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1. Introduction

This paper is a sequel to the article [17] on operator-Lipschitz functions. It continues to
study operator-Lipschitz functions and functions close to them: commutator bounded and
operator stable functions. It also examines various properties of symmetrically normed
ideals. New classes of ideals (regular and Fuglede) are introduced and investigated in the
paper. A summary of the main results for the most important class of Schatten ideals
is given at the end of § 5. We refer the reader to [17] for a review of the history of the
subject, the impetus behind our study, general notation and various technical results.

Recall that we denote by B(H) the algebra of all bounded operators on a Hilbert
space H, by C(H) the ideal of all compact operators, and by F the ideal of all finite-
rank operators in B(H). A two-sided ideal J of B(H) is symmetrically normed (see [12])
if it is a Banach space with respect to a norm ‖ · ‖J and

‖AXB‖J � ‖A‖‖X‖J‖B‖ for A, B ∈ B(H) and X ∈ J. (1.1)

It is a ∗-ideal and, by the Calkin theorem, F ⊂ J ⊆ C(H). We denote by α compact
subsets of C and set

Jnor(α) = {A ∈ J : A is normal and Sp(A) ⊆ α}.
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Any continuous function g on α defines a map T → g(T ) from Jnor(α) to B(H).
Various smoothness conditions when imposed on this map characterize important classes
of operator-smooth functions. The condition that it is Lipschitzian, for example, defines
the class of J-Lipschitz functions. Thus a function g is called J-Lipschitzian on α if there
is D > 0 such that, for A, B ∈ Jnor(α),

g(A) − g(B) ∈ J and ‖g(A) − g(B)‖J � D‖A − B‖J . (1.2)

We denote by J- Lip(α) the space of all J-Lipschitz functions on α.
A function g is called commutator J-bounded on α if there is D > 0 such that, for

A ∈ Jnor(α) and X ∈ B(H),

g(A)X − Xg(A) ∈ J and ‖g(A)X − Xg(A)‖J � D‖AX − XA‖J . (1.3)

We denote by J- CB(α) the space of all commutator J-bounded functions on α.
In this paper we continue the study of intrinsic properties, interrelation and hierarchy

of the spaces J- Lip(α) and J- CB(α), and consider also another class of functions close
to them: operator J-stable functions.

It was shown in [17] that the space J- Lip(α) always contains J- CB(α) and that these
spaces coincide if and only if α is a J-Fuglede set, that is, there is C > 0 such that

‖A∗X − XA∗‖J � C‖AX − XA‖J , for A ∈ Jnor(α) and X ∈ B(H). (1.4)

For example, all compact sets in R are J-Fuglede for all s.n. ideals J and for J = B(H).
The possibility to reduce the study of J-Lipschitz functions to the study of commutator
J-bounded functions is very important, since it enables us to use the powerful techniques
of the interpolation theory to compare the spaces J- Lip(α) for different ideals. The
conditions under which a compact subset of C is a J-Fuglede set were studied in [17]
and will be further investigated here.

If all compact subsets of C are J-Fuglede, or, equivalently, if the unit disc is J-Fuglede,
then J is called a Fuglede ideal. So Fuglede ideals are the ideals J for which J- Lip(α) =
J- CB(α) for all compacts α in C.

In § 3 we obtain some sufficient condition for an ideal J to be Fuglede. We show that
if the Boyd indices (see [2]) of J lie in (1,∞), then J is Fuglede. This extends the results
of Weiss [25], Abdessemed and Davies [1] and Shulman [24] that all Sp, p ∈ (1,∞), are
Fuglede ideals. It also shows that Lorentz ideals Sr,p are Fuglede if 1 < p. We establish
that S1 and S∞ are not Fuglede ideals (the fact that Sb is not Fuglede follows from
Corollary 3.3 of [15]).

We also use Hadamard multipliers and the interpolation theory to compare the
spaces J- CB(α) for various ideals J . We prove that if the Boyd indices of J lie
between p and p/(p − 1), then Sp- CB(α) ⊆ J- CB(α). This implies, in particular, that
Sp- CB(α) ⊆ Sq- CB(α) when

min
(

p,
p

p − 1

)
� q � max

(
p,

p

p − 1

)
.

https://doi.org/10.1017/S001309150300018X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150300018X


Classes of operator-smooth functions. III 177

The normal operators A, B in the definitions of J-Lipschitz and of commutator J-
bounded functions in (1.2) and (1.3) belong to J . The question arises as to whether
these inequalities hold for all normal A, B ∈ B(H) with spectra in α. Using the theory
of complex interpolation and the results of Bercovici and Voiculescu in [3] on quasi-
diagonalization of operators modulo ideals, we obtain in § 4 that ‘extended’ inequalities
(1.2) and (1.3) hold for all separable ideals and their duals. This generalizes the result
of Kittaneh [18], who considered the case J = S2. We use these results in § 5 to study
J-stable functions.

A function g on α is called J-stable if the condition A−B ∈ J implies g(A)−g(B) ∈ J

for all A, B ∈ Jnor(α). The property of J-stability of functions is important for various
applications in mathematical physics. It was studied by Daletskii and Krein [8], Birman
and Solomyak [6], Farforovskaya [10], Peller [22] and others. For separable ideals and
their duals (see Corollary 4.6) this property of functions is, generally speaking, weaker
than the property to be J-Lipschitzian. In § 5 we show that in many important cases
(J = Sp, 1 < p < ∞, for example) they are equivalent.

Johnson and Williams [15] constructed a normal operator A and a bounded X such
that [A, X] ∈ S1 and [A∗, X] /∈ S1. Weiss [25] asked whether for compact X, the
condition [A, X] ∈ S1 always implies [A∗, X] ∈ S1. A negative answer to this question
was given in [23]. It was shown in [16] that, for any p > 1, one can find X ∈ Sp such
that [A, X] ∈ S1 and [A∗, X] /∈ S1. In § 5 we construct a normal compact operator A

and a compact operator X such that [A, X] ∈ S1, while [A∗, X] /∈ S1.

2. Preliminaries

Let c0 be the space of all sequences of real numbers converging to 0, let ĉ be the sub-
space of c0 of sequences with a finite number of non-zero elements, and let Φ be the
set of all symmetric norming (s.n.) functions on ĉ (see [12, § III.3]). For ξ = {ξi} ∈ c0,
set ξ(n) = {ξ1, . . . , ξn, 0, . . . }. Then ξ(n) ∈ ĉ. For φ ∈ Φ, the sequence φ(ξ(n)) does not
decrease. Set φ(ξ) = limφ(ξ(n)) and cφ = {ξ ∈ c0 : φ(ξ) < ∞}.

For A ∈ C(H), let s(A) = {si(A)} be the non-increasing sequence of all eigenvalues
of (A∗A)1/2 repeated according to multiplicity. For φ ∈ Φ, the set Jφ = {A ∈ C(H) :
s(A) ∈ cφ} with norm ‖A‖Jφ = φ(s(A)) is an s.n. ideal. The closure Jφ

0 of F in ‖ · ‖Jφ is
a separable ideal and Jφ

0 ⊆ Jφ. An s.n. ideal is separable if and only if it coincides with
some Jφ

0 (see [12]). For some φ, Jφ = Jφ
0 . An important class of such functions consists

of

φp(ξ) =
( ∞∑

i=1

|ξi|p
)1/p

for 1 � p < ∞, and φ∞(ξ) = sup ‖ξi‖.

The corresponding ideals Sp are called Schatten ideals. We denote C(H) by S∞ and
B(H) by Sb.

For φ ∈ Φ, there is the adjoint function φ∗ such that the ideal Jφ∗
is isomorphic to the

dual space of Jφ
0 : any bounded functional on Jφ

0 has the form

F (X) = Tr(XT ) = Tr(TX), where T ∈ Jφ∗
and ‖F‖ = ‖T‖Jφ∗ . (2.1)
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Let

p′ =

⎧⎪⎪⎨
⎪⎪⎩

p

p − 1
, for 1 < p < ∞,

1, for p = ∞,

b, for p = 1.

Then φp′ = (φp)∗, so Sp′
is isometrically isomorphic to the dual space of Sp.

The results below are known. We include their proof for the reader’s convenience.

