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Abstract. Let <j> be an Axiom A flow restricted to a basic set, let g be a C°° function
and let Tg(x) = Y,ew>:SX (Ag(T)/A(r)), where Ag(r) is the g length of the closest orbit
T, A(T) is the period of T and h is the topological entropy of <j>. We obtain an
asymptotic formula for 7rg which includes the 'prime number' theorem for closed
orbits. This result generalizes Bowen's theorem on the equidistribution of closed
orbits. After establishing an analytic extension result for certain zeta functions the
proofs proceed by orthodox number theoretical techniques.

0. Introduction
For some time now, in fact probably since Selberg's paper [16], there has been a
growing awareness of affinities between the distribution problems of number theory
and those of dynamical systems. Hejhal, for example, showed how the closed orbits
of certain geodesic flows could be counted using number theoretical techniques
based on Selberg's trace formula ([6]). Sarnak pursued related problems in his thesis
and described, in [15], the distributional behaviour of closed orbits of horocycle
flows on non-compact finite volume surfaces of constant negative curvature.

Without doubt much of the recent work in this area was stimulated by Margulis's
thesis and by his announcement in [8] of an asymptotic formula for the number of
closed geodesies with length less than x when the compact manifold has negative
curvature. Margulis's result can be formulated so that it closely resembles the prime
number theorem. If one similarly formulates the main result of Bowen [3], for
Axiom A flows, one can view Bowen's estimate as an analogue of Chebychev's
theorem.

These asymptotic formulae for the number of closed orbits are not merely formally
analogous to number theoretical results; for the present author has, together with
Pollicott [10], established a precise formula for the Axiom A flow case by using a
certain zeta function introduced by Ruelle [14] and by following the Wiener-Ikehara
recipe for the proof of the prime numbers theorem [18]. Our results subsume those
of Margulis and Bowen. However, they rely on the remarkable groundwork which
had been prepared by Bowen in [4] and Ruelle in [14]. Using Bowen's combinatorial
formula (an extension of Manning's [7]) for counting the number of periodic orbits
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118 W. Parry

of a fixed period in terms of those of certain related suspensions of shifts of finite
type, we were able to express the zeta function of an Axiom A flow in terms of the
zeta functions of shifts. (Ruelle had used the same technique in [13] and [14].) We
could then establish a variety of analytic properties of the zeta function by invoking
Ruelle's theory. The final step was to follow the Wiener-Ikehara proof of the prime
number theorem.

In this paper we take the next natural step and ask is there an analogue of the
Dirichlet density theorem for Axiom A flows? The density version of Dirichlet's
theorem says that the number of primes in each residue class mod m (m>2) is
asymptotic to x/ <t>(m) log x (where <f> is Euler's function) if the class can contain
more than one prime. There are two aspects to this theorem which coincide in the
number theoretical case but which separate in the dynamical case. On the one hand
the theorem gives an asymptotic formula for the number of primes in an arithmetical
progression. On the other hand it says that the primes are equally distributed in
residue classes (if we neglect uninteresting classes.)

Let <f>, be an Axiom A flow (restricted to a basic set il) and let m be the unique
<\> invariant probability of maximal entropy. If B is a Borel set with boundary of
zero m measure we ask, in analogy with the two aspects of the density theorem, for:

(i) an asymptotic formula for £A(T)SJ( AB(T)/A(T), where the sum is over closed
orbits T, A(T) is the least period of r and AB(T)/A(T) is the fraction of the orbit
within B;

(ii) an asymptotic formula for the average time spent in B by closed orbits whose
periods lie between x-e and x + e.
The answers to these questions appear in theorems 4, 5 and 7.

Theorems 5 and 7 are, of course, due to Bowen ([1], [3], [4]). Our proofs are
significantly different, inspired as they are by number theoretical techniques, yet
grounded, to be sure, in Bowen's and Ruelle's theories.

Many of the ideas for this paper (and also for [10]) appear in embryonic form in
[9]. Whilst working on this present paper, the author was introduced to a preprint
of Sunada's [18] in which a number of closely related problems and results are
discussed.

This work has benefited from numerous conversations with Mark Pollicott who
has pursued other related questions in [12]. His contribution to extending the zeta
function was indispensible.

