J. Austral. Math. Soc. (Series A) 62 (1997), 259-278

LATTICE EMBEDDINGS OF ABELIAN PRIME POWER GROUPS

ROLAND SCHMIDT

(Received 10 January 1996; revised 29 July 1996)

Communicated by R. Howlett

Abstract

We solve the following problem which was posed by Barnes in 1962. For which abelian groups G and H
of the same prime power order is it possible to embed the subgroup lattice of G in that of H? It follows
from Barnes’ results and a theorem of Herrmann and Huhn that if there exists such an embedding and G
contains three independent elements of order p?, then G and H are isomorphic. This reduces the problem
to the case that G is the direct product of cyclic p-groups only two of which have order larger than p.
We determine all groups H for which the desired embedding exists.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20D30; secondary 20K01.

Introduction

We want to solve the following problem. Given two abelian groups G and H of the
same prime power order, when does there exist an embedding (that is, a monomorph-
ism) of the subgroup lattice L(G) of G in that of H?

This problem was studied and partly solved by Barnes [1] already in 1962. He
showed that if H is elementary abelian, then L(G) can be embedded in L(H) if
and only if G does not contain a subgroup of type (3,3,2). Recall that a finite
abelian p-group G is a direct product of cyclic groups of order p*, ..., p* where
Ay > .-« > A, > 1, and then the r-tuple (A, ... , X,) is called the type of G. In the
general case, Barnes showed further that if G has a subgroup of this type and L(G) is
embedded in L(H), then G and H are isomorphic; but he left the problem open for
groups having no such subgroups.

Unfortunately, these results are not quite correct. They are inconsistent with a
theorem of Herrmann and Huhn saying that a certain lattice law holds in the subgroup
lattice of an elementary abelian p-group but not in that of an abelian p-group of type
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(2,2,2) (see [2, Theorem 5]). As Barnes told me, this was realized in 1980 by Sheila
Oates-Williams who also located and corrected his error: in the proof of Lemma 6.2
of his paper he uses an argument that a certain set of n equations modulo p? implies
two sets of n equations modulo p which, however, is not the case.

It is not difficult to see that the theorem of Herrmann and Huhn has just the effect
of replacing the group of type (3,3,2) in Bames’ results by the group of type (2,2,2).
So we obtain the following theorems in which we call an embedding of L(G) in L(H)
an L-embedding of G in H, for short.

THEOREM A. There exists an L-embedding of the abelian p-group G in the ele-
mentary abelian group if and only if G has no subgroup of type (2, 2, 2).

An easy consequence of this is

THEOREM B. Let G and H be abelian groups of the same prime power order.
Suppose G has a subgroup of type (2, 2, 2) and that ¢ is an L-embedding of G in H.
Then XY >~ X for every subgroup X of G; in particular, H ~ G.

This theorem reduces the general problem to groups of type (A, ..., A,) where
r < 2or A; = 1. The subgroup lattice of a cyclic group of order p” is a chain of length
n and therefore can be embedded in L(H) for any group H of order p". So we may
assume that r > 2 and the following result completes the solution of our problem.

THEOREM C. Letn > k > landr > 2. Suppose that G = A x BxC; x --- x C,
where A and B are cyclic of order p" and p*, respectively, and |C;| = p fori =
3,...,r;itis understood that G = A X B ifr = 2. Then G has an L-embedding in
an abelian group H of the same order if and only if there exist subgroups U, V, W,
of Hsuchthat H=U xV x Wy x --- x W,, |U| = p", |V| = p*, |Wi| = p for
i =3,...,r, and one of the following holds.

G k=1
(i) k>2, n=Ak+twherer e Nand0 <t < k, V is elementary abelian and
U has type (ay, ... ,a;) whereay < A+ land o, < A

(iii) U ~ G,, and V = G, for some integer s such that 1 <s < k.

Here, if 1 < s < m, the group G, ; is defined as follows: write m = us 4 ¢ with
i € Nand O <t < s; then p, t are uniquely determined by m, s and we let G, ; be
the abelian group of type (i, ..., u;) where u; = pwfori > tand u; = u+ 1 for
i <t. Then G, is a group of order p™ with s generators; in particular, G,, ; is the
cyclic and G, ,, the elementary abelian group of order p™.

Since neither Barnes nor Oates-Williams published a corrected version of Barnes’
results, we shall give short proofs of Theorems A and B in Section 1. The proof of
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Theorem C will occupy Sections 2 and 3; crucial for this is the concept of a smooth
group introduced in 2.1.

All groups considered are finite, the notation is standard (see [1, 4]), except that we
write A U B for the group generated by the subgroups A and B of the group X.

1. Barnes’ results

In the whole paper, p is a prime and G and H are abelian p-groups of the same
order. A lattice embedding (which we abbreviate to L-embedding) of G in H is an
embedding of L(G) in L(H), and this is defined to be an injective mapping ¢ of L(G)
into L(H) such that X¥ covers Y¥ for all X, Y € L(G) where X covers Y. Barnes
shows [1, Corollary 1.3] that in our case (of abelian groups) this is equivalent to ¢
being a lattice monomorphism, that is, an injective map satisfying

(1) (XUYyY=XuY? and (XNY)=X°NY¥Y forall X,YeL(G).

We need the following lattice polynomials introduced by Herrmann and Huhn. For
elements A, B, C, D of a lattice L, we define inductively

fi(A,B,C,D) = (AUB)N(CUD)
fat1(A, B, C, D) = (fu(A, B,C,D)U fi(A,C, B, D)) N (BUC)) U D)
N (AU B).

LEMMA 1.1 (Herrmann and Huhn [2]). Let X = A x B x C with isomorphic abelian
groups A, B, C. Suppose that u : A — B andv : A — C are isomorphisms and let
D = {aa*a’ | a € A}). Thenforalln € N,

fn(A, B» Ca D) = {a(an)”' I a E A}'
PROOF. We use inductionon n. Since AUB = AB ={ab|a € A, b € B}and
CUD = {aa*c | a € A, ¢ € C}, we have f,(A, B,C, D) = {aa" | a € A} and

the assertion holds for n = 1. If we write F = f,(A, B, C, D)U f,(A, C, B, D), the
induction assumption yields that

F=la@)" |aec A}-{bb" | b e A} = {ab(a")"b" | a,b € A).
An element ab(a™)“b" of F lies in B U C if and only if b = a~!. Therefore

(FNBUC)HUD = {(@)@") |ae A} {cc*c’ | c € A)
= {c(@"c)*(a"'¢)" | a, c € A}
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and such an element lies in A U B if and only if a = ¢. Thus
f’l+l(As B’ C’ D) = {a(a’H‘l)M | ae A}’

as desired.

We can now prove Theorems A and B stated in the introduction.

