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Abstract

We solve the following problem which was posed by Barnes in 1962. For which abelian groups G and H
of the same prime power order is it possible to embed the subgroup lattice of G in that of HI It follows
from Barnes' results and a theorem of Herrmann and Huhn that if there exists such an embedding and G
contains three independent elements of order p2, then G and H are isomorphic. This reduces the problem
to the case that G is the direct product of cyclic p-groups only two of which have order larger than p.
We determine all groups H for which the desired embedding exists.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20D30; secondary 20K01.

Introduction

We want to solve the following problem. Given two abelian groups G and H of the
same prime power order, when does there exist an embedding (that is, a monomorph-
ism) of the subgroup lattice L(G) of G in that of HI

This problem was studied and partly solved by Barnes [1] already in 1962. He
showed that if H is elementary abelian, then L(G) can be embedded in L(H) if
and only if G does not contain a subgroup of type (3,3,2). Recall that a finite
abelian p-group G is a direct product of cyclic groups of order pk>,..., pK where
A.] > • • • > A.r > 1, and then the r-tuple (A.j,... , Xr) is called the type of G. In the
general case, Barnes showed further that if G has a subgroup of this type and L(G) is
embedded in L(H), then G and H are isomorphic; but he left the problem open for
groups having no such subgroups.

Unfortunately, these results are not quite correct. They are inconsistent with a
theorem of Herrmann and Huhn saying that a certain lattice law holds in the subgroup
lattice of an elementary abelian p-group but not in that of an abelian p-group of type
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(2,2,2) (see [2, Theorem 5]). As Barnes told me, this was realized in 1980 by Sheila
Oates-Williams who also located and corrected his error: in the proof of Lemma 6.2
of his paper he uses an argument that a certain set of n equations modulo p2 implies
two sets of n equations modulo p which, however, is not the case.

It is not difficult to see that the theorem of Herrmann and Huhn has just the effect
of replacing the group of type (3,3,2) in Barnes' results by the group of type (2,2,2).
So we obtain the following theorems in which we call an embedding of L(G) in L(H)
an L-embedding of G in H, for short.

THEOREM A. There exists an L-embedding of the abelian p-group G in the ele-
mentary abelian group if and only ifG has no subgroup of type (2, 2, 2).

An easy consequence of this is

THEOREM B. Let G and H be abelian groups of the same prime power order.
Suppose G has a subgroup of type (2, 2, 2) and that <p is an L-embedding ofG in H.
Then Xv ~ X for every subgroup XofG; in particular, H ~ G.

This theorem reduces the general problem to groups of type (ku ... ,X.r) where
r < 2 or X3 = 1. The subgroup lattice of a cyclic group of order pn is a chain of length
n and therefore can be embedded in L(H) for any group H of order p". So we may
assume that r > 2 and the following result completes the solution of our problem.

THEOREM C. Let n > k > 1 and r > 2. Suppose that G = AxBxC3x---xCr

where A and B are cyclic of order p" and pk, respectively, and |C,| = p for i =
3 , . . . , r; it is understood that G = AxBifr = 2. Then G has an L-embedding in
an abelian group H of the same order if and only if there exist subgroups U, V, Wt

ofH such that H = U x V x W3 x • •• x Wr, \U\ = p", \V\ = pk, \Wt\ = pfor
i = 3 , . . . , r, and one of the following holds.

(i) * = 1 .
(ii) k > 2, n = Xk + t where X e H and 0 < t < k, V is elementary abelian and

U has type ( « [ , . . . , as) where ct\ < X + 1 andal+l < X.
(iii) U — Gn<s and V — Gk,s for some integer s such that 1 < s < k.

Here, if 1 < s < m, the group Gm,s is defined as follows: write m = ixs + t with
(i e N and 0 < t < s; then n, t are uniquely determined by m, s and we let Gm,s be
the abelian group of type (/Ai,. . . , /z,) where /i, = fi for / > t and fi,; = /x + 1 for
i < t. Then Gm,s is a group of order pm with s generators; in particular, GmA is the
cyclic and Gm m the elementary abelian group of order pm.

Since neither Barnes nor Oates-Williams published a corrected version of Barnes'
results, we shall give short proofs of Theorems A and B in Section 1. The proof of
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Theorem C will occupy Sections 2 and 3; crucial for this is the concept of a smooth
group introduced in 2.1.

All groups considered are finite, the notation is standard (see [1,4]), except that we
write A U B for the group generated by the subgroups A and B of the group X.

1. Barnes' results

In the whole paper, p is a prime and G and H are abelian p-groups of the same
order. A lattice embedding (which we abbreviate to L-embedding) of G in H is an
embedding of L(G) in L(H)y and this is defined to be an injective mapping <p of L(G)
into L(H) such that Xv covers Y* for all X, Y e L(G) where X covers Y. Barnes
shows [1, Corollary 1.3] that in our case (of abelian groups) this is equivalent to (p
being a lattice monomorphism, that is, an injective map satisfying

(1) (X U Y)f = X » U f and {X n YY = XipnYip for all X J e L(G).

We need the following lattice polynomials introduced by Herrmann and Huhn. For
elements A, B, C, D of a lattice L, we define inductively

/,(A, B, C, D) = (AUB)n(CU D)

/n+1(A, B, C, D) = (((MA, B, C, D) U /,(A, C, B, D)) n (BU C)) U D)

n(Aufl).

LEMMA 1.1 (Herrmann and Huhn [2]). LetX = AxBxC withisomorphicabelian
groups A, B,C. Suppose that /x : A —»• fi and v : A —>• C are isomorphisms and let
D = {aa»d" \ a € A}. Then for all n e N,

PROOF. We use induction on n. Since A U B = AB = {ab | a e A, b e B} and
C U D = {aaMc | a e A, c e C}, we have /i(A, B, C, D) = {aaM | a e A} and
the assertion holds for n = 1. If we write F = /n(A, fl, C, £>)U /i(A, C, fi, D), the
induction assumption yields that

F = {a(a"Y I a e A] • {bbv \ b e A } = {ab(a"Ybv \ a , b e A ) .

An element ab(a"Ybv of F lies in B U C if and only if b = a"1. Therefore

(Ffl(BUC))UD = {(aT(a- 'r I a e A} • {cĉ c" | c € A]
= MaVna- 'c)" | a, c € A}
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and such an element lies in A U B if and only if a = c. Thus

/ n + 1 ( A , B , C , D) = [ a ( a " + 1 r \ a e A ] ,

as desired.

We can now prove Theorems A and B stated in the introduction.

PROOF OF THEOREM A. If G has no subgroup of type (2,2,2), then its type is of the
form (A.i,... , Xr) with r < 2 or A3 = 1. By [1, Lemma 6.1], G has an L-embedding
in the elementary abelian group.

Since an L-embedding of a group induces an L-embedding of every subgroup, to
prove the converse, we only have to show that there is no L-embedding of a group
G of type (2,2,2) in an elementary abelian group H of order p6. So suppose, for a
contradiction, that cp : L(G) —> L(H) is such an embedding, let G = A x B x C
where A, B, C are cyclic of order p2 and let /J,, v, and D be as in Lemma 1.1. Then
D is a complement to A U B, A U C, and to B U C in G.