Proposition 2.1. Let J and I be s.n. ideals.

(i) If J ⊆ I, then there exists c > 0 such that ‖X‖I � c‖X‖J for X ∈ J .

(ii) There is a unique, up to equivalence (see [12, III.3.4]), function φ ∈ Φ such that
Jφ

0 ⊆ J ⊆ Jφ. The norms ‖ · ‖Jφ , ‖ · ‖J coincide on Jφ
0 and ‖T‖Jφ � ‖T‖J for T ∈ J .

(iii) If J is reflexive, then there is φ ∈ Φ such that Jφ
0 = J = Jφ.

Proof. Consider the norm ‖X‖˜ = max(‖X‖J , ‖X‖I) on J . Since ‖X‖ � ‖X‖J and
‖X‖ � ‖X‖I , for X ∈ J , one can easily check that (J, ‖ · ‖˜) is a Banach space. The
identity operator from (J, ‖ · ‖˜) to (J, ‖ · ‖J) is bounded. By Banach’s theorem, the
inverse is also bounded, so there is c > 0 such that ‖X‖I � c‖X‖J . Part (i) is proved.

Consider ‖ · ‖J on F . It follows from III.3.1 of [12] that there is φ ∈ Φ such that
‖X‖J = ‖X‖Jφ , for X ∈ F . Hence Jφ

0 ⊆ J and the norms ‖ · ‖J , ‖ · ‖Jφ coincide on Jφ
0 .

Let finite-dimensional projections Pn strongly converge to 1. For T ∈ J , the operators
PnT belong to F , strongly converge to T and

‖PnT‖Jφ = ‖PnT‖J � ‖Pn‖‖T‖J = ‖T‖J .

By Theorem III.5.1 of [12], T ∈ Jφ and ‖T‖Jφ � ‖T‖J . Thus Jφ
0 ⊆ J ⊆ Jφ.

Suppose that also Jψ
0 ⊆ J ⊆ Jψ. By (i), there are c1, c2 > 0 such that ‖X‖Jψ �

c1‖X‖J , for X ∈ J , and ‖X‖J � c2‖X‖Jψ
0

for X ∈ Jψ
0 . Hence the norms ‖ · ‖J and

‖ · ‖Jψ are equivalent on F , so the norms ‖ · ‖Jφ and ‖ · ‖Jψ are equivalent on F . Thus
(see [12, III.4.2]) φ, ψ are equivalent and Jφ = Jψ. Part (ii) is proved.

Let J be reflexive. By (ii), Jφ
0 ⊆ J ⊆ Jφ. Since Jφ

0 is a closed subspace of J , Jφ
0 is

also reflexive (see [13, Proposition 67]). Since Jφ∗
is the dual of Jφ

0 , it is reflexive. Hence
its closed subspace Jφ∗

0 is also reflexive. Since Jφ is the dual of Jφ∗

0 , the ideal Jφ∗

0 is the
dual of Jφ. If the dual of a Banach space is separable, the space itself is separable. Thus,
since Jφ∗

0 is separable, Jφ is separable, so Jφ
0 = J = Jφ. �

3. Boyd indices and Fuglede ideals

Let J ⊂ I be s.n. ideals. A linear operator T on I is called bounded on (J, I) if it is
bounded on I, preserves J and its restriction T |J to J is bounded in ‖ · ‖J . We will
denote by ‖T‖I and ‖T‖J the norms of the operator T on I and J . The set L(J, I) of all
bounded operators on (J, I) is a Banach space with norm max(‖T‖I , ‖T‖J). We consider
(in a simple form needed for our purposes) the notion of an interpolation space (see [19]).
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Definition 3.1. Let J ⊂ I be s.n. ideals. A Banach space (K, ‖ · ‖K), J ⊂ K ⊂ I,
is called an interpolation space for the pair (J, I) if any bounded operator T on (J, I)
preserves K and the restriction T |K is a bounded operator on K.

Lemma 3.2. Let (K, ‖ · ‖K) be an interpolation space for a pair (J, I) of s.n. ideals.

(i) There is a norm ‖ · ‖′
K on K equivalent to ‖ · ‖K such that (K, ‖ · ‖′

K) is an s.n.
ideal.

(ii) If for each T ∈ L(J, I), ‖T‖K � ‖T‖t
I‖T‖1−t

J for some t ∈ [0, 1], then (K, ‖ · ‖K) is
an s.n. ideal.

Proof. The map T → T |K from L(J, I) into B(K) is closed. By the closed graph
theorem, there is C > 0 such that

‖T‖K � C max(‖T‖I , ‖T‖J) for all T ∈ L(J, I). (3.1)

For A ∈ B(H), the left and right multiplication operators LA, RA preserve I and J

and ‖A‖ = ‖LA‖I = ‖LA‖J = ‖RA‖I = ‖RA‖J . Therefore, LA and RA are bounded on
(J, I). Hence they preserve K, so that K is an ideal.

For all A, B ∈ B(H) and X ∈ K, it follows from (3.1) that

‖AXB‖K = ‖LARBX‖K � C max(‖LARB‖I , ‖LARB‖J)‖X‖K � C‖A‖‖B‖‖X‖K .

Define a new norm on K by the formula

‖X‖′
K = sup{‖AXB‖K : A, B ∈ B(H), ‖A‖ � 1, ‖B‖ � 1}.

It is equivalent to ‖ · ‖K , since ‖X‖K = ‖1X1‖K � ‖X‖′
K � C‖X‖K . For F, G ∈ B(H),

‖FXG‖′
K = ‖F‖‖G‖

∥∥∥∥ F

‖F‖X
G

‖G‖

∥∥∥∥′

K

� ‖F‖‖G‖‖X‖′
K .

Thus (K, ‖ · ‖′
K) is an s.n. ideal. Part (i) is proved.

For A, B ∈ B(H) and X ∈ K, we have

‖AXB‖K = ‖LARBX‖K � ‖LARB‖K‖X‖K

� ‖LARB‖t
I‖LARB‖1−t

J ‖X‖K � ‖LA‖t
I‖RB‖t

I‖LA‖1−t
J ‖RB‖1−t

J ‖X‖K

= ‖A‖t‖B‖t‖A‖1−t‖B‖1−t‖X‖K = ‖A‖‖B‖‖X‖K .

Thus (K, ‖ · ‖K) is an s.n. ideal. �

Let A = diag(λ1, . . . , λn, . . . ) be a diagonal operator with respect to a basis {en} and
let a compact α in C contain all λn. For a continuous function g on α, set

mij =

⎧⎨
⎩

g(λi) − g(λj)
λi − λj

, if λi �= λj ,

0, if λi = λj ,

and consider the matrix M(A, g) = (mij). With each X ∈ B(H) we associate the matrix
(xij), with xij = (Xej , ei), and set M(A, g)◦X = (mijxij). The matrix M(A, g) is called
a Hadamard J-multiplier (see [19]), if M(A, g) ◦ X belongs to J for each X ∈ J .
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Theorem 3.3. Let φ be an s.n. function, let φ∗ be its adjoint, and suppose that
Jφ

0 ⊂ Jφ∗
. Let g be a commutator Jφ-bounded function on α. If an s.n. ideal K is an

interpolation space for the pair (Jφ
0 , Jφ∗

), then there is D > 0 such that

‖[g(A), X]‖K � D‖[A, X]‖K for A ∈ Knor(α) and X ∈ C(H).

If K is Jψ or Jψ
0 , for some s.n. function ψ, then g is commutator K-bounded.

Proof. By Corollary 5.4 of [17], g is commutator Jφ∗
-bounded on α. Since K ⊂ Jφ∗

,
it follows from Corollary 5.3 of [17] that, for all A ∈ Knor(α), the matrices M(A, g)
are Hadamard Jφ∗

-multipliers and there is D > 0 such that ‖M(A, g)‖Jφ∗ � D. By
Lemma 5.1 of [17], M(A, g) are also Hadamard Jφ

0 -multipliers and ‖M(A, g)‖Jφ
0

� D.
Hence all M(A, g) are bounded on the pair (Jφ

0 , Jφ∗
). Since K is an interpolation space

for this pair, M(A, g) are Hadamard K-multipliers. By (3.1), ‖M(A, g)‖K � CD. Hence,
by Proposition 5.2 of [17], ‖[g(A), X]‖K � D‖[A, X]‖K for A ∈ Knor(α), X ∈ K and
D = CD.