PROOF OF THEOREM A. If G has no subgroup of type (2,2,2), then its type is of the
form (A, ..., A,) withr <2orx; = 1. By[l, Lemma 6.1], G has an L-embedding
in the elementary abelian group.

Since an L-embedding of a group induces an L-embedding of every subgroup, to
prove the converse, we only have to show that there is no L-embedding of a group
G of type (2,2,2) in an elementary abelian group H of order p®. So suppose, for a
contradiction, that ¢ : L(G) — L(H) is such an embedding, let G = A x B x C
where A, B, C are cyclic of order p? and let ., v, and D be as in Lemma 1.1. Then
D is a complementto AU B, AUC,andto BUC inG.

By (1), H = A% x BY x C? and D¥ is a complement to AY U B¥, A* U C¥, and
to B U C? in H. It follows that the projection of D¥ into A® is surjective, that the
maps o : A® - B¥ and t : A — C* mapping the first component of an element
of D¥ to its second and third component, respectively, are isomorphisms and that
D? = {aa’a’ | a € A¥)}.

By 1.1, f,(A,B,C, D) ={a(a”)* |a € A} # Aand by (1) and 1.1,

f»(A, B,C, D)’ = f,(A% B®, C% D¥) ={a(a")" | a € A®} = A

since H has exponent p; but ¢ is injective. This contradiction shows that there is no
L-embedding of G in H.

PROOF OF THEOREM B. We use induction on |G|. Let X < G. Then we have
X = X, x --- x X, with cyclic subgroups X; and by (1), X¥ = X{ x --- x X?. So
if X{ ~ X, for all i, then X¥ ~ X. Thus we may assume that X is cyclic and that
|X| = p* where k > 2. Since G contains a subgroup of type (2,2,2), there exist cyclic
subgroups Y and Z of G such that Go = X x Y x Z is a subgroup of type (k, 2, 2)
of G. If k = 2 and X¥ were not cyclic, then G = X¥ x Y¢ x Z* would not be of
type (2,2,2) and hence, by Theorem A, would have an L-embedding in an elementary
abelian group. But then also G, would have such an L-embedding, contradicting
Theorem A. Thus X¥ >~ X in this case.

Finally, assume that k¢ > 3 and let A be the maximal subgroupof X. Then Ax Y x Z
and G/S2(X) both contain subgroups of type (2,2,2) and hence by induction, A%
and X¥/Q(X)? are cyclic. Since k > 3, Q(X) < A and hence Q(X)* < ®(AY);
furthermore ® (A%) < ®(X?) since X¥ isa p-group (see [3, p. 273]). Thus X¢/d(X?)
is cyclic; hence X* is cyclic and X¥ >~ X.
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2. Smooth groups

In this section we shall prove that if G is of type (A, ... ,A,) withr <2o0ri; =1
and L(G) can be embedded in L(H), then H has the structure given in Theorem C.
Basic for this is the following concept.

DEFINITION 2.1. Let p be a prime, n, k € N, let G be an abelian group of order p"
and suppose that X; < G are such that

2) l1=Xy< X, <---< X, =0G;

thus | X;| = p' fori =0,...,n.

(a) The chain (2) is called k-smooth if for every j € {1,...,k}, we have X; ~
Xiyj/ X foralli=1,...,n—j.

(b) The group G is called k-smooth if there exists a k-smooth chain (2) in G; in this
case, the isomorphism type of the group X, is called the k-type of G.

(c) The chain (2) or the group G is called smooth if it is n-smooth; that is, if it is
k-smooth for every k € N.

Certainly, cyclic and elementary abelian p-groups are smooth and it is also clear
that all the subgroups and factor groups appearing in a smooth chain are smooth. More
precisely, we have the following inheritance property.

LEMMA 2.2. If (2) is a k-smooth chain, 0 < s <t <nand 1 < j <k, then the
chain

(3) L= X,/X, < Xt/ X, < - < X,/ X,

is j-smooth. In particular, if (2) is smooth, then so is (3).

The significance of the concept of smooth groups for our problem may be seen
from the following result.

LEMMA23. Letn >k > landr >2. Let G=AX B xC3y x---x C,, where A
and B are cyclic of order p" and p*, respectively, and |C;| = pfori =3,...,r. Ifp
is an L-embedding of G in the abelian group H, then H = AY x B¢ x C§ x --- x C?
where AY and B¥ are k-smooth of k-type BY. More precisely, if A; and B; are the
subgroups of order p' of A and B, respectively, then 1 = Aj < --- < AY = A¥ and
1 =B <--- < Bf = BY are k-smooth chains and B ~ A?.

PROOE. By (1), H = A¥ x B x C§ x - - - x C? since every subgroup of H is normal.
We show that the chain 1 = A) < --- < A? = A?isk-smooth. Forthisletl < j <k
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and0 <i <n—jandputR = A;,;xB;. ThenR/A; = A;;/A; x B;A;/A; isadirect
product of two cyclic groups of order p’. By [4, Theorem 1.6.2] there exists a diagonal
S/A; in this group; thatis, SNA;;; = A; = SNB;A;and SUA;,; = R = SUB;A,.
By (1), §¥/A{ is adiagonal in R*/Af = A{, ;/Af x Bf A{ /A and (4, Theorem 1.6.2]
now implies that A?, ;/AY ~ B Af/A! ~ B}. For i = 0 we obtain AY >~ B/ and
hence Af, ;/Af ~ A for arbitrary i. Thus our chain is k-smooth and A} ~ B{ = B*.
In the same way we show that the chain 1 = BY < --- < B{ = B¥ is k-smooth.

The above lemma in particular says that B¥ is smooth. Therefore our next aim is to
determine all smooth groups. For this we need that every smooth chain of G contains
all the groups

Q. (G):={xeG|x" =1} and G :={x"" | x € G}.

LEMMA 2.4. Let 1 = X4 < -+- < X, = G be a smooth chain in an abelian p-
group G. For every m € N there exist integers i and j such that Q,,(G) = X; and
Gp"l = Xj.

PROOF. Since Q,,(G)/2(G) = R,_1(G/(G)) and G”" = (G*)"""', Lemma
2.2 and an obvious induction yield that we only have to show the assertion form = 1.
To do this we use induction on |G|. By 2.2 and the induction assumption there exist
integers s and ¢ such that Q(G/X,) = X,/X, and X?_, = X,.

If X; < G, then again by induction, Q(G) = Q(X;) = X; for some i € N. And
if X; = G, then X,_; =~ G/X, is elementary abelian and hence Q2(G) = X,_; or
QG =G =X,.

Similarly, if X, # 1, the induction assumption implies that G?/ X, = (G/X,)? =
X;/ X, for some integer j and hence G” = X;. Andif X, = 1, then G/ X, >~ X,_; is
elementary abelian and hence G? = X, or G = 1 = X, as desired.