By(l),ff = A ? x r x C and D* is a complement to A* U fi*\ Av U C«\ and
to Bv U C9 in H. It follows that the projection of D* into A* is surjective, that the
maps a : A* —> Bv and x : A9 ->• C*1 mapping the first component of an element
of Df to its second and third component, respectively, are isomorphisms and that
D* = {aa"az | a e A<"}.

By 1.1, fp(A,B, C,D) = {a{apy \ a e A} ^ A and by (1) and 1.1,

fp(A, B, C, DY = fp(A
v, B1", Cv, Dv) = {a{apf \ a e Av} = A*

since // has exponent p; but <p is injective. This contradiction shows that there is no
L-embedding of G in H.

PROOF OF THEOREM B. We use induction on \G\. Let X < G. Then we have
X = X{ x • • • x Xr with cyclic subgroups X, and by (1), X9 = X\ x • • • x Xf. So
if Xf ~ X, for all /, then Xv ~ X. Thus we may assume that X is cyclic and that
\X\ = pk where k > 2. Since G contains a subgroup of type (2,2,2), there exist cyclic
subgroups Y and Z of G such that G0 = X x K x Z is a subgroup of type (k,2,2)
of G. If k = 2 and X*1 were not cyclic, then G5 = F x F ( P x Z* would not be of
type (2,2,2) and hence, by Theorem A, would have an L-embedding in an elementary
abelian group. But then also Go would have such an L-embedding, contradicting
Theorem A. Thus Xv ~ X in this case.

Finally, assume that k > 3 and let A be the maximal subgroup of X. Then AxY x Z
and G/S2(X) both contain subgroups of type (2,2,2) and hence by induction, Av

and XV/Q(XY are cyclic. Since k > 3, £2(X) < A and hence n(X)*1 < d>(A*));
furthermore $(A*") < <J>(X*") sinceX<"isa/?-group(see[3,p.273]). Thus X V O ^ )
is cyclic; hence Xv is cyclic and Xv ~ X.
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2. Smooth groups

In this section we shall prove that if G is of type (Xu ... ,kr) with r < 2 or A.3 = 1
and L(G) can be embedded in L{H), then H has the structure given in Theorem C.
Basic for this is the following concept.

DEFINITION 2.1. Let p be a prime, n,k e N, let G be an abelian group of order p"
and suppose that X, < G are such that

(2) 1 - Xo < X, < • • • < Xn = G;

thus |X,| = p ' for; = 0, ...,n.

(a) The chain (2) is called k-smooth if for every j e { 1 , . . . , k], we have X, ~

X, + J /X,fora lH = 1 « — y-
(b) The group G is called k-smooth if there exists a A:-smooth chain (2) in G; in this

case, the isomorphism type of the group Xk is called the k-type of G.
(c) The chain (2) or the group G is called smooth if it is rc-smooth; that is, if it is

/t-smooth for every k e N.

Certainly, cyclic and elementary abelian /7-groups are smooth and it is also clear
that all the subgroups and factor groups appearing in a smooth chain are smooth. More
precisely, we have the following inheritance property.

LEMMA 2.2. If (2) is a k-smooth chain, 0 < s < t < n and 1 < j < k, then the
chain

(3) 1 = Xs/Xs < Xs+l/Xs < < Xt/X,

is j-smooth. In particular, if (2) is smooth, then so is (3).

The significance of the concept of smooth groups for our problem may be seen
from the following result.

LEMMA 2.3. Let n > k > 1 and r > 2. Let G = A x B x C3 x • • • x Cr, where A
and B are cyclic of order p" and pk, respectively, and |C,| = pfor i = 3 , . . . , r. If<p
is an L-embedding ofG in the abelian group H, then H = A9 x B9 x Cl x • • • x Cf
where Av and B^ are k-smooth of k-type B^. More precisely, if At and B, are the
subgroups of order p' of A and B, respectively, then 1 = A% < • • • < A% = A^ and
\ = B% <••• <Bl = B«' are k-smooth chains and B* ~ Av

k.

PROOF. By (1), H = A* x B* x C^ x • • • x Cf since every subgroup of H is normal.
We show that the chain 1 = A% < • • • < A% = Av is fc-smooth. For this let 1 < ; < k
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andO < i <n—j and put R = Ai+j x Bj. Then R/Ai = Ai+j/Aj x #,-A,/A,- is a direct
product of two cyclic groups of order pj. By [4, Theorem 1.6.2] there exists a diagonal
S/A, in this group; that is, S n Ai+j = A,, = S n £, A,- and 5 U A,+; = fl = S U BjAt.
By (1), S<7A? is a diagonal in R*/Af = A*+j/A* x BjA^/Af and [4, Theorem 1.6.2]
now implies that A*+j/A* ~ BfA?/A? ~ £ / . For i = 0 we obtain Aj ~ £ / and
hence Af+j/Af ~ Aj for arbitrary i. Thus our chain is it-smooth and Av

k ~ B* = B*\
In the same way we show that the chain 1 = B$ < • • • < B\ = Bv is /c-smooth.

The above lemma in particular says that Bv is smooth. Therefore our next aim is to
determine all smooth groups. For this we need that every smooth chain of G contains
all the groups

« m (G) := {x € G | *"" = 1} and Gp" := {x"m \x eG}.

LEMMA 2.4. Let 1 = XQ < • • • < Xn = G be a smooth chain in an abelian p-
group G. For every m e N there exist integers i and j such that f2m(G) = Xt and
G"m = Xj.

PROOF. Since n m (G) / f i , (G) = n ^ G / n ^ G ) ) and G"m = (G")"""', Lemma
2.2 and an obvious induction yield that we only have to show the assertion for m = 1.
To do this we use induction on \G\. By 2.2 and the induction assumption there exist
integers s and t such that £2(G/Xi) = Xs/X% and Xp

n_x = X,.
If Xs < G, then again by induction, fi(G) = Q(XS) = X, for some i e N. And

if Xs = G, then Zn_] ~ G/Xi is elementary abelian and hence Q(G) = Xn-{ or
$2(G) = G = Xn.

Similarly, if X, ^ 1, the induction assumption implies that Gp/X, = {G/X,)p =
Xj/X, for some integer j and hence Gp = X^. And if X, = 1, then G/Xt ~ Xn_i is
elementary abelian and hence Gp = Xt or Gp = 1 = Xo, as desired.

THEOREM 2.5. The abelian p-group of type (Xi , . . . , A.r) w smooth if and only if

^-K< 1.

PROOF. Write G = Ai x ••• x Ar with cyclic groups A, of order pki where
Xi > • • • > K > 1 and put A. = A.,.