Let X ∈ C(H). Choose Xn in K such that ‖X − Xn‖ → 0. Since g is commutator
Jφ∗

-bounded on α, it is Jφ∗
-Lipschitzian. Hence it is Lipschitzian on α and it follows

from Lemma 3.1 of [17] that g(A) − g(0)1 ∈ K. Hence

‖[g(A), X]‖K � ‖[g(A), Xn]‖K + ‖[g(A) − g(0)1, X − Xn]‖K

� D‖[A, Xn]‖K + 2‖g(A) − g(0)1‖K‖X − Xn‖.

Since ‖[A, Xn]− [A, X]‖K � 2‖X −Xn‖‖A‖K , we have ‖[A, Xn]‖K → ‖[A, X]‖K . There-
fore, ‖[g(A), X]‖K � D‖[A, X]‖K .

If I is Jψ or Jψ
0 , then, by Proposition 3.4 of [17], g is commutator K-bounded on α. �

Corollary 3.4. Let p ∈ {1,∞, b}. Every commutator Sp-bounded function g on α is
commutator Jφ-bounded on α for each norming function φ.

Proof. By Corollary 5.4 of [17], g is commutator S1- and S∞-bounded. Mityagin [21]
obtained (see also Theorem 3.B in [5]) that any ideal Jφ is an interpolation space for the
pair (S1,S∞). Applying Theorem 3.3, we complete the proof. �

For further applications of Theorem 3.3 we consider the Boyd indices (see [2,20]) of
s.n. ideals J . Set

β∗
J(n) = inf

X∈J

∥∥∥ n︷ ︸︸ ︷
X ⊕ · · · ⊕ X

∥∥∥
J

‖X‖J
and γ∗

J(n) = sup
X∈J

∥∥∥ n︷ ︸︸ ︷
X ⊕ · · · ⊕ X

∥∥∥
J

‖X‖J
(3.2)

(see Remark 2.1 in [17]). The Boyd indices of J are defined by the formulae

pJ = sup
n

(
ln(n)

ln(γ∗
J(n))

)
and qJ = inf

n

(
ln(n)

ln(β∗
J(n))

)
. (3.3)
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For an s.n. function φ, the symmetric sequence space cφ
0 is the closure of the space ĉ

with respect to the norm ‖ξ‖ = φ(ξ), for ξ ∈ ĉ. Clearly, cφ
0 ⊆ cφ (see § 2). Consider the

dilation maps Dn on cφ
0 defined by the formula

Dn(ξ) =
( n︷ ︸︸ ︷
ξ1, . . . , ξ1,

n︷ ︸︸ ︷
ξ2, . . . , ξ2, . . . ,

n︷ ︸︸ ︷
ξk, . . . , ξk, . . .

)
and their left inverses

D1/n(ξ) =
1
n

( n∑
i=1

ξi,

2n∑
i=n+1

ξi, . . . ,

kn∑
i=(k−1)n+1

ξi, . . .

)
,

where ξ = (ξ1, ξ2, . . . , ξk, . . . ). The Boyd indices of cφ
0 are defined by the formulae

pφ = sup
n

(
ln(n)

ln ‖Dn‖

)
= lim

n→∞

(
ln(n)

ln ‖Dn‖

)
,

qφ = inf
n

(
ln(1/n)

ln ‖D1/n‖

)
= lim

n→∞

(
ln(1/n)

ln ‖D1/n‖

)
.

The norm ‖D1/n‖ can be expressed in terms of the operator Dn:

‖D1/n‖−1 = inf
ξ∈cφ

0

‖Dn(ξ)‖
‖ξ‖ . (3.4)

Indeed, let π be the cyclic permutation modulo n of the set of positive integers: π(k) =
k + 1, if k is not divisible by n, and π(k) = k − n + 1, if k is divisible by n. For
ξ = (ξ1, . . . , ξk, . . . ), set Π(ξ) = (ξπ(1), . . . , ξπ(k), . . . ). Then

D1/nDn(ξ) = ξ and DnD1/n(ξ) =
1
n

(ξ + Π(ξ) + Π2(ξ) + · · · + Πn−1(ξ)).

Since φ(ξ) = ‖ξ‖ = ‖Πi(ξ)‖, for all i, we have ‖DnD1/n(ξ)‖ � ‖ξ‖. Denote by λ the
right-hand side expression in (3.4). Then

λ � inf
η∈cφ

0

‖DnD1/n(η)‖
‖D1/n(η)‖ � inf

η∈cφ
0

‖η‖
‖D1/n(η)‖ =

(
sup
η∈cφ

0

‖D1/n(η)‖
‖η‖

)−1

= ‖D1/n‖−1.

In order to finish the proof of (3.4), observe that, on the other hand,

λ = inf
ξ∈cφ

0

(‖D1/nDn(ξ)‖
‖Dn(ξ)‖

)−1

=
(

sup
ξ∈cφ

0

‖D1/nDn(ξ)‖
‖Dn(ξ)‖

)−1

�
(

sup
η∈cφ

0

‖D1/n(η)‖
‖η‖

)−1

= ‖D1/n‖−1.

Let J = Jφ
0 be separable. For X ∈ J , let s(X) be the non-increasing sequence of the

eigenvalues of the operator (X∗X)1/2. Then s : X → s(X) maps J onto cφ
0 , ‖X‖J =

‖s(X)‖ and

s(

n︷ ︸︸ ︷
X ⊕ · · · ⊕ X) = Dn(s(X)).
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Using this and (3.4) we obtain

‖D1/n‖−1 = inf
X∈J

‖Dn(s(X))‖
‖s(X)‖ = β∗

J(n) and ‖Dn‖ = sup
X∈J

‖Dn(s(X))‖
‖s(X)‖ = γ∗

J(n).

Therefore, pJφ
0

= pφ and qJφ
0

= qφ. We also have

1 � ‖D1/n‖−1 � ‖Dn‖ � n and ‖Dn+1‖ � ‖Dn‖ + 1, so pφ � qφ. (3.5)

If J �= S∞, then ‖Dn‖ → ∞, as n → ∞ (see [12, III.§ 3]).
For Sr, with r ∈ [1,∞), we have ‖D1/n‖ = ‖Dn‖ = n1/r, so pSr = qSr = r.
The Lorentz space lr,q, for 1 � r, q < ∞, consists of all sequences ξ = (ξ1, ξ2, . . . ) ∈ c0

such that

‖ξ‖r,q = φ(ξ) = φ(ξ∗) =
( ∞∑

k=1

k(r/q)−1(ξ∗
k)r

)1/r

< ∞,

where ξ∗ is the non-increasing rearrangement of (|ξ1|, |ξ2|, . . . ). The Lorentz s.n. ideal
Sr,q (see [4]) consists of all compact operators X such that ‖X‖r,q = φ(s(X)) < ∞.

Proposition 3.5. For J = Sr,q, pJ = qJ = r.

Proof. Set β = (r/q) − 1 and λk,n =
∑n

i=1[(k − 1)n + i]β . We have

‖Dnξ‖r
r,q =

∞∑
k=1

(ξ∗
k)r

n∑
i=1

[(k − 1)n + i]β =
∞∑

k=1

(ξ∗
k)rλk,n. (3.6)

(1) Let r < q, so that −1 < β < 0. Then

kβn1+β = n(kn)β � λk,n �
n∑

i=1

(ki)β = kβ
n∑

i=1

iβ � kβ

(
1 +

∫ n

1
xβ dx

)
=

n1+β

1 + β
kβ .

Therefore,

n1+β(‖ξ‖r,q)r � (‖Dnξ‖r,q)r � n1+β

1 + β
(‖ξ‖r,q)r.

Thus

‖Dn‖ �
(

n1+β

1 + β

)1/r

and, by (3.4), n(1+β)/r � ‖D1/n‖−1. Using (3.5), we have

q � lim
n→∞

(
ln(n)

ln ‖Dn‖

)
= pφ � qφ = lim

n→∞

(
ln(1/n)

ln ‖D1/n‖

)
� q.