THEOREM 2.5. The abelian p-group of type (A, ..., A,) is smooth if and only if
A—A <1

PROOF. Write G = A; X --- x A, with cyclic groups A; of order p* where
A =-->A. >1landput A = A4

First assume that G is smoothandlet 1 = X, < --- < X, = G be a smooth chain.
If A < 2, then clearly A; — A, < 1, so assume further that A > 3. Forevery u € N,

Qu(G) = Qu(Al) Xoeve X Qu(Ar)
and hence p’ ;= |Q,_1(G)/-2(G)| < p" with equality if and only if A, > A — 1.
By Lemma 2.4, Q(G) = X, and there exists i € N such that ,_»,(G) = X; and
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Q,-1(G) = X;4;. Then Q(G/X;) = X,,;/ X, and hence X, ;,,/X; is not elementary
abelian. Since the chain is smooth, X;,;41/X; >~ X;4, and therefore X;,; £ X,. It
follows that j = r and so 4, > A — 1, as desired.

Now suppose that, conversely, A, > A — 1. Then there exists s < r suchthati; = A
forl<i<sandA, =A-—1fors+1<i <r;thusn =r(A —1)+s. Since cyclic
groups are smooth, we may assume that r > 2.

Forl <i <n,writei =rj+kwhere0 < j <A —1,and where 0 < k < rif
j<i—=1,0<k<sif j =X —1,and define

@ Xi = Qj1(A) x - x Qj11(Ar) X Qi(Apsy) X --- x Q(A,).

We prove by inductionon |G| that1 = X, < --- < X, = G is asmooth chain. First of
all, clearly, X; < X, foralli and |X;| = p’. ForU < Gwewrit_eU = UXI/Xhlet

A,.1 ‘= A, and define ¥; with respect to the decomposition G = A; X --- X A, X A4,
as we defined X; in (4). Then for i = rj + k < n — 1 as above, we obtain that

Y, = Qj+1(zz) X X Qj+1(Zk+1) X Qj(zk+2) X e X Qj(zr+l)~

Since Qj(Z,H) = Q;11(A))/ X, wehave Y; = X;,,/X, foralli; thisisclearifk < r,
and for & = r it follows since then i +1 = r(j + 1) + 1. By the induction assumption,
1=¥% <--- < ¥,_; = G/X, is a smooth chain. Furthermore Y; and X; both are the
direct product of k cyclic groups of order p/*! and r — k cyclic groups of order p’.

Therefore ¥; >~ X; and hence fori = 1,...,.n—land¢t =1,...,n — i, we obtain
that X, .,/X, ~ Y, i /Y.y, >~ Y, >~ X;. Thusthechainl = X, < --- < X, =G is
smooth.

COROLLARY 2.6. If 1 < r < n, then the group G, , defined in the Introduction is
the unique smooth abelian group of order p” with r generators.

PROOF. Let G be an abelian group of order p" with r generators, that is, of type
(A1, ..., 2,). By Theorem 2.5, G is smooth if and only if there exist integers s, A with
O0<s<rsuchthatA; = Afori >sandA;, =i+ 1fori <s. Sincen =3 ,_| A;,
this implies that n = rA + 5. Thus G is smooth if and only if G >~ G, ,.

In view of Lemma 2.3 we still have to determine all k-smooth groups of order p"
for k < n. If k = 1, every group of order p” is k-smooth. So we may assume that
k > 2 and show first that we don’t get any new groups if the k-type is not elementary
abelian. Note that every k-type is the isomorphism type of a smooth group of order
p* and therefore of one of the groups G, , (r < k) appearing in Corollary 2.6.

THEOREM 2.7. Let 1 < r < k < n. The abelian group G of order p" is k-smooth
- of k-type Gy, if and only if G is the smooth group G, , of order p" with r generators.
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PROOF. If G = G,,and 1 = X, < --- < X, = G is a smooth chain, then by 2.2,
G is k-smooth and X, is smooth. By 2.4, Q(G) = X, < X, and hence |2(X,;)| = p’.
By Corollary 2.6, X; >~ Gy,

Conversely, assume that 1 = Xy, < --- < X, = G is a k-smooth chain and
X; >~ Gy,. By 2.2 and 2.4, Q(X;) = X, and since r < k, it follows from 2.6 that
X,41 =~ Gy, Thus G is (r + 1)-smooth of (r + 1)-type G,,,, and it suffices to
prove the following special case of our assertion.

5) Ifl <r <n,|G| = p"and G is (r + 1)-smooth of (r + 1)-type G,,,,, then

G>~G,,.

To prove this, we use induction on n. The assertion is clearly true forn = r + 1. So
assume itholds forr +1 <m <nandletl =Y, <--- < Y, = Gbean (r + 1)-
smooth chain with ¥,,; ~ G,;,,. Then Y,_, ~ G,_,, and by 24, Q(¥,_)) = ¥,.
If 2(G) > ¥, and x € Q(G)\ Y,, then x ¢ Y,_; and hence G = Y,_, x {(x).
Since Y,/ Y,_,-, = Y,, it would follow that G/Y,_,_, is elementary abelian of order
ptibut G/Y, _, ~ Y, is not elementary abelian. This contradiction shows that
Q(G) =Y, let (A, ..., ) bethe type of G.

Now [G/2(G)| = p*". If n < 2r, then G/Q(G) ~ Y,_, <Y, is elementary
abelian and hence Exp G < p?; by 2.5, G is smooth. So assume that n > 2r. Then
the induction assumption implies that G/ Q2 (G) >~ G,_,,. It follows that A, > 2 and
G/Q(G)issmoothof type (A, — 1,..., A, —1).By25 1> —-D-GR —-1) =
A1 — A, and hence G is smooth. By 2.6, G ~ G, , and this proves (5).

We finally determine the k-smooth groups of k-type G, or (1, ..., 1), that is, with
elementary abelian factors of order p*.

THEOREM 2.8. Let 1 <k < nandwriten = Ak + t where A ¢ Nand0 <t < k.
The abelian p-group G of order p" is k-smooth of k-type (1,...,1) if and only if
G/ Q:.(G) is elementary abelian of order at most p', that is, G has type (A, ..., A,)
where Ay <A+ land A, < A

PROOF. We use induction on |G|. Suppose firstthat 1 = Xy < --- < X, =G
is a k-smooth chain with X; elementary abelian. If r > O, then M .= X, < G
and, by Lemma 2.2, M is k-smooth of k-type (1, ..., 1). The induction assumption
yields that M = Q; (M) < Q,(G). Since n = Ak + ¢, we have |G/M| = p' and
G/M =~ X, < X, is elementary abelian. Thus G/, (G) is elementary abelian of
order at most p’.

