linear operator to the
phase difference, ‖Δφ‖, and the plasma index of refraction is
calculated by using a relationship, ηplasma = 1−Δη. Finally,
the plasma density is calculated by using Equation (1).

Figure 7 shows the plasma density profile estimated from
the interferogram shown in Figure 5. The Onion Peeling
linear operator was chosen among several operators pre-
sented by Dasch. The right end of the profile, x = 0 μm,
is at the target–vacuum interface, and the origin, (0, 0) μm,
is centered at the laser focal spot. The red dotted curve
indicates the last visible fringe used as a masking line,
∼3 × 1019 cm−3, beyond which the plasma density becomes
erroneous due to the refraction of the probe beam and
plasma emission. The plasma density up to 5 × 1019 cm−3

was measured during experiments, which is similar to other
studies using optical interferometry[36, 37]. The measurement
near the density of 1×1021 cm−3 requires shorter wavelength
probe beam, such as soft x-ray[38].

4. Summary

An optical interferometry with the vertical single probe path
and the modified M–Z interferometer has been successfully
used in multiple campaigns. This scheme allowed more
diagnostics to be simultaneously fielded than the horizontal

probe path would have. The plasma density measure-
ments provided valuable data to benchmark radiation-
hydrodynamic simulation. The experimental measurements
and simulation of the plasma density together played
crucial roles to investigate the effects of pre-plasmas on the
relativistic electrons, which is a subject of future publication.
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