(2) If r = q, then Sq,q = Sq. By (3.6), ‖Dn‖ = n1/q, so pφ = qφ = q.
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(3) Let r > q, so 0 < β. Then

n1+β

1 + β
kβ � λk,n � n1+βkβ ,

since

n1+β

1 + β
[k1+β − (k − 1)1+β ] =

∫ n

0
[(k − 1)n + x]β dx � λk,n � n(kn)β = n1+βkβ .

Repeating the argument of part (1), we obtain that pφ = qφ = q. �

For p ∈ (1,∞), set

p− = min(p, p′), p+ = max(p, p′), where
1
p

+
1
p′ = 1. (3.7)

Corollary 3.6. Let J be a separable s.n. ideal. If p− < pJ and qJ < p+, then
each commutator Sp-bounded function g on α ⊂ C is commutator J-bounded on α. In
particular, g is commutator Sq- and Sr,q-bounded on α for p− < q < p+ and 1 � r < ∞.

Proof. Let p < p′. By Corollary 3.4 of [2], J is an interpolation space for (Sp,Sp′
).

Since φp′ = (φp)∗ and Sp ⊂ Sp′
, the result follows from Theorem 3.3. �

Recall that α ⊂ C is J-Fuglede if the function h(z) = z̄ is commutator J-bounded on
α, that is, (1.4) holds.

Definition 3.7. An s.n. ideal J is called Fuglede if there is C > 0 such that, for all
normal A ∈ J and all X ∈ B(H),

‖A∗X − XA∗‖J � C‖AX − XA‖J .

Evidently, an ideal J is Fuglede if and only if all compact subsets of C are J-Fuglede.
This is equivalent to the condition that the unit disc of C is J-Fuglede. If J is Fuglede,
it follows from Proposition 4.5 of [17] that the spaces of J-Lipschitz and of commutator
J-bounded functions coincide on each compact in C. It was proved in [1, 24, 25] that
all Schatten ideals Sp, 1 < p < ∞, are Fuglede. It follows from the results of [15] that
Sb = B(H) is not Fuglede. From this and from Corollary 5.4 of [17] and Corollary 2.5
we obtain the following result.

Corollary 3.8.

(i) Let φ∗ be the adjoint of φ. If one of the ideals Jφ, Jφ∗
, Jφ

0 , Jφ∗

0 is Fuglede, then
the others are also Fuglede ideals.

(ii) If 1 < pJ and qJ < ∞, for a separable ideal J , then J is a Fuglede ideal. In
particular, all Lorentz ideals Sr,q with q > 1 are Fuglede ideals.

(iii) The ideals S1, S∞ and Sb are not Fuglede ideals.

https://doi.org/10.1017/S001309150300018X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150300018X


184 E. Kissin and V. S. Shulman

Problem 3.9. Are the Lorentz ideals Sr,1 Fuglede ideals if 1 < r?

We now return to the subject of J-Lipschitz functions. Combining the results of Propo-
sition 4.5 of [17], of Corollaries 3.6 and 5.4 of [17], and of Corollaries 2.3 and 2.5 yields
the following corollary.

Corollary 3.10. Let g be a Sp-Lipschitz function on α ⊂ C.

(i) Let p ∈ (1,∞). If p− < pJ and qJ < p+, for a separable ideal J = Jφ
0 , then g is a

Jφ
0 -, Jφ∗

0 -, Jφ- and Jφ∗
-Lipschitz function on α. In particular, g is Sr,q-Lipschitzian

on α for p− < q < p+ (see Proposition 3.5).

(ii) Let p ∈ {1,∞, b} and let α be a Sp-Fuglede set. Then g is Jφ
0 - and Jφ-Lipschitzian

on α for any φ.

Let J- Lip(a, b) be the space of all J-Lipschitz functions on [a, b]. By Corollary 3.6 of
[17], functions in Sb- Lip(a, b) are differentiable. For p ∈ (1,∞), the spaces Sp- Lip(a, b)
are larger than Sb- Lip(a, b) and contain Lipschitz, non-differentiable functions (see [9]).
Peller [22] showed that B1

∞1(a, b) ⊆ Sb- Lip(a, b) ⊆ B1
11(a, b), where B1

∞1(a, b) and
B1

11(a, b) are Besov classes of functions on [a, b] (for another proof and some interest-
ing related results, see [7]). Combining this with Proposition 5.5 (ii) of [17] and with
Corollary 2.9 (ii) yields the following corollary.

Corollary 3.11. For any s.n. function φ,

B1
∞1(a, b) ⊆ S

b- Lip(a, b) = S
1- Lip(a, b) ⊆ Jφ- Lip(a, b) = Jφ

0 - Lip(a, b)

= Jφ∗
- Lip(a, b) = Jφ∗

0 - Lip(a, b) ⊆ S
2- Lip(a, b) = Lip(a, b).

4. Extension of domains of inequalities (1.2) and (1.3)

The normal operators in the definitions of J-Lipschitz and of commutator J-bounded
functions (see (1.2) and (1.3)) belong to the ideal J . The question arises as to whether
inequalities (1.2) and (1.3) hold for all normal operators in B(H). More precisely, we
study for which s.n. ideals J the following properties hold.

(i) If g is J-Lipschitzian on α, then there is D > 0 such that, for all normal operators
A, B with spectrum in α, the condition A − B ∈ J implies

g(A) − g(B) ∈ J and ‖g(A) − g(B)‖J � D‖A − B‖J .

(ii) If g is commutator J-bounded on α, then there is D > 0 such that, for any normal
A with Sp(A) ⊆ α and any X in B(H), the condition [A, X] ∈ J implies

[g(A), X] ∈ J and ‖[g(A), X]‖J � D‖[A, X]‖J .

It will be shown that (i) and (ii) hold for all ideals Jφ and Jφ
0 . This extends the result

of Kittaneh [18] (see also Jocic [14]), who considered the case J = S2.
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Let J = Jφ
0 . For A ∈ B(H), the operator δA : X → [A, X] is bounded on J . If T ∈ Jφ∗

,
it follows from (2.1) that, for X ∈ J ,

FT (δA(X)) = Tr(AXT ) − Tr(XAT ) = Tr(XTA) − Tr(XAT ) = F−δA(T )(X). (4.1)

Let L be a ∗-subspace of J : X ∈ L implies X∗ ∈ L. Denote by L⊥ its annihilator in Jφ∗
:

L⊥ = {T ∈ Jφ∗
: FT (X) = Tr(XT ) = 0 for X ∈ L}.

If T ∈ L⊥, then

FT ∗(X) = Tr(T ∗X) = Tr((X∗T )∗) = Tr(X∗T ) = FT (X∗) = 0,

for X ∈ L. Therefore, T ∗ ∈ L⊥, so L⊥ is a ∗-subspace of Jφ∗
.

Let A be a normal operator and {A}′ be its commutant. Let {µi}i∈I be the set of all
eigenvalues of A and let Qi be the projections on the corresponding eigenspaces. Then

B(H) � X → ΨA(X) =
∑
i∈I

QiXQi

is a map from B(H) into {A}′ and (ΨA)2 = ΨA. It follows from Theorem III.4.2 of [12]
that ΨA(X) ∈ J , for X ∈ J , and ‖ΨA(X)‖J � ‖X‖J . Hence ΨA maps J into {A}′ ∩ J

and ‖ΨA‖ � 1. By δA(J) we denote the closure of δA(J) in ‖ · ‖J .
We will now generalize Theorem 2.2 of [16] to all separable s.n. ideals.

Theorem 4.1. Let J = Jφ
0 �= S1 and let A be a normal operator in B(H). Then

(i) Ker(δA) = {A}′ ∩ J = {X ∈ J : ΨA(X) = X} so ΨA is a projection on Ker(δA);

(ii) Ker(ΨA) = δA(J) and J is the direct sum of δA(J) and Ker(δA).