Now assume that ¢ = 0. Then for A = 1 we get that G = X, is elementary abelian,
and if A > 2, the induction assumption implies that X, _, = X, has exponent at
most p*~!. Since G/ X,_x =~ X, is elementary abelian, it follows that G = Q,(G), as
desired.
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It is clear that G/ 2;(G) is elementary abelian of order at most p' if and only if
G has type (A1, ..., A,) with A} < A+ 1and A,,; < A. So suppose, conversely,
that G = A, x --- x A, with cyclic groups A; of order p* where A + 1 > A >
Ay>--->x >1land A,y <A Thenn =) A; <ri+tandhencek <r. Thus

i=1

N := Q(A)) x - - - x Q(A,) is elementary abelian of order p* and |G/N| = p™ where
m=G-Dk+r. Wewrite U = UN/N for every U < G and show next that there
exists a k-smooth chain

(6) 1=X/N < X¢y/N<---<X,/N=G ofltype(l,..., 1),

where | = min(m, k). This is clear if m < k; for then A = 1 and |A;} = p for all i
since t < k. Thus G is elementary abelian in this case and has the desired chain. So
suppose that m > k. Then (6) follows from the induction assumption if G/, _;(G)
is elementary abelian of order at most p’. Since t < k, |A;| < p* for all i and
hence G/ 2,_,(G) clearly is elementary abelian. So suppose, for a contradiction, that
|G/ Q-1(G)| > p'*'. Assume that d of the A; have order p**'. Theni < ¢ for these
A; and hence d < 1. Since |A;] < p*~! fort < i < k, there exist at least t + 1 — d
indices i for which k < i and p* = |A;| = |A:|. Thus Agy41-a = A and it follows
that |[A; X - -+ X Agyy1-a] = p¥ where

w=dA+D+k+1t4+1-2d)xr
=kr+ (@t —-d)A+d+ A
>ki+t+1=n+1

since A > 1. This contradiction proves (6).

We finally put Xy = 1 and inductively define subgroups X; of N (i =1,...,k—1)
such that X;_, < X; and |X;| = p' for all i, and X,/ X, is elementary abelian for
all i with i + k < n. Then all factor groups X,/ X, of order at most p* in the chain
1 =X, <.+ < X, = G will be elementary abelian and therefore the chain will
be k-smooth of k-type (1, ..., 1). So suppose that subgroups X, ..., X; with these
properties have been defined and thati < k—1. Thenif i +k > n, any subgroup X,
of order p'*! of N containing X; will do the job. If i + k < n, then since X;+/X;
is elementary abelian, X,,,,/X; is of type (2,1,..., 1) or (1,...,1). In the first
case we take X,/ X; = ®(X,; 4,1/ X;); in the second case we let X;,,/X; be any
subgroup of order p of N/X;. Since X;,;41/N is elementary abelian, in both cases
Xiy1 < N and X;, 4/ X1 is elementary abelian.

We shall need two simple properties of smooth groups.
LEMMA29. Let 1 < r < n and suppose that 1 = Xo < --- < X, = G isa

smooth chain in G = G, ,; let p* be the exponent of G. Then there exist g € G and
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K =8xT < Gsuchthato(g) = p°, Sisoftype (e,...,e)or S =1, T is of type
(e—1,....,e—1)orT =1, and satisfying G = (g) x K, X,_., = (gF) x K, X,_, =
(gp) X va Xn—r—l = (gpz) x KP.

PROOF. Sincer < n,wehavee > 1 and G = R x T where R is of type (e, ..., €)
and T isof type (e —1,...,e—1DorT =1.SoT <Q,_,(G) < X,_;, by Lemma
2.4, and hence X,_, = (RN X,_;) x T. Since R N X,_, is a maximal subgroup
of R, we have RN X,_, = (u) x S where o(u) = p°! and S is of type (e, ..., e)
or § = 1. Since R is homocyclic, there exists g € R such that g7 = u. Then
R={(g) x Sandhence G = (g) x K and X,_; = (g”) x K where K = § x T. By
24, X,_, =GP = (gP) x K? and X,_,_; = (X,_;)” = (g"") x K?.

LEMMA 2.10. Suppose that G ~ H and that 1 = Xy < --- < X, =G and 1 =

Yo < --- < Y, = H are smooth chains. Then every isomorphisma : X,_; = Y,_,
satisfying X! =Y, fori = 1,...,n — 2 can be extended to an isomorphism of G to
H.

PROOF. If G and H are elementary abelian, it is clear that every isomorphism
a : X,y = Y, can be extended. So we may assume that G is not elementary
abelian and by Corollary 2.6, G ~ G, , for some r satisfying 1 <r <n. Letg, S, T
be asin Lemma 2.9; since also H >~ G,,,, there exist h, U, V having the corresponding
propertiés withrespecttothechainl =Y, <.-- <Y, = H.

Now X% , = Y,_; implies that (g?)* = h'Puv withi € Z, u € U, v € V. By
Lemma 2.4 there exists j € N such that X; = G and ¥; = H”"'. Since X¥ = ¥,
it follows that H?' = (") x Q(U) contains ((g”)”")* = h» ' uP"v¥™; this
yields 4 = 1 = v»”. Since U and V are trivial or homocyclic of exponent
p¢ and p°~!, respectively, there exist x € U, y € V such that x” = u and y” = v.
Thus (g?)* = h?uv = (h'xy)” and so o(hixy) = p°. For K = S x T we have
X* | = (gP)* x K* and hence (h'xy) N K* = (gP)* N K* = 1. It follows that
H = (hixy) x K* and thus there exists an isomorphism 8 : G — H satisfying
g% = hixy and w? = w* for w € K. Since (g”)? = (g#)? = (h'xy)? = (gP)*, Bis
an extension of «.

3. Canonical L-embeddings and bases

In this section we shall prove that if G and H have the structure given in Theorem
C, then there exists an L-embedding of G in H. For this we use Barnes’ methods and
therefore need some of the concepts introduced by him. For the convenience of the
reader we recall them briefly.
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Let G and H be abelian p-groups of the same order and let X, Y|, X5, Y; be
subgroups of G such that X, = X; U Y, and Y| = X, N Y,. Then the mappings

o X/, — X3/, xY) > xY, (x e X))
[e5) ZXZ/Y2—>X1/Y|; xY, > xY,NY, (XEXz)

are mutually inverse isomorphisms. Such isomorphisms are called projectivities. If
¢ : L(G) — L(H) isan L-embedding, thenby (1), Xy = XYUYf and ¥/ = XV NY/
so that there exist the corresponding projectivities

g, X{/Y - X3/YY and o,:XY/Y) — XV/Y!
in the group H. For a closed chain
c:X)Y =X/ 5 X/, 2 2 XY, = XY

of projectivities in G, the composition @(c) := 0y .. .0,_; is an automorphism of X/Y
and

T X0 Y= X0 Y 2 XYYy D I XO Y = XO/YY

is a closed chain of projectivities in H. So if X/Y is cyclic of order p - we call X/Y
a prime interval in this case - there exist integers r(c) and r(c) prime to p such that
x4 = x" forallx € X/Y and y*®@ = y"® forally € X*/Y*.