First assume that G is smooth and let 1 = Xo < • • • < Xn = G be a smooth chain.
If X < 2, then clearly Â  — Xr < 1, so assume further that A. > 3. For every \x e N,

and hence p> := |S2X-i(G)/S2x_2(G)| < p r with equality if and only if kr > A. — 1.
By Lemma 2.4, Q(G) = Xr and there exists i e N such that Qk-2(G) = X, and
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S2x_i(G) = Xi+J. Then^(G/X, ) = Xi+j/Xi and hence X,+;+ 1/X, is not elementary
abelian. Since the chain is smooth, Xi+j+i/Xj ~ Xj+i and therefore Xj+l ^ Xr. It
follows that j = r and so kr > A. — 1, as desired.

Now suppose that, conversely, kr > A. — 1. Then there exists s < r such that A.,- = k
for 1 < i < s and A.,- = A. - 1 for s + 1 < / < r; thus n = r(k — 1) + s. Since cyclic
groups are smooth, we may assume that r > 2.

For 1 < i < n, write i = rj + k where 0 < j < k — 1, and where 0 < k < r if
y < A. — 1, 0<k<s if j=k — 1, and define

(4) X, = £2,+,(A,) x • • • x fi;+1(At) x ft,(At+1) x • • • x n , (A r ) .

We prove by induction on | G | that 1 = Xo < • • • < Xn = G is a smooth chain. First of
all, clearly, X, < Xi+l for all i and \X,\ = p'. For U < G we wr i t eF = f /Xj /Z^le t
Ar+) := At and define y, with respect to the decomposition G = A2 x • • • x Ar x Ar+1

as we defined X, in (4). Then for / = rj + k < n — 1 as above, we obtain that

x • • • x Qj+l(Ak+i) x Qj(Ak+2) x • • • x fi;(Ar+1).

Sincefi;(Ar+1) = Qj+tiA^/X^ we have y, = Xi+i/Xi for all/; this is clear if k < r,
and fork = r it follows since then i + 1 =r(J + l) + l. By the induction assumption,
l = y0 < ••• < yn_, = G/X, is a smooth chain. Furthermore Y, and X,- both are the
direct product of k cyclic groups of order pJ+1 and r — k cyclic groups of order p'.

I Therefore K, ~ X, and hence for i = 1 , . . . , n — 1 and t = 1 , . . . , n — i, we obtain
| that X,+ ;/X, ~ Y.+t.i/Y,^ ~ Yi ~ X,. Thus the chain 1 = Xo < •• • < Xn = G is
i smooth.

I
COROLLARY 2.6. If 1 < r < n, then the group Gnr defined in the Introduction is

the unique smooth abelian group of order p" with r generators.

PROOF. Let G be an abelian group of order p" with r generators, that is, of type
(A.j,..., A.r). By Theorem 2.5, G is smooth if and only if there exist integers s, k with
0 < s < r such that A., = k for i > s and A., = A. + 1 for i < s. Since n = £ i= i A.,,
this implies that n = rk + s. Thus G is smooth if and only if G ~ G n r .

In view of Lemma 2.3 we still have to determine all it-smooth groups of order p"
for it < n. If k = 1, every group of order p" is it-smooth. So we may assume that
k > 2 and show first that we don't get any new groups if the it-type is not elementary
abelian. Note that every k-type is the isomorphism type of a smooth group of order
p* and therefore of one of the groups Gk,r (r < it) appearing in Corollary 2.6.

THEOREM 2.7. Let \ < r < k < n. The abelian group G of order p" is k-smooth
qfk-type Gkr if and only ifG is the smooth group Gnr of order p" with r generators.
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PROOF. If G = G n r and 1 = Xo < • • • < Xn = G is a smooth chain, then by 2.2,
G is it-smooth and Xk is smooth. By 2.4, Q(G) = Xr < Xk and hence \Sl(Xk)\ = pr.
By Corollary 2.6, Xk ~ G*,,..

Conversely, assume that 1 = Xo < • • • < Xn — G is a it-smooth chain and
A* ~ G*,r. By 2.2 and 2.4, fi(Xt) = Xr and since r < k, it follows from 2.6 that
Xr+l ~ Gr+i, r . Thus G is (/• + l)-smooth of (r + l)-type G r + ] r and it suffices to
prove the following special case of our assertion.

(5) If 1 < r < n, \G\ = p" and G is (r + l)-smooth of (r + l)-type Gr+Lr, then
G ~ G n r .

To prove this, we use induction on n. The assertion is clearly true for n = r + 1. So
assume it holds for r + 1 < m < n and let 1 = Yo < • • • < Yn — G be an (r + 1)-
smooth chain with Kr+I ~ Gr+U. Then Kn_, ~ Gn_i,r and by 2.4, fi(Kn_i) = Kr.
If Q(G) > Yr and x e C2(G) \ };, then * £ 7n_, and hence G = Fn_, x (JC).
Since Fn_i/Kn_i_r ~ Fr, it would follow that G/yn_i_r is elementary abelian of order
/ / + 1 ; but G/ yn_i_r — Kr+i is not elementary abelian. This contradiction shows that
£2(G) = yr; let (A , , . . . , Ar) be the type of G.

Now \G/Q(G)\ = p"~r. If n < 2r, then G/Q(G) ~ K«_r < Kr is elementary
abelian and hence Exp G < /J2; by 2.5, G is smooth. So assume that n > 2r. Then
the induction assumption implies that G/Q.(G) ~ Gn-rj. It follows that A.r > 2 and
G/Si(G) is smooth of type (A, - 1 , . . . , A.r - 1). By 2.5, 1 > (A, - 1) - (A, - 1) =
A] — kr and hence G is smooth. By 2.6, G ~ G n r and this proves (5).

We finally determine the ^-smooth groups of it-type Gkik or ( 1 , . . . , 1), that is, with
elementary abelian factors of order pk.

THEOREM 2.8. Let I < k <n and write n — Xk + t where A e N and 0 < t < k.
The abelian p-group G of order p" is k-smooth of k-type ( 1 , . . . , 1) if and only if
G/£ly(G) is elementary abelian of order at most p', that is, G has type (A1 ? . . . , Ar)
where Aj < A + 1 and A,+! < A.

PROOF. We use induction on |G|. Suppose first that 1 = Xo < • • • < Xn = G
is a ^-smooth chain with Xk elementary abelian. If t > 0, then M := Xkk < G
and, by Lemma 2.2, M is ^-smooth of &-type ( 1 , . . . , 1). The induction assumption
yields that M = £2k(M) < fix(G). Since n = kk + t, we have \G/M\ = p' and
G/M ~ X, < Xk is elementary abelian. Thus G/Qx(G) is elementary abelian of
order at most p'.