Proof. Since ΨA maps J to {A}′ ∩ J , we have {X ∈ J : ΨA(X) = X} ⊆ {A}′ ∩ J .
Conversely, let X = X∗ ∈ {A}′ ∩ J . Then X =

⊕∞
j=1 λjPj , where Pj are the mutually

orthogonal projections on the finite-dimensional eigenspaces Lj of X. All Pj ∈ {A}′ ∩ J .
Fix j. The subspace Lj is invariant for A and, therefore, decomposes in the orthogonal
sum of eigenspaces of the operator A|Lj . Hence Pj = ΨA(Pj).

The finite sums Xn =
⊕n

j=1 λjPj converge to X in ‖ · ‖J . Since ‖ΨA‖ � 1,

‖X − ΨA(X)‖J � ‖X − Xn‖J + ‖ΨA(X) − Xn‖J

= ‖X − Xn‖J +
∥∥∥∥ΨA

(
X −

n⊕
j=1

λjPj

)∥∥∥∥
J

� 2‖X − Xn‖J → 0.

Hence ΨA(X) = X. By Fuglede’s theorem, {A}′ ∩J is a ∗-algebra. Thus {A}′ ∩J ⊆ {X ∈
J : ΨA(X) = X} and part (i) is proved.

Let us show that L = δA(J) + ({A}′ ∩ J) is dense in J . We have

L⊥ = δA(J)⊥ ∩ ({A}′ ∩ J)⊥.
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Since {A}′ ∩ J is a ∗-subspace, ({A}′ ∩ J)⊥ is a ∗-subspace of Jφ∗
. If T ∈ δA(J)⊥, it

follows from (4.1) that δA(T ) = 0. Hence T ∈ {A}′ ∩ Jφ∗
, so (δA(J))⊥ = {A}′ ∩ Jφ∗

is a
∗-algebra. Thus L⊥ is a ∗-subspace of {A}′ ∩ Jφ∗

.
Let T = T ∗ ∈ L⊥ ⊆ Jφ∗

. It is compact, so T =
⊕∞

i=1 λiPi, where the Pi are mutually
orthogonal finite-dimensional projections. Since T ∈ {A}′, all Pi belong to {A}′ ∩J ⊆ L.
Hence 0 = FT (Pi) = Tr(PiT ) = λi dim(Pi). Thus T = 0. Since L⊥ is a ∗-space, L⊥ = {0},
so L is dense in J .

We now proceed with the proof of (ii). Since ΨA is a projection on {A}′ ∩ J ,

J = Ker(ΨA) +̇ ({A}′ ∩ J). (4.2)

Taking into account that QiA = AQi = µiQi, for all Qi, we obtain that

ΨA(δA(X)) =
∑
i∈I

(QiAXQi − QiXAQi) =
∑
i∈I

(µiQiXQi − µiQiXQi) = 0

for any X ∈ J . Since ‖ΨA‖ � 1, we conclude that δA(J) ⊆ Ker(ΨA).
Let X ∈ Ker(ΨA). Since L is dense in J , there are Xn ∈ δA(J) and Yn ∈ {A}′ ∩J such

that ‖X − Xn − Yn‖J → 0. Since ΨA(Yn) = Yn and ΨA(Xn) = 0, it follows that

‖Yn‖J = ‖ΨA(Yn)‖J = ‖ΨA(X − Xn − Yn)‖J � ‖X − Xn − Yn‖J → 0.

Hence ‖X − Xn‖J → 0, so Ker(ΨA) = δA(J) and part (ii) follows from (4.2). �

Theorem 1 of [24] is a special case of the following result.

Proposition 4.2. Let Y be a linear manifold in a Banach space X and a Banach
space with norm ‖ · ‖Y. Let S and T be commuting operators on X. Assume that

(i) Ker(S) ⊆ Ker(T );

(ii) Ker(T ) ∩ TX = {0}, where TX is the norm closure of TX;

(iii) S and T preserve Y and the operators S|Y and T |Y are bounded on Y;

(iv) ‖y‖X � ‖y‖Y and ‖Ty‖Y � ‖Sy‖Y, for y ∈ Y;

(v) Y is the direct sum of Ker(S|Y) and the closure SY of SY in ‖ · ‖Y.

Let P be the projection in Y on Ker(S|Y) along SY. Then

Sx ∈ Y, for x ∈ X, implies Tx ∈ Y and ‖Tx‖Y � (1 + ‖P‖)‖Sx‖Y.

Proof. Define an operator U on Ker(S|Y) +̇ SY by the formula

Uz = 0, for z ∈ Ker(S|Y), and USy = Ty, for y ∈ Y.

By (iv),

‖U(z + Sy)‖Y = ‖Ty‖Y � ‖Sy‖Y � ‖z + Sy‖Y + ‖P (z + Sy)‖Y � (1 + ‖P‖)‖z + Sy‖Y.
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Hence U extends to a bounded operator on Y and ‖U‖ � 1 + ‖P‖. Since S, T commute
and Ker(S) ⊆ Ker(T ), we have SU(z + Sy) = STy = TSy = T (z + Sy). Thus

T |Y = US|Y = SU |Y.

Let x ∈ X and Sx ∈ Y. Then S(Tx − USx) = STx − SUSx = STx − TSx = 0. Hence
Tx − USx ∈ Ker(S). By (i), Tx − USx ∈ Ker(T ). Since Sx ∈ Y, there are z ∈ Ker(S|Y)
and yn ∈ Y such that ‖Sx − (z + Syn)‖Y → 0. Therefore,

‖USx−Tyn‖X � ‖USx−Tyn‖Y = ‖USx−U(z+Syn)‖Y � ‖U‖‖Sx−(z+Syn)‖Y → 0.

Thus USx ∈ TX, so Tx − USx ∈ Ker(T ) ∩ TX. It follows from (ii) that Tx = USx ∈ Y

and ‖Tx‖Y � ‖U‖‖Sx‖Y � (1 + ‖P‖)‖Sx‖Y. �

A bounded operator T on a Banach space X is called hermitian, if ‖ exp(itT )‖X = 1
for t ∈ R. It is called normal if T = A + iB, where A and B are commuting hermitian
operators. Fong [11] showed that if T is normal, then

Ker(T ) ∩ TX = {0}. (4.3)

Let K be a self-adjoint operator in B(H). The operator δK(X) = KX − XK is
hermitian on any s.n. ideal J , since

‖ exp(itδK)X‖J = ‖eitKXe−itK‖J = ‖X‖J for X ∈ J.

If S is a normal operator on H, S = K +iL, where the operators K and L are self-adjoint
and commute. Then the operators δK and δL on J are hermitian and commute, so the
operator δS = δK + iδL is normal on J . We will show now that ‘extended’ inequalities
(1.2) and (1.3) hold for all separable s.n. ideals.

Theorem 4.3. Let J be a separable s.n. ideal and let g be a commutator J-bounded
function on α ⊂ C. There is D > 0 such that, for X ∈ B(H) and normal operators A, B

with spectra in α, AX − XB ∈ J implies

g(A)X − Xg(B) ∈ J and ‖g(A)X − Xg(B)‖J � D‖AX − XB‖J .

Proof. Since g is commutator J-bounded, it follows from Proposition 3.4 (iii) of [17]
that there is D > 0 such that, for all normal A with Sp(A) ⊆ α and all X ∈ J ,

‖δg(A)(X)‖J = ‖[g(A), X]‖J � D‖[A, X]‖J = D‖δA(X)‖J . (4.4)

Let J �= S1. The operator g(A) is normal, so that the operators δA, δg(A) are normal
on J and on B(H), commute and Ker(δA) ⊆ Ker(δg(A)). It follows from Theorem 4.1
that J = Ker(δA|J) +̇ δA(J) and the projection on Ker(δA|J) has norm 1. By (4.3),
Ker(δg(A)) ∩ δg(A)(B(H)) = {0}. Replacing T in Proposition 4.2 by δg(A), S by δA, X

by B(H) and Y by J , we obtain that, for any X ∈ B(H),

[A, X] ∈ J implies [g(A), X] ∈ J and ‖[g(A), X]‖J � 2D‖[A, X]‖J .

Repeating now the argument of Proposition 4.1 of [17], we complete the proof of the
case J �= S1. The case when J = S1 will be considered in Theorem 4.5. �
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To prove an analogue of Theorem 4.3 for all ideals Jφ, we need the following result.