DEFINITION 3.1. The L-embedding ¢ : L(G) — L(H) is called canonical if
r(c) = r(c) (mod p) for all closed chains c of projectivities on prime intervals in G.

Barnes uses the term ‘1-canonical’ instead of ‘canonical’ since he considers, more
generally, L-embeddings having similar properties with respect to cyclic intervals of
order p" (n € N) which he then terms ‘n-canonical’. He shows [1, Theorem 3.1 and
3.3] that if C and C are cyclic groups of order p and ¢ is a canonical L-embedding of
G in H, then ¢ can be extended to a canonical L-embedding of G x C in H x C. Thus
to prove Theorem C, it will suffice to show that A x B has a canonical L-embedding
in U x V; this can then be extendedto A x B x C; x -+ x C,.

Again let ¢ : L(G) — L(H) be an L-embedding. We consider the set 9 of all
pairs (x, y) where x is a generator of a prime interval X/Y of G and y is a generator
of X?/Y¥. A subset B of 4 is called a basis of g if for every prime interval X/Y in
G there is a unique pair (x, y) € Bsuch that X/Y = (x) and X¥/Y* = (y).

DEFINITION 3.2. Let 3 be a basis of ¢.
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(a) A projectivity o : X,/Y; — X,/Y, between prime intervals in G is called
regular with respect to ¥ if there exists r € Z such that x{ = xJ and y{ = yj,
where (x;, y;) € Bsatisfy X;/Y; = (x;) and X7 /Y! = (y)) ( = 1,2).

(b) ¥is called canonical if every projectivity between prime intervals in G is regular
with respect to 3.

It was noted by Barnes [1, p. 21] that an L-embedding is canonical if and only if it
has a canonical basis. We need some simple properties of canonical bases.

LEMMA 3.3. Suppose that B is a canonical basis of ¢, let X/ Y be a prime interval in
G andlet (x,x) € Bbe suchthat X/Y = {(x). IfZ, W < G aresuchthat XNZ =Y
and X U Z = W, then there exists i € Z, i % 0 (mod p) such that (x'Z, X' Z*) € ¥.

PROOF. Consider the projectivity o : X/Y — W/Z and let (w, w) € 8 be such
that W/Z = (w). Since ¥ is canonical, there exists r € Z such that xZ = x” = w”
andxZ¢ =%° = . Thus w = (xZ)' and w = (xZ*)' for some i % 0 (mod p).

LEMMA 3.4. Suppose that ¢ is induced by an isomorphism ¢ : G — H. Then ¢
is canonical and we obtain a canonical basis B of ¢ if we choose for every prime
interval in G a generator x and put the pair (x, x°) in 8.

PROOF. If o : X/Y — W/Z is a projectivity between prime intervals and x, w are
the chosen generators of X /Y and W/Z, respectively, then the definition of & implies
that (x9)° = (x°)¢. So if x” = w’, it follows that (x2)? = (w")¢ = (w?)". Thus o is
regular.

Conversely, we need that every canonical basis is of this type if G and H are
elementary abelian (of order p?).

LEMMA 3.5. Let G and H be elementary abelian of order p? and let ¢ be a
canonical L-embedding of G in H with canonical basis 3. Suppose thata, b € G are
such that (a) # (b) and that 8 contains the pairs (a, x) and (b, y). Then ¢ is induced
by the isomorphism ¢ : G — H; a'b’ — x'y/, and for every pair (c, 7) € B we have
z=c".

PROOF. We clearly have G = (a) x (b), (a)* = (x) and (b)* = (y), so that
H = (x) x (y). Suppose that (ab*)* = (xy™) and let ((ab*)’, (xy™)*) € B where
1 <k,m,r,s < p— 1. By 3.3 there exist i, j € Z such that a"»*"(b) = a'(b) and
x*y™(y) = x*(y) and also a’b* (a) = b’(a) and x*y™ (x) = y/(x). It follows that
r=i=s(modp) and kr = j = ms (mod p) and hence r = s and k = m. Thus ¢ is
induced by g and the pairs (c, z) € B belonging to prime intervals C/1 satisfy z = ¢2.
By 3.3, this then also holds for the prime intervals G/C.
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If M < G and ¢ is an L-embedding of G in H, then the restriction of ¢ to L(M) is
an L-embedding of M in M¥ which we call ¢y,. If 3 is a basis of ¢, we let B, be the
set of pairs (x, y) € B belonging to prime intervals X/Y with X < M; clearly, 3, is
a basis of ¢y,.

We want to construct canonical L-embeddings of groups of type (n, k). This we
shall do by induction, extending L-embeddings of smaller groups in the following
obvious way; of course, the lemma holds more generally.

LEMMA 3.6. Suppose that |G : F| = p?, where F = ®(G); let K < H and u be
an L-embedding of G/F in H/K with basis 8,,.

Let 4 be the set of maximal subgroups of G and for every M € M, let (M) be an
L-embedding of M in M with basis $(M) where M/K = (M/F)*. Assume further
that o(M)r = @(N)r and B(M)r = B(N)g forall M, N € M.

(@) Thenv : L(G) — L(H), definedby G¥ = Hand XV = X*™ if X <M e M,
is an L-embedding of G in H.

(b) Ifforevery M € #, the bases B, and (M) contain the same pair belonging to
M/ F, then the union € of B, and all the (M) is a basis of Y. If, in addition,
¥, and all the 3(M) are canonical, then so is €.

PROOF. (a) Since the L-embeddings ¢(M) and ¢(N) coincideon F = M N N for
different M, N € M, the map  is well-defined and injective. By definition, we have
to show that if X covers Y, then X¥ covers Y¥. This is clear if X < M < 4, since
in that case ¥ coincides with ¢(M)on X and Y; and if X = G, then YV = Y*® isa
maximal subgroup of H, since Y*"/K = (Y/K)*.

(b) Our assumptions imply that for a given prime interval X/ Y, all the bases ¥(M)
and 3, which contain a pair belonging to X/Y contain the same pair. Thus the union
€ is a basis of ¥. If 3, and all the (M) are canonical, then by [1, Lemma 4.1], so is
C.

The main difficulty in extending a given L-embedding of a maximal subgroup to a
canonical L-embedding of G in H = U x V is that this extension can be done rather
arbitrarily if V is elementary abelian, has to be constructed suitably if |V /Q(V)| = p,
but is uniquely determined if |V/Q(V)| > p?. Fortunately, we only have to study
this in the case n = k.