Now assume that t = 0. Then for A = 1 we get that G = Xk is elementary abelian,
and if A > 2, the induction assumption implies that Xn-k = Xa_l)k has exponent at
most pk~l. Since G/Xn_k ~ Xk is elementary abelian, it follows that G = Qk(G), as
desired.
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It is clear that G/Q.X{G) is elementary abelian of order at most p' if and only if
G has type (Xu ..., Xr) with A., < A. + 1 and A,,+1 < X. So suppose, conversely,
that G = A\ x • • • x Ar with cyclic groups A, of order px> where A. + 1 > X{ >

r

X2 > • • • > Xr > 1 and Xl+l < X. Then n = ^ A., < rX + t and hence k < r. Thus

N := Q(A0 x • • • x £2(A,fc) is elementary abelian of order pk and \G/N\ = pm where
m — (X — l)it + r. We write U = UN/N for every U < G and show next that there
exists a fc-smooth chain

(6) 1 = X k / N < X k + l / N < ••• < X J N = G o f / - t y p e ( 1 , . . . , 1 ) ,

where / = min(/n, k). This is clear if m < k; for then X = 1 and |A, | = /? for all i
since t < k. Thus G is elementary abelian in this case and has the desired chain. So
suppose that m >k. Then (6) follows from the induction assumption if G/£2x-i(G)
is elementary abelian of order at most p'. Since t < k, |A,| < px for all / and
hence G/ fi^ (G) clearly is elementary abelian. So suppose, for a contradiction, that
|G/ Qi-i (G) \> p'+l. Assume that d of the A, have order pk+]. Then j < t for these
A, and hence d < t. Since |A,| < /?x - 1 for t < i < k, there exist at least t + 1 — d
indices i for which k < i and px = |A,| = |A,|. Thus X)t+r+i_d = X and it follows
that |A, x • • • x Ak+t+\_d\ = pw where

\) + (k + t + l - 2d)X

= kX + (t -d)X + d + X

since X > 1. This contradiction proves (6).
We finally put Xo = 1 and inductively define subgroups X, of N (i = 1 , . . . , k — 1)

such that X,_! < X, and |X,| = p' for all i, and Xi+k/Xj is elementary abelian for
all i with i + k < n. Then all factor groups Xu/Xv of order at most pk in the chain
1 = Xo < • • • < Xn = G will be elementary abelian and therefore the chain will
be ^-smooth of it-type ( 1 , . . . , 1). So suppose that subgroups Xo,..., Xt with these
properties have been defined and that i < k — 1. Then if i + k > n, any subgroup Xi+l

of order pi+1 of Â  containing X, will do the job. If / + k < n, then since Xi+k/Xt

is elementary abelian, X,+ t + 1 /X, is of type (2, 1, . . . , 1) or ( 1 , . . . , 1). In the first
case we take X,+1/X, = ®(Xi+k+l/Xj); in the second case we let Xi+l/Xt be any
subgroup of order p of N/Xt. Since Xi+k+i/N is elementary abelian, in both cases
Xi+[ < N and Xi+l+k/Xi+l is elementary abelian.

We shall need two simple properties of smooth groups.

LEMMA 2.9. Let 1 < r < n and suppose that 1 = Xo < • • • < Xn = G is a
smooth chain in G = Gnr; let pe be the exponent ofG. Then there exist g e G and
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K = 5 x T < G such that o(g) = pe, S is of type (e,..., e) or S = 1, T is of type
{e - 1 , . . . , e - 1) or T = 1, and satisfying G = {g) x K, XB_, = (gp) x K, Xn_r =
{g») x K", Xn_r_, = (g"2) x K".

PROOF. Since r < n, we have e > 1 and G = R xT where R is of type (e,..., e)
and T is of type (e - 1 e - 1) or T = 1. So T < J2,_, (G) < Xn_i, by Lemma
2.4, and hence Xn_i = (/? D Xn_i) x 7 . Since R D Xn_, is a maximal subgroup
of R, we have R D Xn_! = (a) x S where O(H) = p e " ' and S is of type ( e , . . . , e)
or S = 1. Since R is homocyclic, there exists g e R such that gp = u. Then
R = (g) x S and hence G = (g) x K and X , ^ = (g^) x K where A" = 5 x T. By
2.4, Xn_r = G" = (gP) x K» and Xn_r_x = (Xn_,)p = (gpl) x /sf".

LEMMA 2.10. Suppose that G ~ / / am/ //iar 1 = Xo < • • • < Xn = G and 1 =
Yo < • • • < Yn = H are smooth chains. Then every isomorphism a : Xn_] —• yn_j
satisfying X? = y, /or i = 1 , . . . , n — 2 can be extended to an isomorphism ofG to
H.

PROOF. If G and H are elementary abelian, it is clear that every isomorphism
a : Xn_! ->• Fn_i can be extended. So we may assume that G is not elementary
abelian and by Corollary 2.6, G ~ G n r for some r satisfying 1 < r < n. Let g, S, T
be as in Lemma 2.9; since a lso / / ~ Gnr, there exist h, U, V having the corresponding
properties with respect to the chain 1 = Yo < •• • < Yn = H.

Now Xa
n_x = Fn_i implies that (gp)a = hipuv with i € Z, u e U, v e V. By

Lemma 2.4 there exists j e N such that Xj = Gp' ' and y, = Hp"\ Since XJ = y ,̂
it follows that Hp" = (hp'~') x fi(f/) contains ((gp)p"1)a = /i'p'~ V ' ~ V ' 2 ; this
yields up' ' = 1 = i>p' 2. Since U and V are trivial or homocyclic of exponent
pe and pe~l, respectively, there exist x e U, y € V such that * p = u and vp = v.
Thus (gp)" = /I'^MU = (h'xyY and so o(h'xy) = pe. For K = S x T we have
X£_, = {gp)a x A"" and hence (tixy) D K" = (gp)a n Ka = I. It follows that
H = (h'xy) x A"a and thus there exists an isomorphism fi : G -*• H satisfying
gp = h'xy and wp = w" for w € K. Since ( g ^ / = (gfi)p = (tixy)" = (gp)a, 0 is
an extension of a.

3. Canonical L-embeddings and bases

In this section we shall prove that if G and H have the structure given in Theorem
C, then there exists an L-embedding of G in H. For diis we use Barnes' methods and
therefore need some of the concepts introduced by him. For the convenience of the
reader we recall them briefly.
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Let G and H be abelian p-groups of the same order and let X,, Y{, X2, Y2 be
subgroups of G such that X2 = X{ U Y2 and Yx = Xx n Y2. Then the mappings

a, :XX/YX -> X2/72; *y, H+ *y2 (X e X,)

a2 :X2/y2 -+ X,/y,; xY2 H> XY2 n 7, (JC € X2)

are mutually inverse isomorphisms. Such isomorphisms are called projectivities. If
<p: L(G)-+ L(H) is an L-embedding, then by (1), Xv

2 = Xf U K? and yf = X? n Y?
so that there exist the corresponding projectivities

o7, : Jfj'/y," -> Xj/y? and a2 : Xv
2/Y* - • Xf/y,"

in the group //. For a closed chain

c : X/Y = X,/y, ^ ^ X2/y2 ^ > • • • ̂ ^ > Xn/Yn = X/Y

of projectivities in G, the composition a (c) := cr, . . . an_i is an automorphism of X/ Y
and

c: x"/y = xf/y," ^ > Jf*/1? -^* — ^ ^ ^ / ^ = X<e/Y<p

is a closed chain of projectivities in H. So if X/ Y is cyclic of order p - we call Z / y
a prime interval in this case - there exist integers r(c) and r(c) prime to p such that
xa(o _ ^KC) for a l l x G x / K and ya(i:) = yrff) for all y € XV Y1".