Lemma 4.4. Let J ⊂ I ⊆ C(H) and let J = Jφ. Then there are s.n. ideals {J(t)}t∈[0,1]

such that

(i) J = J(1) ⊆ J(t) ⊆ J(s) ⊆ J(0) = I, for s � t in (0, 1);

(ii) all functions ϕX(t) = ‖X‖J(t) are continuous on [0, 1] for X ∈ J ;

(iii) all J(t) are interpolation spaces for the pair (J, I) and if T is a bounded operator
on (J, I), then ‖T‖J(t) � ‖T‖t

I‖T‖1−t
J for t ∈ [0, 1];

(iv) if I is reflexive, then all ideals J(t), t ∈ (0, 1), are reflexive.

Proof. It follows from Theorem III.5.1 of [12] that the unit ball J1 of J is closed in
(C(H), ‖ · ‖). By Proposition 2.1, there is c > 0 such that ‖X‖ � c‖X‖I for X ∈ I. This
implies that J1 is closed in I in ‖ · ‖I .

By Proposition 2.1 (i), there is C > 0 such that ‖X‖I � C‖X‖J , for X ∈ J . Consider
an equivalent norm ‖X‖′

J = C‖X‖J on J . Then ‖X‖I � ‖X‖′
J . It follows from Theo-

rems IV.1.2 and IV.1.8 of [19] that there are Banach spaces (J(t), ‖ · ‖J(t)), for t ∈ [0, 1],
which satisfy (i), (ii) and (iii) and such that ‖X‖J(s) � ‖X‖J(t), for s � t and X ∈ J(t).
By Lemma 3.2, all (J(t), ‖ · ‖J(t)) are s.n. ideals.

If I is reflexive, it follows from Theorem IV.1.4 of [19] that all s.n. ideals J(t), t ∈ (0, 1),
are also reflexive. �

All compact operators B such that
∑∞

n=1 n−1/2sn(B) < ∞, where sn(B) are eigenval-
ues of (B∗B)1/2, form a separable ideal S2

− (see [12, § 15]) contained in S2. Let J be
an s.n. ideal not contained in S2

−. Bercovici and Voiculescu proved in [3] that, for any
normal A in B(H), there are finite-rank positive operators Rn such that

the Rn strongly converge to 1, ‖Rn‖ � 1 and lim ‖[A, Rn]‖J = 0. (4.5)

Theorem 4.5. Let J = Jφ. If g is commutator J-bounded on α ⊂ C, then there is
D > 0 such that, for all normal operators A, B with spectra in α and all X ∈ B(H),

AX−XB ∈ J implies g(A)X−Xg(B) ∈ J and ‖g(A)X−Xg(B)‖J � D‖AX−XB‖J .

Proof. We will prove the theorem for A = B. Then the general case for different A

and B will follow as in the proof of Proposition 4.1 of [17].

(1) Let J � S2
−. By Proposition 3.4 of [17], there is D > 0 such that ‖[g(A), Y ]‖J �

D‖[A, Y ]‖J for all normal A with Sp(A) ⊆ α and all Y ∈ J . Fix A. Let finite-rank
operators Rn satisfy (4.5). Then, for all X ∈ B(H),

‖[g(A), Rn]‖J � D‖[A, Rn]‖J → 0 and ‖[g(A), RnX]‖J � D‖[A, RnX]‖J .

Taking this into account, we have from Lemma 3.3 of [17]

‖[g(A), X]‖J = lim ‖Rn[g(A), X]‖J = lim ‖[g(A), RnX] − [g(A), Rn]X‖J

� D lim ‖[A, RnX]‖J � D lim ‖[A, Rn]X‖J + D lim ‖Rn[A, X]‖J

= D‖[A, X]‖J .
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(2) Let J ⊆ S2
−. By (1.3), there is D > 0 such that ‖[g(A), X]‖J � D‖[A, X]‖J for

all A ∈ Jnor(α) and X ∈ B(H). Since A are diagonal, by Proposition 5.2 of [17], the
matrices M(A, g) (see § 3) are Hadamard J-multipliers and ‖M(A, g)‖J � 2D. Since g is
a Lipschitz function, we have from (5.1) and (5.2) of [17] that M(A, g) are also Hadamard
S2-multipliers and ‖M(A, g)‖S2 � ‖M(A, g)‖J .

Since J ⊂ S2 and S2 is reflexive, there are s.n. ideals J(t), t ∈ [0, 1], which satisfy
conditions of Lemma 4.4: J = J(1), S2 = J(0) and J(t) are reflexive for t ∈ (0, 1).
By Lemma 4.4 (iii), the M(A, g) are also Hadamard J(t)-multipliers, for t ∈ (0, 1), and
‖M(A, g)‖J(t) � 2D. It follows from Proposition 5.2 of [17] that

‖[g(A), X]‖J(t) � 2D‖[A, X]‖J(t) for A ∈ Jnor(α) and X ∈ J(t). (4.6)

By Proposition 2.1 (iii), all s.n. ideals J(t), t ∈ (0, 1), are separable. It follows from
Proposition 3.4 of [17] that g is commutator J(t)-bounded and (4.6) holds for all normal
operators A with Sp(A) ⊆ α and all X ∈ J(t). Since all J(t) are reflexive, J(t) �= S1. It
was proved in Theorem 4.3 that [A, X] ∈ J(t) implies

[g(A), X] ∈ J(t) and ‖[g(A), X]‖J(t) � 4D‖[A, X]‖J(t), (4.7)

for t ∈ (0, 1) and for all normal A with Sp(A) ⊆ α and all X ∈ B(H).
If [A, X] ∈ J , then [A, X] ∈ J(t), for t ∈ (0, 1), so (4.7) holds. By (1.1) and (4.7),

‖[g(A), X]P‖J(t) � 4D‖[A, X]‖J(t) for any finite-dimensional projection P . It follows
from Lemma 4.4 (ii) that

‖[g(A), X]P‖J = lim
t→1

‖[g(A), X]P‖J(t) � 4D lim
t→1

‖[A, X]‖J(t) = 4D‖[A, X]‖J .

Hence, by Theorem III.5.1 of [12], [g(A), X] ∈ J and ‖[g(A), X]‖J � 4D‖[A, X]‖J .
This completes the proof of the theorem in the case when A = B. �

To prove the results of Theorems 4.3 and 4.5 for J-Lipschitz functions we, as usual,
have to restrict our consideration either to Fuglede ideals or to J-Fuglede sets.

Corollary 4.6. Let J be Jφ or Jφ
0 and let g be a J-Lipschitz function on a J-Fuglede

set α (for example, α ⊂ R). Then there is D > 0 such that, for all normal operators A, B

with spectra in α and all X ∈ B(H), AX − XB ∈ J implies

g(A)X − Xg(B) ∈ J and ‖g(A)X − Xg(B)‖J � D‖AX − XB‖J .

In particular, A − B ∈ J implies g(A) − g(B) ∈ J and ‖g(A) − g(B)‖J � D‖A − B‖J .

5. J-stable and commutator J-stable functions

In this section we study J-stable functions.

Definition 5.1. Let g be a function on α ⊂ C and let J be an s.n. ideal.

(i) g is called J-stable if, for all normal operators A, B with spectra in α, the condition
A − B ∈ J implies g(A) − g(B) ∈ J .
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(ii) g is called commutator J-stable if, for all normal operators A with Sp(A) ⊆ α and
all X ∈ B(H), the condition [A, X] ∈ J implies [g(A), X] ∈ J .

J-stable functions on R may be considered to be acting on B(H)/J . We show that in
many important cases (J = Sp, p ∈ (1,∞), for example) a function is J-stable if and
only if it is J-Lipschitzian.

It follows from Theorems 4.3 and 4.5 that if J is Jφ or Jφ
0 , then commutator J-bounded

functions are J-stable and commutator J-stable. If J is Fuglede, then, by Corollary 4.6,
J-Lipschitz functions are J-stable and commutator J-stable. We will study the converse
inclusion.

The following result establishes an important relation between the classes of J-stable
and commutator J-stable functions. In particular, it shows that all commutator J-stable
functions are J-stable.