LEMMA 3.7. Let G = A x B with cyclic groups A and B of order p", let ¢ be
an L-embedding of G in H and suppose that H is not elementary abelian. Write
F=®G), U=A% V =B% fori =0,...,n, let A, < A and B; < B with
|A;| = p' = |Bi|, U = A and V; = B!. Finally, suppose that 3 is a basis of ¢ and
that |QU) = p'.
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(a) There exist generators a of A and b of B, elements u € U, v € V, and in-
tegersi, j,s,t € {1,..., p — 1} such that ¥ contains the pairs (aA,-,, uU,_,),
@” Apeyor, WPU,_,_1), (bBu_y, vVay) and (07 B,_,_, v/'"?V,_,_)).

(b) If ¥y is a canonical basis of pr and a, b, u, v, s, t are as in (a), then @ is induced
on G/F by the isomorphism o : G/F — H/F¥® given by (aF)’ = u’F* and
(bF)’ =v'F°.

(c) If¥is a canonical basis of ¢, then, in addition, s = t.

PROOF. (a) By 23,1 =Uy < ---<U,=UVandl =Vy<--- <V, =V are
smooth chains, H = U x V and U >~ V. Since H is not elementary abelian, it follows
that neither U nor V is; thus r < n. By 2.6, U >~ G,, and by 2.9 there exist u € U
and K < U such that

N U=wyxK, U_1=Ww)xK, Uy_,=Ww)yx K’ Uy, = (u”z) x KP.

Thus U/ U,_, = (uU,_,) and hence ¥ contains an element of the form (aA,_,, u*U,_,)
where A = (a) and k¥ # O(mod p). So if we replace u by u*, we still have (7)
and (aA,_,,uU,_|) € B. Since A,_,/A,_,_; = (@” A,_,_,) and U,_,/U,_,_; =
(u?U,_,_,), there exist i,s € {1,...,p — 1} such that B contains (a’" A,_,_,,
u*?U,_,_). In the same way we get b, v, j, t with the desired properties.

b)letW =A,, xB,,, R=A,,xB,_,_1, S=A,_,_y XB,_,,and T =
An_,_1 X B,_,_;. Then W/T = R/T x S/T is elementary abelian of order p.
Since R/T is projective to A,_,/A,_,_, and By is canonical, by 3.3 there exists
v € Z such that 3, contains (a’”*T, u'*P*T¥); similarly, there exists 4 € Z such
that (b/P*T, v/'"*T¥) € 3B belongs to the interval S/T. By 3.5, ¢ is induced on
W/T by the isomorphism ¢ : W/T — W¥/T? satisfying (@’7*T)° = u*?*T¥ and
(b/P'HT)e = vi*PeT; it follows that

8) @ T =u?T* and (b” T)? = v'’T".
For A € {1,...,p — 1} let D = D, = (ab*). This is a diagonal in G = A x B;
by (1), D? is a diagonal in H = U x V; thatis, D¥ = D{(a) = {xx* | x € U} for

some isomorphism & : U — V (see [4, Theorem 1.6.2]). Since DN F = (a?b*) isa
diagonalin F = A,_; X B,_;, (DNF)? = D¥NF¥isadiagonalin F¥ = U,_; xV,_,

and hence U | = V,_;. Wehave U/U,_; = (uU,_;) and V/V,_; = (vV,_,); thus
there exists d = d, € {1,..., p — 1} such that u* = v¥w with w € V,_,. Since
(DF)¥ = D*F¥, it follows that

9 ((ab*)F)* = (uv™)F*.

Now (DN W)T/T = (a” b )T/ T is a diagonal in W/ T which, by (8), is mapped
to (u?v™P)T¥/T¥ by ¢. On the other hand, (D N W) U T is mapped to

(D* N W UT® = {xx* | x € U,_,}T® = (uPv?)T® = (uPv*)T¥
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since (uP)* = v®w? and w? € V', = V,_,_, < T¥; see (7). It follows that
At = sd(mod p). Now d = d, and (9) yields that forA =1,..., p — 1,

({(abM)F)? = (W v™)F¥ = (uv™)F¥;

that is, ¢ is induced on G/F by the isomorphism ¢ satisfying (aF)° = u’F? and
(bF) =v'F*.

(c) Since ¥ is a canonical basis containing (aA,_;, uU,_,) and AF/F is projective
to A/A,_;, Lemma 3.3 implies that there exists v € Z such that (a"F, u"F?¢) € ¥;
similarly, (b*F, v*F?) € 3 for some u € Z. By 3.5, ¢ is induced on G/F by the
isomorphism 7 : G/F — H/F? satisfying (aF)" = uF? and (bF)" = vF?¢. Now
o and t induce the same lattice isomorphism of G/F and hence ot~ is a power
automorphism. It follows that s = ¢.

LEMMA 3.8. Let G be of type (n, n), suppose that ¢ is an L-embedding of G in H
and that \H/Q(H)| > p>. Let F = ®(G) and M be the set of maximal subgroups
of G and assume further that for every M € 8, the induced L-embedding ¢y is
canonical and has a canonical basis B(M) such that (M) = B(N)g forall N € M.
Then ¢ is canonical and has a canonical basis 3 such that By, = B(M) forall M € M.

PROOF. We show first that the lemma is an easy consequence of the following.

(10)  For every two different maximal subgroups M and N of G there exists an
isomorphism 0 = oyy : G/F — H/F? inducing ¢ there and satisfying: if
(x,x) € B(M) and (y,y) € B(N) are such that M/F = (x) and N/F = (y),
then x =x and y* =Y.

So assume that (10) holds, take M, N € M such that M # N and put 0 = oyy.

IfM#L e Mand (z,7) € B(L) is such that L/F = (z), then T = oy, induces

¢ on G/F and satisfies x* = x and z* = Z. Then ¢ and t induce the same lattice

isomorphism of G/ F, so o t~! is a power automorphism which is trivial since x° = x*.

Thus ¢ = 1 and hence o satisfies for all L € M,

an =7 if (z,7) € B(L) issuchthat L/F = (z).

Let 1 be the L-embedding of G/F in H/F* induced by ¢, and hence by o; let 3, be
the canonical basis of p constructed in 3.4 using the pairs (z, z°) € B(L) for L € M.
Then ¥, and the B(M) satisfy the assumptions of 3.6(b) and hence their union is a
canonical basis of ¢.

It remains to prove (10). Let 3 be a basis of ¢ that contains every $(L), L € #;
such a basis exists by 3.6(b).

Now let M, N € M be such that M # N. Then M and N are of type (n,n — 1)
and hence M = (c¢) x {(d) and N = (x) x {y) where o{c) = o{x) = p" and
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o(d) = o(y) = p*!. Since M # N, we have G = MN = (c, x)F and hence
G = {(c) x (x); furthermore M = (¢) x (M N {x)) = {c) x {(x”) and, similarly,
N = {c?) x (x). Soif we put A = {c) and B = (x), we have that G = A x B where
A and B are cyclic of order p". Let U = A*, V = BY andfori = 0,...,n, let
A; < Aand B; < Bbesuchthat |A;| = p' = |B;|, U; = AY, V, = Bf. Then

(12) M=AxB,, and N=A,_, xB.