DEnNiTlON3.1. The L-embedding <p : L(G) -> L(H) is called canonical if
/•(c) = r (c) (mod p) for all closed chains c of projectivities on prime intervals in G.

Barnes uses the term 'X-canonicaV instead of 'canonical' since he considers, more
generally, L-embeddings having similar properties with respect to cyclic intervals of
order p" (n e N) which he then terms 'n-canonical'. He shows [1, Theorem 3.1 and
3.3] that if C and C are cyclic groups of order p and <p is a canonical L-embedding of
G in H, then <p can be extended to a canonical L-embedding of G x C in H x C. Thus
to prove Theorem C, it will suffice to show that A x B has a canonical L-embedding
in £/ x V; this can then be extended to A x B x C3 x • • • x Cr.

Again let <p : L(G) -+ L(H) be an L-embedding. We consider the set 3 of all
pairs (x, v) where * is a generator of a prime interval X/Y of G and _y is a generator
of X* I Yv. A subset 8 of 3 is called a basis of (p if for every prime interval X/ Y in
G there is a unique pair (x, y) € » such that X/y = (*) and Xv/Y* = (y).

DEFINITION 3.2. Let 39 be a basis of <p.
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(a) A projectivity a : Xi/Yx -> X2/Y2 between prime intervals in G is called
regular with respect to 8 if there exists r e I such that x° = xr

2 and y° = yr
2,

where (x,-, y,) e 8 satisfy X,/Y, = (x,-) and X?/}f = (y,) (i = 1, 2).
(b) 8 is called canonical if every projectivity between prime intervals in G is regular

with respect to 8.

It was noted by Barnes [1, p. 21] that an L-embedding is canonical if and only if it
has a canonical basis. We need some simple properties of canonical bases.

LEMMA 3.3. Suppose that8 is a canonical basis of'<p, let X / Y be a prime interval in
G and let (x, x) € 8 be such that X/Y = {x}. IfZ, W < G are such thatXOZ = Y
and XL) Z = W, then there exists i eZ , i ^ 0 (mod p) such that (x''Z, TZ*) e 8.

PROOF. Consider the projectivity a : X/Y —> W/Z and let (w, w) e 8 be such
that W/Z = (w). Since 8 is canonical, there exists r e I such that xZ — xa = wr

and xZv -x^ = wr. Thus w = (xZ)' and w = (xZvY for some / ^ 0 (mod p).

LEMMA 3.4. Suppose that <p is induced by an isomorphism Q : G -> H. Then (p
is canonical and we obtain a canonical basis 8 of <p if we choose for every prime
interval in G a generator x and put the pair (x, xe) in 8.

PROOF. If a : X/ Y —> W/Z is a projectivity between prime intervals and x, w are
the chosen generators of X/ Y and W/Z, respectively, then the definition of a implies
that (xef - (xa)e. So if xa = wr, it follows that (xef = (wr)e = (we)r. Thus a is
regular.

Conversely, we need that every canonical basis is of this type if G and H are
elementary abelian (of order p2).

LEMMA 3.5. Let G and H be elementary abelian of order p2 and let <p be a
canonical L-embedding ofG in H with canonical basis 8. Suppose that a, b e G are
such that (a) ^ {b} and that 8 contains the pairs (a, x) and (b, y). Then <p is induced
by the isomorphism Q : G —>• H; a'bj i->- x'yJ, and for every pair (c, z) 6 8 we have

PROOF. We clearly have G = (a) x (b), (a)"1 = (x) and {by = <y), so that
H = (x) x {y). Suppose that {abkY = {xym) and let ((abk)r, (xym)s) e 8 where
1 < k, m, r, s < p - 1. By 3.3 there exist i, j € 1 such that arbkr{b) = aj{b} and
xsyms{y) = x'iy) and also arbkr{a) = bJ{a) and xsyms(x) = yJ(x). It follows that
r = i = s (mod p) and kr = j = ms (mod p) and hence r = s and k = m. Thus (p is
induced by Q and the pairs (c, z) e 8 belonging to prime intervals C/l satisfy z = c°.
By 3.3, this then also holds for the prime intervals G/C.
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If M < G and <p is an L-embedding of G in H, then the restriction of <p to L(M) is
an L -embedding of M in Mv which we call (pM- If 3B is a basis of <p, we let J&M be the
set of pairs (x, y) e $ belonging to prime intervals X/Y with X < M\ clearly, SM is
a basis of <pM.

We want to construct canonical L-embeddings of groups of type (n, k). This we
shall do by induction, extending L-embeddings of smaller groups in the following
obvious way; of course, the lemma holds more generally.

LEMMA 3.6. Suppose that \G : F\ = p2, where F = <t>(G); let K < H and /A be
an L-embedding ofG/F in H/K with basis SM.

Let jft be the set of maximal subgroups ofG and for every M € jtt, let <p(M) be an
L-embedding of M in M with basis 38(M) where M/K = (M/Fy. Assume further
that<p(M)F = <p(N)F and%(M)F = %(N)F for all M, N e i».

(a) Then \fr : L(G) -> L(H), defined by G* = HandX* = Xvm ifX<Me M,
is an L-embedding ofG in H.

(b) If for every M e jR, the bases 3BM and S(M) contain the same pair belonging to
M/F, then the union <C o/38M and all the 8(M) is a basis ofxjs. If, in addition,
8M and all the 3B(M) are canonical, then so is €.

PROOF, (a) Since the L-embeddings <p(M) and (p(N) coincide on F = M n N for
different M,N e itt, the map \j/ is well-defined and injective. By definition, we have
to show that if X covers Y, then X* covers Y*. This is clear if X < M e Jtt, since
in that case \j/ coincides with <p(M) on X and Y; and if X = G, then Y* = Y^ is a
maximal subgroup of H, since Yv(y)/K = (Y/Ky.

(b) Our assumptions imply that for a given prime interval X/ Y, all the bases »(M)
and 3BM which contain a pair belonging to X/ Y contain the same pair. Thus the union
€ is a basis of rjf. If 3BM and all the 3B(M) are canonical, then by [1, Lemma 4.1], so is
€ .

The main difficulty in extending a given L-embedding of a maximal subgroup to a
canonical L-embedding of G in H = U x V is that this extension can be done rather
arbitrarily if V is elementary abelian, has to be constructed suitably if | V/ Q (V) | = p,
but is uniquely determined if | V/f2(V)| > p2. Fortunately, we only have to study
this in the case n = k.

LEMMA 3.7. Let G = A x B with cyclic groups A and B of order p", let <p be
an L-embedding of G in H and suppose that H is not elementary abelian. Write
F = d>(G), U = Av, V = Bv; for i = 0 , . . . , n, let A,- < A and Bt < B with
|A,-1 = p' = \Bi\, Uj = Af and Vt = Bf. Finally, suppose that 2 is a basis of<p and
that\Q(U)\ = pr.
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(a) There exist generators a of A and b of B, elements u G U, v € V, and in-
tegers i, j , s, t 6 { 1 , . . . , p — 1} such that 2 contains the pairs (aAn_i, uUn-\),
(a"Mn_r_, , uispUn.r-X), (bBn_u vVn.x) and {tip'*„_,_,, v'tpVn_r_x).

