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LETTERS TO THE EDITOR

THE MOMENTS OF THE RANDOM VARIABLE FOR THE
NUMBER OF RETURNS OF A SIMPLE RANDOM WALK

ADRIENNE W. KEMP, * University of St Andrews

Abstract

The number of returns to the origin for a simple random walk
starting and ending at the origin is reconsidered; closed-form
expressions in Jl are given for Jl3 and Jl4.

RETURNS TO ORIGIN; DIFFERENTIAL EQUATION; GENERALIZED

HYPERGEOMETRIC FUNCTION

Let Xi, k =1, 2, · · · be independent identically distributed Bernoulli variables with
probability generating function (1 + s)/2, and suppose that ~ =Xl + ... + Xj' j =
1, 2, ... , 2n, with So =~n = O. Consider the random variable Y given by the number of
times that Sj =0 for j = 0, 1, 2, ... , 2n, i.e. the total number of visits to the origin for a
simple random walk starting and finishing at the origin. The support of Y is
2,3, ... .n + 1; let its probability generating function be Gy(s) = Ep.s".

The variable Y occurs in the random walk treatment of rank order indicators for
two-sample tests (Dwass (1967)), and analogously in a distribution-free CUSUM

procedure (McGilchrist and Woodyer (1975)). Closed-form expressions for the first two
moments were given by Katzenbeisser and Hackl (1986) in an investigation of the
usefulness of Y as an alternative to the Kolmogorov-Smirnov two-sample test statistic.
The asymptotic behaviour of the moments was examined by Katzenbeisser and Panny
(1986).

The purpose of this note is to obtain a differential equation for the moment
generating function, and hence a recurrence relation for the moment, by extending the
results in Kemp (1968); this enables the corrected moment u, to be expressed as a
polynomial in Jl of degree i. For numerical results highly accurate values of Jl are
needed, but Katzenbeisser and Hackl's exact formula for Jl is dfficult to compute when
n is large. A direct derivation of an asymptotic expansion for Jl is given, and its
numerical accuracy is discussed; this expansion is asymptotically equivalent to that given
by Katzenbeisser and Panny, and by Katzenbeisser and Hackl. As n~ 00 the
distribution of Y/(2n!) was shown by Katzenbeisser and Panny to converge to a
standard Weibull with parameter 2; calculation of the coefficients of skewness and
kurtosis shows that the rate of convergence is very slow.
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Dwass showed that the cumulative probabilities are
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(1) L Py = 2k(2n - k)! n!/(n - k)! (2n)!,
y>k

k = 1,2, ... , n.

(2)

By applying a recursive procedure to this formula Katzenbeisser and Hackl found that

u = 22nn! n!/(2n»;

however, when n is large this expression is difficult to calculate accurately. By the
Gauss duplication formula for the gamma function,

u = nfr(n + l)/r(n + !).
Stirling's and Barnes' asymptotic expansions for In I'(n + 1) and In I'(n + !) then give

In (f.J) =! In (n) + (n + !) In (n) - n + ~ In (2n) + 1/12n - 1/360n 3

+ 1/1260n 5
- ••• - n In (n) + n - ~ In (2n) + 1/24n

- 7/2880n 3 + 31/40320n 5
- •••

= ~ In (nn) + 1/8n - 1/192n 3 + 1/640n 5
- ••••

This asymptotic expansion is a logarithmic version of that obtained by Katzenbeisser
and Panny (1986) (using a result from Panny (1984», and by Katzenbeisser and Hackl
(1986); the logarithmic form is more appropriate for the calculation of the power of u.

From (2)

(3) u =?= (nn)! exp (1/8n - 1/192n 3
) .

The use of just two terms in the exponent in (3) is sufficient to give two decimal places
of accuracy for n = 1, three places for n = 2, four places for n = 3, at least five places
for n > 3, at least six places for n > 7, and at least seven places for n > 10.

Consider now the higher moments. From (1)

P; = 2y
-

l(2n - y)! (y -l)n!/(n - y + 1)! (2n)!, y = 2, ... , n + 1,
and

Gy(S) = s~f;.[2, 1 - n; 2 - 2n; 2sl/(2n - 1);

this shows that the distribution of Y belongs to the wide class of discrete distributions
studied by Kemp (1968).

Corollary (a) of Theorem 9 in Kemp (1968) states that the probability generating
function

satisfies the differential equation

(0 - c)(O - c + b l -1) ... (0 - c + bq -l)H(s) = As(8 - c + al) ... (8 - c + ap)H(s),

where 0 is the differential operator sd/ds.
Now the moment generating function about a constant m is exp (-mt)K(e t

) where
K(s) is the probability generating function, and

exp (-mt)[tYK(s)ls=et = (D + my{exp (-mt)K(e t
) }

where D is the differential operator d /dt; so the moment generating function
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and

exp (-mt)H(et) satisfies
(D +m - c)(D + m - c + b l -1)··· (D +m - c + bq -l){exp (-mt)H(et)}

=Aet(D + m - c + al) ... (D + m - c + ap ) { exp (-mt)H(et)}.

Identifying the coefficient of ti in this equation gives a recurrence relation for the
uncorrected moments when m = 0, and one for the corrected moments when m = J.l.

Because Gy(s) has the form H(s)
(D + J.l - 2)(D + J.l - 2n - 1){exp (-J.lt)Gy(et)}

=2et(D + J.l)(D + J.l - n - 1){exp (-J.lt)Gy(et)}

J.li+2 = - (2J.l + l)J.li+1 + (4n + 2 - J.l - J.l2)J.li

-±(~)[2J.li+2-j + 2(2J.l - n -- l)J.li+l-j + 2J.l(J.l - n - l)J.lj-tl.
j=l ]

Putting i = 0 gives Katzenbeisser and Hackl's result
J.l2 = 2(2n + 1) - J.l - J.l2.

When i = 1 and i = 2 we get

J.l3 = 2(n + 1 - J.l)J.l - (3 + 2J.l )J.l2
=-6(2n + 1) - J.l(6n - 1) + 3J.l2 + 2J.l3

and
J.l4 =2(n + 1- J.l)J.l + (8n + 4 - 9J.l - J.l2)J.l2 - (5 + 2J.l)J.l3

=2(2n + 1)(8n + 19) + J.l(12n - 13) - 16J.l2 - 6J.l3 - 3J.l4
respectively.

The highest power of J.l in the recurrence formula for J.li+2 is given by J.lJ.li+1 and J.l2J.li.
So, by induction, J.li is expressible as a polynomial in J.l of degree i, for all finite i.
Asymptotic approximations for the moments are obtainable by the use of expression (3)
for u.

Katzenbeisser and Panny note that, as n~oo, Y/(2n t ) tends to a standard Weibull
distribution with parameter 2. However, the rate of convergence appears to be too slow
for this result to be of much practical use, either for the Katzenbeisser and Hackl
two-sample test or for the corresponding non-parametric CUSUM procedure. When
n = 10, 100, 1000, 10000, 00, the coefficients of skewness and kurtosis (J.l3/ J.l~/2, J.l4/ J.l~)
take the values (0·168, 2·388), (0·498,2·947), (0·590, 3·149), (0·618, 3·214) and
(0·631, 3·245).
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