By23, H=UxV,1=Uy<---<U,=UVUandl =Vy<--- <V, =Vare
smooth chains, and U ~ V. Let |Q(U)| = p’. Since |H/Q(H)| > p*, U,_; is not
elementary abelian; thus, by 2.4,

(13) QU)<U,, and r<n-—1.

If we apply 3.7 to G = A x B, we obtain generators a of A and b of B, ele-
ments ¥ € U and v € V, and integers i, j,s,¢t € {l,..., p — 1} such that B
contains the pairs (aA,_;,uU,_,), @" A,_,_,, u*U, , ), (bB,_;,vV,_), and
(bP"B,_,_1,v/'""V,_,_)). By (b) of 3.7,

(14) ¢ is induced on G/F by the isomorphism o* : G/F — H/F?¥ satisfying

(@F) =u'F¢and (bF)” = v'F?.

Now we apply 3.7to F = A,_; x B,_;. By (13), the assumptions of 3.7 hold with n
replaced by n — 1 but with the same r as before. Therefore there exist generators a; of
A,_;and by of B,_;, elements u; € U,_; and v; € V,_;, and integers i, v, m such that
B, and hence also 3, contains the pairs (a;A,_z, 4 Un-2). (@' Ap_y_a, '™ U, _,_5),
(b1 B3, 11 Vy_2), and (b)” B,_,_5, v\ V,_,_3); note that B is canonical so that 3.7(c)
yields the same power of u}? and v,” here.

Next we apply 3.7 to M/A; = AF/A, = A/A, x B,_1A,/A,, the canonical L-
embedding induced by ¢, in M/ A and the induced basis 33( M)y*;sinceU/U, ~ U,_,,
the assumptions of 3.7 hold. For short, we write X and X for the images of elements
x or subgroups X under the natural homomorphisms of G to G/A, and of H to
H/U,. By (13), A, < A,_,_, and hence ¥(M)* contains the pairs (aA,l L al, 1)
and (@” Aneri, iU, ,_1); by 3.3 there exist A, ¢ € Z such that 3(M)* contains
(b} B,_s, 9}V, _5) and (B)% B,_,_5, """ V,_,_5). Since B(M)* is canonical, (c) of 3.7
implies thatm = s.

If we finally apply 3.7 to the symmetric situation in the factor group
N/B, = A,_B,/B, x B/B,, we obtain that m = ¢. It follows that s = ¢.

Let t be the power automorphism of H/F¥ mapping every element x to x* where
sw = 1(mod p) and let 0 = o*t. Then by (14), ¢ is induced by o on G/F and
(aF)° = uF?, (bF)° = vF¥. Since (M) is canonical and M/ F is projective to
A/A,_,, by 3.3 there exists k € Z such that (@*F, u*F¢) € (M) and M/F = (a*F);
similarly, there exists [ € Z such that (b'F, v'F¢) € B(N) and (V'F) = N/F. Since
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(@*F)° = u*F¢ and (b'F)° = v' F?, the isomorphism o satisfies (10). This proves
(10) and the lemma.

We can now construct the desired extension.

LEMMA 3.9. Let 1 <k <nand G = A x B with cyclic groups A of order p" and
B of order p*; fori =0,...,n,let A; < A be such that |A;| = p'. Let H=U x V
be abelian, \U| = p", |V| = p*, andlet1 = Uy < --- < U, = U be a k-smooth
chain withU, ~ V.

Let ¢ be a canonical L-embedding of Gy = A,_1 X B in Hy = U,_| x V such
that A’ = U, fori =1,...,n — 1 and B® = V; let 3 be a canonical basis of ¢ and
suppose that G/ Gy = (w) and H/Hy, = (w).

Then there exists an extension of ¢ to a canonical L-embedding ¥ of G in H
satisfying AY = U; furthermore there exists a canonical basis € of ¥ containing B
and, if V is elementary abelian, the pair (w, w).

PROOE. We use induction on |G|. If n = k = 1, then G and H are elementary
abelian of order p? and there exists an isomorphism ¢ : G — H satisfying A? =
U, w? =w, and b° = v if B = {(b, v)}; by 3.4, the L-embedding v induced by p is
canonical and has a canonical basis € containing (b, v) and (w, ).

So suppose that n + k > 3 and that the assertion is true for groups of smaller order.

Casel: n > k. Then N := A,_; # land Gy = ©2,-1(G); by 2.2, the assumptions
of the lemma hold for the L-embedding ¢ with canonical basis $ induced by ¢ and
B, respectively, in Go/N. The induction assumption yields an extension Vofdtoa
canonical L-embedding of G/N in H/N? suchthat (A/N ¥ =U /N¥ and a canonical
basis € of ¥ that contains $ and, if VN /N =~ V is elementary abelian, the pair (w, w).

Letl1 <Y < X < G suchthat |[X : Y| = p and suppose that X £ Gy. Then X
contains an element x = ab of order p", wherea € A and b € B, and x? = a*
generates N; thus N < X. Furthermore, if N £ Y, it would follow that ¥ < G; but
then X = NY < G, a contradiction. We have shown:

(15) If X/Y is a prime interval in G, then X < Goor N <.

This shows that the map ¥ : L(G) — L(H) given by X¥ = X* for X < G, and
XV /N¢ = (X/N W if X % Gy is well-defined and, clearly, injective. To prove that ¥
is an L-embedding, by definition, we have to show that if X covers Y, then X¥ covers
Y¥. But (15) and the fact that ¥ is induced by ¢ on Gy/N yield that if X covers ¥,
then ¥ coincides on X and Y either with ¢ or -ith the map induced by . In both
cases, XV covers Y. Thus v is an L-embedding satisfying A¥ = U and we show
that
¢:=BU [(x,f) e@|(x)=X/Y, X ,<_GO}
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is a canonical basis of ¥; here, to simplify notation, we identify generators of X/Y
and of (X/N)/(Y/N)if N <Y < X. Indeed, by (15), € is a basis of yr. We have
to show that every projectivity o : X,/Y, — X,/Y, between prime intervals of G
is regular with respect to € and by [1, p. 21], we may assume that X is a maximal
subgroup of X,. If X, < Gy, then € coincides with 3 on the intervals X;/Y;; and if
X, £ Gy, then by (15), N < X, NY, = Y, and € coincides with € on these intervals.
In both cases, o is regular and € is a canonical basis having all the desired properties.