(b) If%F is a canonical basis of(pF and a, b,u,v,s,t are as in (a), then (p is induced
on G/F by the isomorphism o : G/F —*• H/F^ given by (aF)a = us Fv and
(bF)a = v'F*.

(c) If 36 is a canonical basis ofcp, then, in addition, s = t.

PROOF, (a) By 2.3, 1 = Uo < • • • < Un = U and 1 = Vo < • •• < Vn = V are

smooth chains, H = U xV and U ~ V. Since H is not elementary abelian, it follows
that neither U nor V is; thus r < n. By 2.6, U ~ Gnr and by 2.9 there exist u e U
and K < U such that

(7) U = {u)x K, [/„_! = (u") x K, Un_r = (up) x Kp, !/„_,_, = (up2) x K".

Thus U/Un-i = («C/n_i) and hence 3B contains an element of the form {aAn-X, «*t/n_i)
where A = (a) and k ^ 0(mod/>). So if we replace u by uk, we still have (7)
and (aAn_,,Mf/n_i) € 39. Since An^r/An_r_x = {ap'An.r^x) and C/n_r/f/n_r_, =
(M^f/n-r-i), there exist i,s e [l,...,p — 1} such that 9 contains (a'prAn_r_x,
uispUn-r-X). In the same way we get b, v, j , t with the desired properties.

(b) Let W = An_r x Bn-r, R = An.T x Bn_r_x, S = A«_r_, x fin_r, and T =
An_r_! x SB_r_i. Then W/T = R/T x S/T is elementary abelian of order p2 .
Since R/T is projective to An_r//4n_r_i and %F is canonical, by 3.3 there exists
v € 1 such that * F contains ( a ^ T , uis'"'T'p); similarly, there exists (i G 1 such
that {b'v'^T, / f T ) e * F belongs to the interval 5 / 7 . By 3.5, <p is induced on
W/T by the isomorphism Q : W/T -+ Wv/Tv satisfying (aipr"T)e = u'^T* and
(jt,iP't*T)e = vi'wT*; it follows that

(8) (ap'T)e = uspT'e and (bp'Tf = v'pTf.

For k € { 1 , . . . , /> - 1} let D = Dk = (abk). This is a diagonal in G = A x B;
by (1), D* is a diagonal in # = U x V; that is, Dv = D(a) = {xxa \ x e U] for
some isomorphism a : U —> V (see [4, Theorem 1.6.2]). Since DO F = (apbkp) is a
diagonal in F = An_i x Bn_,, (D n F)*0 = D* D F*1 is a diagonal in F* = {/„., x Vn_,
and hence [/„"_! = Vn_,. We have t//l/B_i = («[/„_!> and V/Vn_, = (vVn_,); thus
there exists rf = dk e { 1 , . . . , p — 1} such that w° = vdw with IU e VB_!. Since
(DF)V = D^F*, it follows that

(9) ({abk)F)v = {uvdk)Fv.

Now (DHW)T/T = {ap'bkp')T/T is a diagonal in W / r which, by (8), is mapped
to (uspvktp)Tip/T<' by <p. On the other hand, (D D W) U T is mapped to

(£>" n W ) U T = { J C / | x e Un-r)T* = {upvdp)T^ = {uspvsdp)T<e
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since (up)a = vdpwp and wp e Vn
p_x = Vn_r_x < T9; see (7). It follows that

kt = sd(mod p). Now d = dk and (9) yields that for k = 1,..., p — 1,

{{aby)FY = (usvsdk)F'p = {usvx')F'e;

that is, <p is induced on G/F by the isomorphism a satisfying (aF)a = us F? and
(bF)a = v'F*.

(c) Since 8 is a canonical basis containing (aAn_i, uUn-X) and AF/F is projective
to A/An_], Lemma 3.3 implies that there exists v e Z such that (av/r, uvFv) e 3B;
similarly, (fc"/\ i^F*") e B for some /x e Z. By 3.5, <p is induced on G/F by the
isomorphism r : G/F -> #/F«" satisfying (aF)r = uFv and (bF)T = vFv. Now
cr and r induce the same lattice isomorphism of G/F and hence CTT"1 is a power
automorphism. It follows that s — t.

LEMMA 3.8. Let G be of type (n,n), suppose that (p is an L-embedding ofG in H
and that \H/Q(H)\ > p2. Let F = <t>(G) and 01 be the set of maximal subgroups
of G and assume further that for every M e 01, the induced L-embedding <pM is
canonical and has a canonical basis S(M) such that 3B(A/)F = %{N)Ffor all N e 01.
Then (pis canonical and has a canonical basis 8 such thatJbM = S(M) for all M € M-

PROOF. We show first that the lemma is an easy consequence of the following.

(10) For every two different maximal subgroups M and N of G there exists an
isomorphism a = aMN : G/F ->• H/Fv inducing <p there and satisfying: if
(JC, x) e »(M) and (y, y) e »(#) are such that M/F = (x) and N/F = {y),
then x" = x and y" = y.

So assume that (10) holds, take M, N e 01 such that M ^ N and put a = aMN.
If M ^ L e 01 and (z, z) 6 8(L) is such that L/F = (z), then T = aML induces
<p on G/F and satisfies xT = J and zx = z. Then a and t induce the same lattice
isomorphism of G/F, so a r "' is a power automorphism which is trivial since x" = xr.
Thus a = x and hence a satisfies for all L e 01,

(11) z° =z if (z ,z)6»(L) issuchthat L/F = {z).

Let ix be the L-embedding of G/F in H/Ftp induced by <p, and hence by a; let 39M be
the canonical basis of /x constructed in 3.4 using the pairs (z, z") e B(L) for L e 0\.
Then 8M and the 3B(M) satisfy the assumptions of 3.6(b) and hence their union is a
canonical basis of <p.

It remains to prove (10). Let 3B be a basis of <p that contains every 9(L), L e M;
such a basis exists by 3.6(b).

Now let M, N € 01 be such that M ^ N. Then M and AT are of type (n, n - 1)
and hence M = (c) x (J) and Af = (*) x (y) where o(c) = o(x) = //" and
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o(d) = o(y) = p""1. Since M ^ N, we have G = MN = {c,x)F and hence
G = (c) x (*); furthermore M = (c) x (M n (*)) = (c) x (JC^) and, similarly,
A? = (cp) x (x). So if we put A = (c) and B = (x), we have that G = A x f i where
A and B are cyclic of order pn. Let U = Av, V = B*\ and for / = 0 , . . . , n, let
At < A and B, < B be such that |A,| = pj = |B,|, Ut = A*, Vt = Bf. Then

(12) M = A x fin_j and AT = An_, x B.

By 2.3, / / = U x V, 1 = Uo < • • • < Un = U and 1 = Vo < • • • < VB = V are
smooth chains, and U ~ V. Let | n ( f / ) | = p r . Since |H/S2(W)| > p2, [/„_, is not
elementary abelian; thus, by 2.4,

(13) £2(U) <{/„_, and r < « - 1.