Proposition 5.2. Let J be an s.n. ideal and let g be a continuous function on α ⊂ C.
The following conditions are equivalent:

(i) g is J-stable on α;

(ii) for any normal operator A with Sp(A) ⊆ α and any X = X∗ ∈ B(H), the condition
[A, X] ∈ J implies [g(A), X] ∈ J .

Proof. (i) =⇒ (ii). Let A be normal, Sp(A) ⊆ α and let U be a unitary operator
such that [A, U ] ∈ J . Then A − UAU∗ = [A, U ]U∗ ∈ J and Sp(A) = Sp(UAU∗). If g is
J-stable, g(A) − g(UAU∗) ∈ J . Since g(UAU∗) = Ug(A)U∗, we have [g(A), U ] ∈ J .

Let X = X∗, ‖X‖ < 1 and [A, X] ∈ J . The operator U = X + i(1 − X)1/2 is unitary.
Since f(t) = t + i(1 − t)1/2 is an analytic function in a neighbourhood of Sp(X), it
follows from Example 4.2 of [17] that [A, U ] = [A, f(X)] ∈ J . By the above argument,
[g(A), U ] ∈ J . Similarly, [g(A), U∗] ∈ J , so that

[g(A), X] = 1
2 ([g(A), U ] + [g(A), U∗]) ∈ J.

From this it follows that, for each X = X∗, [A, X] ∈ J implies [g(A), X] ∈ J .

(ii) =⇒ (i). Let A, B be normal operators with spectra in α and let A − B ∈ J . The
operator

R =

(
A 0
0 B

)

is normal and Sp(R) ⊆ α. Set

X =

(
0 1
1 0

)
.

Then X = X∗ and

[R, X] =

(
0 A − B

B − A 0

)
∈ J, so [g(R), X] =

(
0 g(A) − g(B)

g(B) − g(A) 0

)
∈ J.

Hence g(A) − g(B) ∈ J . �
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Definition 5.3. Let h(z) = z̄.

(i) A compact α in C is called weakly J-Fuglede if the function h is commutator J-
stable on α, that is, for all normal A with Sp(A) ⊆ α and all X in B(H), [A, X] ∈ J

implies [A∗, X] ∈ J .

(ii) An s.n. ideal J is called weakly Fuglede if any compact subset of C is weakly J-
Fuglede, that is, for all normal A and all X ∈ B(H), [A, X] ∈ J implies [A∗, X] ∈ J .

Clearly, any compact α in R is weakly J-Fuglede for any ideal J .
If J is Jφ or Jφ

0 and α ⊂ C is a J-Fuglede set, then the function h is commutator
J-bounded on α. It follows from Theorems 4.3 and 4.5 that h is commutator J-stable,
so α is weakly J-Fuglede.

Similarly, if J is a Fuglede ideal, it is also weakly Fuglede. The converse statement,
however, is not true, which justifies our terminology.

Proposition 5.4. The ideal S∞ is a weakly Fuglede but not Fuglede ideal.

Proof. By Corollary 3.8, S∞ is not Fuglede. Let A be normal and [A, X] ∈ S∞.
Let Â and X̂ be their images in the Calkin algebra B(H)/S∞. Then [Â, X̂] = 0. By the
Fuglede theorem for C∗-algebras, [Â∗, X̂] = 0, so [A∗, X] ∈ S∞. �

We conclude from Proposition 5.4 that every compact in C is weakly S∞-Fuglede, but
not every compact is S∞-Fuglede.

Proposition 5.5. Let g be a continuous function on α. If α is weakly J-Fuglede, then
the following conditions are equivalent:

(i) g is J-stable on α;

(ii) g is commutator J-stable on α.

Proof. (ii) =⇒ (i). This follows from Proposition 5.2.

(i) =⇒ (ii). Let X = Y + iZ, Y = Y ∗, Z = Z∗, and let [A, X] ∈ J for a normal A

with Sp(A) ⊆ α. Since α is weakly J-Fuglede, [A, X∗] ∈ J . Hence [A, Y ], [A, Z] ∈ J and,
by Proposition 5.2, [g(A), Y ] ∈ J and [g(A), Z] ∈ J . Therefore, [g(A), X] ∈ J . �

Let J be an s.n. ideal. For any n, set

βJ(n) = inf
X∈F

∥∥∥ n︷ ︸︸ ︷
X ⊕ · · · ⊕ X

∥∥∥
J

‖X‖J
and γJ(n) = sup

X∈F

∥∥∥ n︷ ︸︸ ︷
X ⊕ · · · ⊕ X

∥∥∥
J

‖X‖J
.

Then (see (3.2)) β∗
J(n) � βJ(n) � γJ(n) � γ∗

J(n). If J is separable, then β∗
J(n) = βJ(n)

and γJ(n) = γ∗
J(n). We say that J is regular, if

J � S
∞ and lim

n→∞

βJ(n)
γJ(n)

> 0. (5.1)

All ideals Sp, p ∈ [1,∞), are regular with βSp(n) = γSp(n) = n1/p. All Lorentz ideals
J = Sp,q, 1 � p, q < ∞, are regular with Cn1/q � βJ(n) � γJ(n) � Dn1/q, for some
0 < C � D.
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Theorem 5.6. Let J be Jφ
0 or Jφ and let g be a continuous function on α. If J is

regular, then the following conditions are equivalent:

(i) g is commutator J-bounded on α;

(ii) g is commutator J-stable on α.

Proof. (i) =⇒ (ii). This follows from Theorems 4.3 and 4.5.

(ii) =⇒ (i). Let g be commutator J-stable, but not commutator J-bounded. By Propo-
sition 3.4 of [17], there are some Ai ∈ Fnor(α) and Xi ∈ F such that ‖[g(Ai), Xi]‖J �
i3‖[Ai, Xi]‖J . Set λi = i2 max(‖Xi‖, ‖[Ai, Xi]‖J) and Zi = Xi/λi. Then

‖Zi‖ � i−2, ‖[Ai, Zi]‖J � i−2 and ‖[g(Ai), Zi]‖J � i3‖[Ai, Zi]‖J . (5.2)

Set

A =

m1︷ ︸︸ ︷
A1 ⊕ · · · ⊕ A1 ⊕ · · · ⊕

mi︷ ︸︸ ︷
Ai ⊕ · · · ⊕ Ai ⊕ · · ·

and

Z =

m1︷ ︸︸ ︷
Z1 ⊕ · · · ⊕ Z1 ⊕ · · · ⊕

mi︷ ︸︸ ︷
Zi ⊕ · · · ⊕ Zi ⊕ · · ·

(we will choose mi later). Then Z ∈ C(H). Since Ai ∈ Fnor(α), we have that ‖Ai‖ �
supλ∈α |λ|, so that A is a normal bounded operator with Sp(A) ⊆ α. Set

[A, Z](i) =

m1︷ ︸︸ ︷
[A1, Z1] ⊕ · · · ⊕ [A1, Z1] ⊕ · · · ⊕

mi︷ ︸︸ ︷
[Ai, Zi] ⊕ · · · ⊕ [Ai, Zi].

Then [A, Z](i) ∈ Jφ
0 and, by (5.1),

‖[A, Z](i+p) − [A, Z](i)‖J �
i+p∑

k=i+1

‖
mk︷ ︸︸ ︷

[Ak, Zk] ⊕ · · · ⊕ [Ak, Zk]‖J

�
i+p∑

k=i+1

γ(mk)‖[Ak, Zk]‖J .

It follows from (5.2) that 1 � k−2‖[Ak, Zk]‖−1
J . Since γ(i) → ∞ and γ(i + 1) � γ(i) + 1

(see [12, III.§ 3]), we may choose mk in such a way that

1 � k−2‖[Ak, Zk]‖−1
J � γ(mk) � k−2‖[Ak, Zk]‖−1

J k1/2.

Therefore,
k−2 � γ(mk)‖[Ak, Zk]‖J � k−3/2, (5.3)

so that

‖[A, Z](i+p) − [A, Z](i)‖J �
i+p∑

k=i+1

k−3/2 → 0,
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as i → ∞. Hence [A, Z](i) converge to some B ∈ Jφ
0 . From (5.2) we have

‖[A, Z] − [A, Z](i)‖ = sup
i+1�k

‖[Ak, Zk]‖ � sup
i+1�k

‖[Ak, Zk]‖J → 0,

as i → ∞. Thus B = [A, Z] ∈ Jφ
0 ⊆ J . Since g is commutator J-stable, [g(A), Z] ∈ J .