Case 2: n = k and V is elementary abelian. Then H is elementary abelian; we
let F = ®(G) and choose an isomorphism ¢ : G/F — H/F? satisfying (AF/F)? =
UF¢/F*, w® = W, and z°2 = 7 if (z,2) € ¥ is such that Go/F = {z). Since in
an elementary abelian group every maximal chain is smooth, by induction, for every
maximal subgroup M # G, of G there exists an extension of ¢y to a canonical L-
embedding ¢(M) of M in M where M/F¢ = (M/F)?; and A*™ = U if M = AF.
Furthermore there exists a canonical basis 3(M) of ¢ (M) containing ¥ and the pair
(x, x°) for some generator x of M/F. If u is the L-embedding of G/F in H/F¥
induced by g, then by 3.4, u is canonical and has a canonical basis 3, containing
all these (x, x?) and (w, w). Now the L-embedding ¥ and its canonical basis €
constructed in Lemma 3.6 have the desired properties.

Case 3: n = k and V is not elementary abelian. Then A = (a) and B = (b)
with o(a) = o(b) = p"; furthermore, by assumption, V >~ U, = U and hence both
groups are smooth. Fori = 0,...,n, let B; < B be such that |B;| = p', and let
V; = BY. Again write F = ®(G) = A,_; x B,_; and let M be the set of maximal
subgroups of G. The induction assumption applied to AF = A x B,_; € M yields
the following.

(16) There exists an extension of ¢ to a canonical L-embedding ¢(AF) of AF
in U F¥ satisfying A*4P) = U; furthermore there exists a canonical basis
B(AF) of p(AF) containing B and, if V,,_, is elementary abelian, a given pair
(x, X) satisfying AF/F = (x) and UF?/F¥ = (x).

We now handle the M € M with AF # M # BF = G,. These have the form

a7n MY =DVWF=DY xB,, for j=1,...,p—1,

where DY) = (ab’). Let j € {1,...,p — 1} and write M = M"Y and D = DY,
Then DN F = (a”b’?) is a diagonal in F and therefore by (1), (D N F)? is a diagonal
in F¥ = U,_; x V,_. By [4, Theorem 1.6.2],

(DNF) = DUy, vy ={uu |u € Uy}
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where t : U,.; — V,_; is an isomorphism. Fori = 1,...,n — 1, let D; be the
subgroup of order p' of D. Then D; = (A; U B,_;) N (D N F) and hence by (1),

Df = (U; UV,_)NDWU,_y,t) = {uu* |u € U} = U

where t* is the natural isomorphism t* : U,y - D(U,_,, t); u + uu’. Further-
more, B, = (A; U (D N F)) N B,_, and hence

Vi=(U; UDWU,_;,1))NV,,, =U;.
Thus we have shown that foralli =1,...,n ~ 1,
(18) U=V, and US =Df.

By 23,thechainl = V; < --- < V, = V is (n — 1)-smooth and hence smooth
since |V| = p". By (18) and 2.10, there is an extension of t to an isomorphism
T:U — V;let D = D(U,T). Then D is a diagonal in H = U x V and hence
M := DF¢ = D x V,_, is a maximal subgroup of H containing F¢. By (18), the
natural isomorphism T* : U — D;u > uu® maps U; to Df fori =1,...,n—1
and therefore 1 = D¢ < --- < D?_, < D is a smooth chain. Since D =~ U is not
elementary abelian, 2.4 yields that

(19) QD) < Dy, =(DNF).

Furthermore we see that M = D x B,_;, M = D x V,_,, ¢r, 8 satisfy the assump-
tions of the lemma in place of G, H, ¢, 3, and hence the induction assumption finally
implies the following.

(20)  There exist an extension of ¢ to a canonical L-embedding ¢(M) of M in M
and a canonical basis 3(M) of ¢(M) containing B, and, if V,,_, is elementary
abelian, a given pair (x, ¥) satisfying M/F = (x) and M/F* = (X).

Now ifi,j e {l,..., p— 1} withi # j, then D® N DY = (ab') N (ab’) = 1 and
hence by (1), (D® N F)* N (DY N F)* = 1. Thus by (19), D® and DY are diagonals
of H = U x V intersecting trivially, and therefore they generate H; it follows
that M® # M. This shows that there is an L-embedding u of G/F in H/F*
satisfying (AF/F)* = UF?/F*,(Go/F)* = H,/F*, and (MY /F)* = MO/ Fe

forj=1,..., p— 1. If we write ¢ = ¢(G,) and ¥ = ¥(G,), then by (16) and (20),

1 and the L-embeddings ¢ (M) and bases B(M) (M € M) satisfy the assumptions of

Lemma 3.6. Let i be the L-embedding of G in H constructed there; then Yy = ¢(M)
for every M € M and  induces i on G/F.

If V,_, is not elementary abelian, then by 2.4, Q(V) < V,_, and hence |H/Q(H)|
> p’. By 3.8, ¢ is canonical and has a canonical basis € such that €, = (M) for
all M € M. In particular, AY = U and € contains ¥, as desired.

https://doi.org/10.1017/5144678870000080X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000080X

278 Roland Schmidt [20]

So assume, finally, that V,_; is elementary abelian. Since H is not elementary
abelian, (b) of 3.7 implies that ¢, and hence also y, is induced on G/F by an
isomorphism gy. Let (by, v,) € B be such that Go/F = (b,) and Hy/F?¥ = (v;). If
we add a suitable power automorphism of H/F¥ to gy, we obtain an isomorphism
o0 : G/F — H/F¥ inducing u and satisfying b7 = v;. Now we choose the pairs
(x,x) in (16) and (20) such that ¥ = x°. By 3.4 there exists a canonical basis 3, of
(4 containing (b;, v;) and all these pairs (x, x?). If ¢* is the L-embedding of G in
H constructed via 3.6 using p and these new ¢(M), then by (b) of 3.6 there exists
a canonical basis € of ¥* which contains 3. In particular, ¥/* is canonical and this
proves the lemma.

PROOF OF THEOREM C. Suppose first that G = A x B x C3 x --- x C, has an
L-embedding in H. Then by 2.3, H = A¥ x B? x Cy x --- x C¢ where A¢ and B¥
are k-smooth of k-type B® and |C{| = |C;| = p for all i. If k = 1, we are done; and
if k > 2, then 2.6 — 2.8 show that (ii) or (iii) of Theorem C holds accordingly as V is
or is not elementary abelian.

Conversely, assume that H has the properties given in Theorem C. It suffices to
show that A x B has a canonical L-embedding in U x V; by [1, Theorem 3.1 and 3.3],
this can be extendedto G = A x B x C3 x - - - X C,. By 2.6 — 2.8, the conditions (i) -
(iii) imply that V is smooth and U is k-smoothoftype V. Letl = Uy < --- < U, =U
and1 =V < --- < V, = V be k-smooth chains with U; >~ V; fori = 0,...,k; let
l=Ap<---<A,=Aand 1 = By < -+ < B, = B. Then there exists a canonical
L-embedding ¢ of A x B in U x V satisfying Af = U; and B} = V; for all i, j;
indeed, by induction, we have such an L-embedding of A,_; X B in U,_; x V which,
by Lemma 3.9, can be extended to A x B. This proves Theorem C.
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