If we apply 3.7 to G = A x fi, we obtain generators a of A and b of B, ele-
ments u e U and u e V, and integers i, j,s,t e { 1 , . . . , p — 1} such that 8
contains the pairs (aAn-UuUn-i), (aiprAn_r_u uispUn-r-\), P , - i , u V n - i ) , and
(bJ»'Bn_r-U v'vVn-r-d. By (b) of 3.7,

(14) <p is induced on G/F by the isomorphism cr* : G/F —> H/Fv satisfying
(aF)a' = M 1 ^ and (fcfy* = v'Fv.

Now we apply 3.7 to F = An_! x Bn_i. By (13), the assumptions of 3.7 hold with n
replaced by n — 1 but with the same r as before. Therefore there exist generators ax of
An_! and bx of Bn_i, elements Mi € £/„_! and i>i e Vn_i, and integers /i, v, m such that
36f, and hence also 8, contains the pairs (at An_2, «i^«-2). (^f'' An_r_2, M^mpf/n_r_2),
(̂ >i B«_2, ui Vn_2), and (fej1^ Bn_r_2, u|""p Vn_r_2); note that » F is canonical so that 3.7(c)
yields the same power of u*p and v\p here.

Next we apply 3.7 to M/'A\ = AF/Ax = A/A\ x Bn-\A\/A\, the canonical L-
embeddinginducedby^jwinM/Aj and the induced basis 3B(Af)*; since U/U\ — Un-\,
the assumptions of 3.7 hold. For short, we write x and X for the images of elements
x or subgroups X under the natural homomorphisms of G to G/A\ and of H to
H/Ux. By (13), Ai < An_r_i and hence 8(Af)* contains the pairs (aAn_i, uOn-\)
and (a '^AVr-i , uispUn-r-\Y, by 3.3 there exist X,Q e 1 such that 3B(M)* contains
(^BB-2, vfV»-2) and {b\epr Bn_r_2, i5"MW K-.-z) . Since 8(M)* is canonical, (c) of 3.7
implies that m = s.

If we finally apply 3.7 to the symmetric situation in the factor group
N'/Bx = An-iBx/Bi x B/B\, we obtain that m = t. It follows that s = t.

Let r be the power automorphism of H/F^ mapping every element x to xw where
sw = 1 (modp) and let CT = a*x. Then by (14), <p is induced by CT on G/F and
( a f ) " = itF*, (bF)a = vF*. Since 38(M) is canonical and M/F is projective to
A/An_u by 3.3 there exists kel such that (a*F, ukF*) € 8(M) and M / F = (akF);
similarly, there exists / e 1 such that (b'F, v'F*) e X(N) and (f F) = N/F. Since
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{akF)a = ukF* and {blFf = v'F*, the isomorphism a satisfies (10). This proves
(10) and the lemma.

We can now construct the desired extension.

LEMMA 3.9. Let 1 < k < n and G = A x B with cyclic groups A of order p" and
B of order pk; for i = 0, . . . , « , let A, < Abe such that |A,| = p'. Let H — U x V
be abelian, \U\ = p", \V\ = pk, and let 1 = Uo < • • • < Un = U be a k-smooth
chain with U^ — V.

Let <p be a canonical L-embedding of Go = An_i x B in HQ = Un-\ x V such
that Af = C/, for i = 1 , . . . , n — 1 and B9 = V; let Jibe a canonical basis ofcp and
suppose that G/Go = (w) and H/Ho = (To).

Then there exists an extension of tp to a canonical L-embedding ^ of G in H
satisfying A* = U; furthermore there exists a canonical basis <S.of\jr containing 38
and, ifV is elementary abelian, the pair (w, w).

PROOF. We use induction on \G\. If n = k = 1, then G and H are elementary
abelian of order p2 and there exists an isomorphism Q : G —> H satisfying Aa =
U, we = w, and be = v if 39 = {(b, v)}\ by 3.4, the L-embedding \jr induced by p is
canonical and has a canonical basis € containing (b, v) and (w, w).

So suppose that n + k > 3 and that the assertion is true for groups of smaller order.

Casel: n > k. Then A' := An_* ^ 1 andG0 = £2n_i(G); by 2.2, the assumptions
of the lemma hold for the L-embedding <p with canonical basis 39 induced by <p and
39, respectively, in Go/N. The induction assumption yields an extension \(r of <p to a
canonical L-embedding of G/N in H/Nv such that (A/N)* = U/Nv and a canonical
basis C of xfr that contains 8 and, if VN/N ~ V is elementary abelian, the pair (w, W).

Let 1 < Y < X < G such that \X : Y\ = p and suppose that X £ Go. Then X
contains an element x = ab of order /?", where a e A and b e B, and xp* = ap*
generates AT; thus N < X. Furthermore, if N £ Y, it would follow that Y < Go; but
then X = NY < Go, a contradiction. We have shown:

(15) If Z / Y is a prime interval in G, then X < Go or AT < K.

This shows that the map f : L(G) ->• L ( # ) given by X* = X* for X < Go and
X+/N*1 = (X/N)* if X £ Go is well-defined and, clearly, injective. To prove that \jr
is an L-embedding, by definition, we have to show that if X covers Y, then X* covers
Y*. But (15) and the fact that xjf is induced by <p on Go/N yield that if X covers Y,
then \j/ coincides on X and Y either with <p or ith the map induced by i/r. In both
cases, X* covers Y*. Thus x/r is an L-embedding satisfying A* = U and we show
that

« : = » U { ( * , * ) € « | (x) = X/Y, X ^
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is a canonical basis of xjr; here, to simplify notation, we identify generators of X/Y
and of (X/N)/(Y/N) if N < Y < X. Indeed, by (15), € is a basis of V- We have
to show that every projectivity a : X\/Yx ->• X2/Y2 between prime intervals of G
is regular with respect to € and by [1, p. 21], we may assume that X, is a maximal
subgroup of X2. If X2 < Go, then € coincides with 8 on the intervals X,/y,; and if
%2 ii Go, then by (15), N < X^ D Y2 = Yx and € coincides with € on these intervals.
In both cases, a is regular and C is a canonical basis having all the desired properties.

Case 2: n = k and V is elementary abelian. Then H is elementary abelian; we
let F = O(G) and choose an isomorphism Q : G/F -> H/Fv satisfying (AF/F)e =
UFv/Fv, we = w, and ze = z if (z,z) e 39 is such that Go/F = (z). Since in
an elementary abelian group every maximal chain is smooth, by induction, for every
maximal subgroup M ^ Go of G there exists an extension of <pF to a canonical L-
embedding <p(M) of M in M where W/F*1 = (Af/F)°; and A**"' = (/ if M = AF.
Furthermore there exists a canonical basis 38(M) of ^>(M) containing 39F and the pair
(x, xe) for some generator x of M/F. If /A is the L-embedding of G/F in H/Fip

induced by g, then by 3.4, /x is canonical and has a canonical basis JJM containing
all these (JC.JC8) and (w,w). Now the L-embedding ijf and its canonical basis C
constructed in Lemma 3.6 have the desired properties.