On the other hand,

β(mk)‖[g(Ak), Zk]‖J � ‖
mk︷ ︸︸ ︷

[g(Ak), Zk] ⊕ · · · ⊕ [g(Ak), Zk]‖J � ‖[g(A), Z]‖J .

Hence it follows from (5.2) that

β(mk)k3‖[Ak, Zk]‖J � ‖[g(A), Z]‖J .

Therefore,
βJ(mk)
γJ(mk)

k(k2γ(mk)‖[Ak, Zk]‖J) � ‖[g(A), Z]‖J ,

so that, by (5.3),
βJ(mk)
γJ(mk)

k � ‖[g(A), Z]‖J .

Since J is regular,
βJ(mk)
γJ(mk)

k → ∞, as k → ∞.

Thus [g(A), Z] /∈ J . This contradiction completes the proof. �

Corollary 5.7. Let J be Jφ
0 or Jφ and let it be regular. Then

(i) J is a Fuglede ideal if and only if it is weakly Fuglede;

(ii) a compact α in C is J-Fuglede if and only if it is weakly J-Fuglede.

Since S1 is a regular but not Fuglede ideal, we obtain the following result.

Corollary 5.8. The ideal S1 is not weakly Fuglede.

The result in Corollary 5.8 means that [A, X] ∈ S1, for a normal A and bounded
X, does not always imply [A∗, X] ∈ S1. Weiss [25] asked whether for compact X this
implication always holds. A negative answer to this question was obtained in [23]. It was
established later in [16] that there exists a normal operator A such that, for any p > 1,
one can find an operator X in Sp such that [A, X] ∈ S1 and [A∗, X] /∈ S1.

Corollary 5.9. There exist a compact normal operator A and a compact operator X

such that [A, X] ∈ S1 and [A∗, X] /∈ S1.
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Proof. It follows from the discussion after Proposition 4.10 of [17] and from Corol-
lary 5.4 of [17] that the sets

αk =
{

± 1
l

+
i
l

: k � l < ∞
}

, k = 1, 2, . . . ,

are not S1-Fuglede, so the function h(z) = z̄ is not commutator S1-bounded on them.
Set αk(1) = α1. By Proposition 3.4 of [17], there are X1 ∈ F and A1 ∈ Fnor(αk(1)) such
that ‖[h(A1), X1]‖S1 � ‖[A1, X1]‖S1 . Let k(2) ∈ N be such that αk(2) ∩ Sp(A1) = 0.
By Proposition 3.4 of [17], there are A2 ∈ Fnor(αk(2)) and X2 ∈ F such that
‖[h(A2), X2]‖S1 � 23‖[A2, X2]‖S1 . Continuing this process we get a sequence of sets
αk(1) ⊃ αk(2) ⊃ · · · ⊃ αk(l) and sequences of normal operators Al ∈ Fnor(αk(l)) and of
operators Xl ∈ F such that αk(l) ∩ Sp(Aj) = 0, for j < l, and

‖[A∗
l , Xl]‖S1 = ‖[h(Al), Xl]‖S1 � l3‖[Al, Xl]‖S1 .

Now, repeating the proof of Theorem 5.6, we construct operators

A =

m1︷ ︸︸ ︷
A1 ⊕ · · · ⊕ A1 ⊕ · · · ⊕

mn︷ ︸︸ ︷
An ⊕ · · · ⊕ An ⊕ · · ·

and

Z =

m1︷ ︸︸ ︷
Z1 ⊕ · · · ⊕ Z1 ⊕ · · · ⊕

mn︷ ︸︸ ︷
Zn ⊕ · · · ⊕ Zn ⊕ · · · ,

such that Z ∈ C(H), [A, Z] ∈ S1 and [h(A), Z] = [A∗, Z] /∈ S1. We also have that A is
a normal operator, Sp(A) ⊆ α1 and that all eigenspaces of A, corresponding to non-zero
eigenvectors, are finite dimensional. Hence A is compact. �

For regular ideals the J-stability of a function is equivalent to it being J-Lipschitzian.

Corollary 5.10. Let a regular s.n. ideal J be Jφ or Jφ
0 . Let g be a function on α ⊂ C.

If α is weakly J-Fuglede, then the following are equivalent:

(i) g is a J-Lipschitz function on α;

(ii) g is J-stable on α.

Proof. (i) =⇒ (ii). This follows from Corollaries 4.6 and 5.7. Conversely, by Propo-
sition 5.5, if g is J-stable on α, it is commutator J-stable on α. By Theorem 5.6, g is
commutator J-bounded on α. Hence it is J-Lipschitzian on α. �

We summarize below our results for the important class of ideals Sp.

Corollary 5.11.

(i) The ideals Sp, for p ∈ (1,∞), are regular, Fuglede and weakly Fuglede. The ideal
S1 is regular, but neither Fuglede, nor weakly Fuglede. The ideals S∞ and Sb are
weakly Fuglede, but neither regular, nor Fuglede ideals.
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(ii) If a set is Sp-Fuglede for some p ∈ {1,∞, b}, it is Fuglede for all p ∈ {1,∞, b}.

(iii) If p ∈ (1,∞), then the following are equivalent:

(1) g is Sp-Lipschitzian on α;

(2) g is commutator Sp-bounded on α;

(3) g is Sp-stable on α;

(4) g is commutator Sp-stable on α;

(5) g is Sq-Lipschitzian on α for p− � q � p+ (see (3.7));

(6) there is D = D(α, g, p) > 0 such that, for X ∈ B(H) and normal A, B with
spectra in α, the condition AX − XB ∈ Sp implies

g(A)X − Xg(B) ∈ S
p and ‖g(A) − g(B)‖Sp � D‖AX − XB‖Sp .

(iv) If a function g is commutator Sp-bounded on α for some p in {1,∞, b}, it is
commutator Sq-bounded on α for all q in [1,∞] ∪ b.

(v) Let α be Sp-Fuglede, for p ∈ {1,∞, b}. The following are equivalent:

(1) g is Sp-Lipschitzian on α;

(2) g is commutator Sp-bounded on α;

(3) g is commutator S1-stable on α;

(4) there is D > 0 such that, for X ∈ B(H) and normal A, B with spectra in α,
the condition AX − XB ∈ S1 implies

g(A)X − Xg(B) ∈ S
1 and ‖g(A)X − Xg(B)‖S1 � D‖AX − XB‖S1 .

If α ⊂ R, then the above conditions are equivalent to the following condition:

(5) g is S1-stable on α.

(vi) Let Sp- Lip(α) be the space of all Sp-Lipschitz functions and let Lip(α) be the
space of all Lipschitz (in the usual sense) functions on α. Then

S
b- Lip(α) ⊆ S

p- Lip(α) ⊆ S
2- Lip(α) = Lip(α) for p ∈ [1,∞] ∪ b;

S
p- Lip(α) = S

p′
- Lip(α) ⊆ S

q- Lip(α) for p− � q � p+.

Problem 5.12.

(i) Do the spaces Sp- Lip(α) differ for different p ∈ (1, 2)? A related question: are all
functions in Lip(α) Sp-Lipschitzian, for all p ∈ (1,∞)?

(ii) The space C(1)(a, b) of all continuously differentiable functions on [a, b] is not con-
tained in Sb- Lip(a, b) (see [10]). On the other hand, C(1)(a, b) ⊂ S2- Lip(a, b). Do
all spaces Sp- Lip(a, b), for p ∈ (1,∞), contain C(1)(a, b)?

https://doi.org/10.1017/S001309150300018X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150300018X


196 E. Kissin and V. S. Shulman

Problem 5.13. Let g be a continuous function on [−1, 1] and p ∈ [1,∞]. Let there
exist D > 0 such that ‖g(A) − g(B)‖Sp � D‖A − B‖Sp , for all self-adjoint A, B in the
unit ball of Sp. Is g Sp-Lipschitzian on [−1, 1]?

It is easy to verify that the answer is positive for p = 2 and p = ∞.
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