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PERIODIC QUEUES IN HEAVY TRAFFIC

G. I. FALIN,* Moscow State University

Abstract

An analytic approach to the diffusion approximation in queueing due to
Burman (1979) is applied to the M(¢)/G/1/~ queueing system with periodic
Poisson arrivals. We show that under heavy traffic the virtual waiting time
process can be approximated by a certain Wiener process with reflecting
barrier at 0.

POISSON ARRIVALS; DIFFUSION APPROXIMATION

Introduction

An important property of periodic queues is the absence of a steady state in its usual sense.
As a matter of fact, a special ‘periodic stationary regime’ exists. Consider for example the
virtual waiting time process W(t) in the M(t)/G/1/~ queue with FIFO discipline, Poisson
arrival process with periodic intensity A, (without loss of generality we can assume that the
period equals 1) and general service time distribution function B(x) with finite mean 8, and
variance o> = f8, — B2. For example, A, could be A + B sin 2zt with A>B=0. If A, = [{ A, du,
A=A,, p=AB,<1, then there exists the family H,(x) of distribution functions, periodic
functions of ¢ (i.e. H,,,(x) = H,(x)), such that lim__[P(W(f) <x)— H/(x)]=0. This fact is
clearly seen from Figure 1 where the dependence of EW(f) on ¢ is given in the case
A =0-5(1 +sin 27tt), and B(x) is the uniform distribution [0, 2] (results were obtained using
an Atari 130 XE). This ‘periodic stationarity’ imposes essential mathematical difficulties on
the analysis of queues. Determination of the functions H,(x) and even determination of the
mean value [{dt [i x dH,(x) can be made only with the help of a computer. To simplify the
problem in practice, the ‘principle of the mean’ is usually used: a periodic queue is
approximated by the corresponding stationary queue with arrival intensity A=

1/ . . T
lim,_,m;f A,du=A,. Of course we have to find conditions when this approximation is
0

reasonable.

In this note we shall show that this principle holds in heavy traffic in the sense of
convergence of a scaled non-stationary process to a stationary process {which is in fact a
reflected Brownian motion). To prove this we turn time heterogeneity into space heteroge-
neity (via a supplementary variable) which allows us to use the methodology of Burman [1].

Main result

Let us consider a sequence of M(¢)/G/1/» queues (indexed by a parameter n, although we
shall usually omit it) with arrival rates A™. As a matter of convenience we suppose that the
distribution of service time B(x) does not depend on n.

Received 29 March 1988; revision received 27 January 1989.
* Postal address: Department of Probability, Mechanics and Mathematics Faculty, Moscow State
University, Moscow 119899, USSR.

485

https://doi.org/10.2307/1427175 Published online by Cambridge University Press


https://doi.org/10.2307/1427175

486 , Letters to the editor

0-8

4
0-6
0-4
0-2

t
1 2 3 4 5 6 7 8
Figure 1

Theorem. If as n— o, A™ = [} A" dt tends to 1/, — 0 so that Vn(p®™ —1), where p™ =
A™B,, tends to —m, then the scaled processes W(nt)/Vn converge (in the sense of
convergence of finite-dimensional distributions) to a Brownian motion with reflecting barrier
at the origin with infinitesimal mean m and infinitesimal variance B,/(28,).

Proof. The main idea of the proof consists in turning time heterogeneity into space
heterogeneity. To do this let us denote by t(f) the fractional part of r. The process
(W(2), T(r)) is a time-homogeneous Markov process with state space R, X [0, 1], but with
transition characteristics which depend on the second coordinate 7 of a point (x, 7) of the
state space.

Another problem now arises. Under heavy traffic only the first coordinate of the process
(W(¢), =(t)) will converge to a diffusion process. But this difficulty can be removed by using
the method of proving functional limit theorems in queueing theory due to Burman [1].

The infinitesimal generator of the process (W (t), t(¢)) is expressed as follows:

Af(x, r)=,1,jw [fx+u, t)—f(x, D)]dBu)+fix, 1) —fi(x, 1), if x>0, 0<7<],

Af (0, t)=/1,fw [f(u, ) =f(0, 7)]dB(u) + 0, 7), if 0<t<I1,

and operates on functions f(x, 7) satisfying the boundary condition f(x, 1) = f(x, 0).
For the generator A, of the scaled process (W (nt)/Vn, t(nt)) these formulas become:

A.f(x, 7)= nl,fm [f(x + % u, 7y —f(x, )] dB(u) + nf i(x, 7) — \/ﬁf;(x, )
= VA fi(x, T)B: + 3AB.f (X, T) + nf ix, T) = Vafi(x, ) + o(1),
if x>0, 0<t<1;and
A,f(0, T) = na, fo i [f(% r) —f(0, r)] dB(u) + nf (0, 7)
=VnA.fL0, T)By + 3A.B.£1.(0, T) + nf (0, 7).

The boundary condition does not change.
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For any twice continuously differentiable function f(x) define

1.5, D) =£ () 4 = WD)+ FWh(E),

where the functions g(t), h(t) will be defined below. For such functions we have;
Aufo(x, ©) = Vi (0)[AB1 = 1+ 8" (D)] + ' (O)[(AB1 — 1)g(7) + 3A.B2 + h' ()] + 0(1),
Auf2(0, T) = Vnf ' (O)[AB1 + &' (D)] + ' (O)[AB1g(7) + 34 B + h'(T)] + 0(1).

The boundary condition becomes;

g(1)=g(0), h(1)=h(0).

From the above it is easy to see that A, f, can converge to a limit which does not depend on t
only if the functions g(t), h(t) satisfy the equations:

M1 g @ =, (b= Dg@+ 2w = e,

where c,, ¢, are to be determined from the boundary conditions.
The first equation yields

g(r)=(r—A,ﬂl)+71;clr+g<0).

By the boundary condition g(1) = g(0) we get
cr=—-Vn(1-p®)=-m+o(1),
s0 g(t) = pt — A.B, + g(0). This allows us to obtain

h(t)=c,t+3A.B, + f (1= A,B1)g(u) du + h(0).

The boundary condition #(1) = h(0) gives

C. =B/ (2B1) + o(1),
Using the functions g(t), h(7) we get

lim A, f.(x, T) = —mf'(x) + Z‘%f”(x) =A,f(x).
n— 1

The generator A, corresponds to a diffusion process with infinitesimal mean m and
infinitesimal variance B,/(28,).

Similar analysis of behaviour at the boundary x = 0 implies that functions f(x) from the
domain of the generator A, have to satisfy the condition f(0) =0. This means that the
generator A, corresponds to diffusion with a reflecting barrier at the origin.

To complete the proof it is sufficient to refer to results in [1] and [2] which imply that the
above allow us to guarantee the desired convergence.
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