Case 3: n = k and V is not elementary abelian. Then A = (a) and B = (b)
with o(a) = o(b) = p"; furthermore, by assumption, V ~ Un = U and hence both
groups are smooth. For i = 0 , . . . , n, let Bt < B be such that |B,-| = p', and let
Vj = Bf. Again write F = 4>(G) = An_, x Bn-\ and let jW be the set of maximal
subgroups of G. The induction assumption applied to AF = A x Bn_t e j t t yields
the following.

(16) There exists an extension of <pF to a canonical L-embedding <p(AF) of AF
in UFV satisfying A<P(AF) = U; furthermore there exists a canonical basis
%(AF) of (p(AF) containing 3J and, if Vn_] is elementary abelian, a given pair
(JC, x) satisfying AF/F = {x) and UF^/F^ = (x).

We now handle the M e 01 with AF / M ^ BF = G0. These have the form

(17) MU) = DU) F = DU) x Bn_i for y = 1, . . . , p - 1,

where D 0 ) = <a^). Let j e { 1 , . . . , p - 1} and write M = M(i) and D =
Then D n F = (ap^JP> is a diagonal in F and therefore by (1), (D n F)*" is a diagonal
in F*1 = {/„_! x Vn_,. By [4, Theorem 1.6.2],

(£> n F)" = D(Un-UT) = [uuz | ii e !/„_,}
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where r : Un-\ -*• Vn_i is an isomorphism. For / = 1 , . . . ,« — 1, let D, be the
subgroup of order pj of D. Then A = (At U £„_,) n (D D F) and hence by (1),

Df = (U, U V..,) n £>(£/„_,, r ) = {«M
r | u g f/,} = f/,1*

where T* is the natural isomorphism r* : f/n_i - • D(Un-U r ) ; « H> MM1. Further-
more, B, = (At U (D n F)) n Bn_! and hence

Thus we have shown that for all / = 1 , . . . , n — 1,

(18) UJ = Vt and Uf = Df .

By 2.3, the chain 1 = Vo < • • • < Vn = V is (« — l)-smooth and hence smooth
since \V\ = p". By (18) and 2.10, there is an extension of r to an isomorphism
? : ( / - > V; let L> = D(U, T ) . Then D is a diagonal in H = C/ x V and hence
M := DF* = D x Vn_, is a maximal subgroup of H containing F*\ By (18), the
natural isomorphism Y* : U -*• D; u h* MMT maps i/, to Df for i = 1,...,/» — 1
and therefore 1 = DQ < • • • < L> _̂, < D is a smooth chain. Since D ~ £/ is not
elementary abelian, 2.4 yields that

(19) n(D) < Dv
n_x = (D n F)*1.

Furthermore we see that M = D x fin_!, M = D x Vn-X, q>F, 2 F satisfy the assump-
tions of the lemma in place of G, H, <p, 38, and hence the induction assumption finally
implies the following.

(20) There exist an extension of <pF to a canonical L-embedding q>(M) of Af in M
and a canonical basis B(M) of ̂ (Af) containing B F and, if VB_i is elementary
abelian, a given pair (JC, J ) satisfying A/ /F = (x) and M/F9 = (x).

Now if i , ; € { 1 , . . . , p - 1} with i # y, then £>(l) n D^^ab'jjMab') = 1 and
hence by (1), (D(l) n F )" n ( D w D F)*1 = 1. Thus by (19), D<'> and D«) are diagonals
of H = U x V intersecting trivially, and therefore they generate H; it follows
that ¥ » ^ I P . This shows that there is an L-embedding fi of G/F i
satisfying {AF/FY = UFv/F*, ( G o / F ) " = / / 0 / F " , and (M(j)/FY =
for ; = 1 , . . . , p - 1. If we write (p = <p(G0) and 3B = 3B(G0), then by (16) and (20),
\JL and the L-embeddings <p(M) and bases 8(Af) (Af e iR) satisfy the assumptions of
Lemma 3.6. Let rjr be the L-embedding of G in / / constructed there; then \frM = <p(M)
for every Af e jW and iff induces //- on G / F .

If Vn_i is not elementary abelian, then by 2.4, J2(V) < Vn_i and hence | / / /£2(W)|
> p2. By 3.8, i/f is canonical and has a canonical basis <t such that Cw = 3J(Af) for
all Af € Jtt. In particular, A* = £/ and C contains 3J, as desired.
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So assume, finally, that Vn-X is elementary abelian. Since H is not elementary
abelian, (b) of 3.7 implies that x/s, and hence also fi, is induced on G/F by an
isomorphism go- Let (bu vx) e 8 be such that Go/F = {bx) and H0/F

v = {vx). If
we add a suitable power automorphism of H/F9 to Q0, we obtain an isomorphism
Q : G/F -*• H/F9 inducing /x and satisfying b\ = vx. Now we choose the pairs
(x, x) in (16) and (20) such that x = xe. By 3.4 there exists a canonical basis 2M of
/x containing (bx, vx) and all these pairs (x, xe). If V*1* is the L-embedding of G in
/ / constructed via 3.6 using n and these new <p(M), then by (b) of 3.6 there exists
a canonical basis C of ^r* which contains 3B. In particular, \fr* is canonical and this
proves the lemma.

PROOF OF THEOREM C. Suppose first that G = A x B x C3 x •• • x Cr has an
L-embedding in / / . Then by 2.3, H = A<" x B9 x C£ x • • • x Cf where A* and fi*
are ^-smooth of k-type fi*" and \Cf \ = |C,| = p for all /. If it = 1, we are done; and
if k > 2, then 2.6 - 2.8 show that (ii) or (iii) of Theorem C holds accordingly as V is
or is not elementary abelian.

Conversely, assume that H has the properties given in Theorem C. It suffices to
show that A x B has a canonical L-embedding in U x V; by [1, Theorem 3.1 and 3.3],
this can be extended to G = A x B x C3 x • • • x Cr. By 2.6 - 2.8, the conditions (i) -
(iii) imply that V is smooth and U is ^-smooth of type V. Let 1 = Uo < • • • < Un = U
and l = V r

0 < - - - < V t = Vbe it-smooth chains with [/, ~ V) for / = 0 , . . . , k; let
1 = Aa < • • • < An = A and 1 = BQ < • •• < Bk = B. Then there exists a canonical
L-embedding cp of AxBiaUxV satisfying A? = £/, and Bj = V, for all i, j ;
indeed, by induction, we have such an L-embedding of An-X x B in [/„_, x V which,
by Lemma 3.9, can be extended to A x B. This proves Theorem C.

References

[1] D. W. Barnes, 'Lattice embeddings of prime power groups', J. Austral. Math. Soc. 2 (1962), 17-34.
[2] C. Herrmann and P. Huhn, 'Zum Begriff der Charakteristik modularer Verbande', Math. Z. 144

(1975), 185-194.
[3] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
[4] R. Schmidt, Subgroup lattices of groups (De Gruyter, Berlin, 1994).

Mathematisches Seminar
Universitat Kiel
D-24098 Kiel
Germany

https://doi.org/10.1017/S144678870000080X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000080X