1. Preliminaries
Let A be an aperiodic irreducible k x k zero-one matrix and let

fj {l,...,fc}:A(xmxn+1)=l forall nez)
)

e U { 1 , • . . , * } : > 4 ( x B , x n + l ) = l f o r a l l
n=0

The shift of finite type crA {one-sided shift of finite type cr+ = crA+) is defined by
(aAx)n =xn+, on XA ((<r+x)n =*„ + , on X+

A).
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Bowen's equidistribution theory 119

I f / e C(XA) ( / e C(XA)) is complex-valued we define

varn/= sup {|/(x)-f(y)\: x, = yt, |i |« n}

(varn/= sup {|/(x) -/(y)|: x, = yh i s n}), and for 0 < 6 < 1,

||/||e=supvarn//02"+1,
nsN

= supn£Nvarn//0"). The space

^ e = {/€C(XA): Il/H8<oo},

» ={ /e C(X^): H/lle< oo}) is a Banach space with respect to the norm

HI/HI, = max (H/IU, 11/11.)
= max (II/IUH/H.)).

If fe 3Fe is real valued the pressure o f / is defined by

= sup J
where the supremum is taken over all (rA-invariant probabilities fi and where
"H(^A) denotes measure-theoretic entropy. There is a unique o^-invariant probability
m such that

P( / )= \fdm+hm(aA),

called the equilibrium state of/
Two functions/ g 6 &g are said to be cohomologous if there exists u e C(XA) such

that

If / is cohomologous to zero then it is called a coboundary. For cohomologous real
functions/ g e ^ we have P(/) = P(g), and for a real constant a we have P( / + a) =

If / e 2Fe is real and strictly positive one defines the f suspension space Xf
A as the

identification space of {(x, y): xe XA, 0<y s/(x)} where (x,/(x)) is identified with
(aAx, 0). Xf

A is provided with the obvious direct product compact topology. The /
suspension is the flow </ generated by cr((x, y) = (x, y + f) when 0<>></(x),
0<^ + /</(x) . There is a unique aA-invariant probability m on XA for which the
topological entropy h{af) of crf (or o-{) equals hm(<rA)/\fdm. Moreover h{o-f) is
the unique real number c such that P(-c/) = 0.

I f / e ^ e one defines

«/ ) = exp I - I eXp/"(x),
n=\ n Fixn

when this converges. Here, /"(*) = X"ro'/(o"Ax) and Fixn = {x: o-̂ x = x}. Clearly
£(/) = £(g) when / and g are cohomologous. In fact f is defined and analytic in
the open set {/: P(@lf) < 0} as is shown in [14]. (P is continuous on the real functions
of &e and has an ana.ytic continuation to an open set containing all real functions.)
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We shall need to extend £ meromorphically beyond the boundary P(0if) = 0, and
to do this we shall generalize certain results of [14]. Here we shall use a theorem
of Pollicott's. (Pollicott has also pursued certain generalizations in [12].)

The above definitions and results have analogues for functions in &g. A key tool
associated with ^g is the Ruelle operator. Let fe !¥g then the Ruelle operator ££f

(associated with f) is defined by

!£f is a bounded linear operator on &%.

If fe ZFe then there exists u(f')e SFg^ such that

f=f + u(f)°crA-u(f)

is a function depending on future coordinates only (i.e. f(x)=f(y) if x, = y>, isO)
and can therefore be interpreted as a function defined on X\. As such, fe S^g.
Although u is by no means unique, it can be defined so that f-*f is a bounded
linear operator V from 3Fe to &g. ([17]). This fact enables one to employ the Ruelle
operator when considering functions in 3Fe. As we have noted before £(/') = £(/)
when P(9tf) = P(9lf) < 0.

2. Analytic extension of pressure
The possibility of analytically extending pressure to certain complex functions in
3Fg, and thereby to certain complex functions in &e, depends on:

PROPOSITION 1. (Ruelle-Perron-Frobenius.) Iffe&g is real then eP(S>> is a simple
eigenvalue of J£f with strictly positive eigenfunction. The rest of the spectrum of Z£f is
contained in a disc with radius less than eP(f).

We say that any / e SF% (complex) has property P if Z£f has a simple eigenvalue /?(/)
and if the rest of the spectrum is contained in a disc with radius less than |/3(/).
If/ has property P, then by perturbation theory (cf. [5]) there exists e > 0 such that
each

also has property P. This depends also on the fact that the map /-> if/ is analytic
([14]). Hence U+ = {fe3'l:f has property P} is an open set containing all real
functions of &g. We note that if g=f+ra+-r + a +2-rriM where/ r, Me ̂  and
a is constant, M integer valued then

where Ar is the operator which multiplies by er Thus the spectrum and eigenvalues
of !£s are obtained from the spectrum and eigenvalues of !£s by multiplying by e".
In particular if fe U+ then g e U+. Moreover /3(g) = eafi(f). We see, therefore, that
U+ is invariant under the operations

f-*f+ra+ — r + a +2mM.
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Bowen's equidistribution theory 121

Moreover we can define locally in U+ an analytic function (pressure) by

which extends the definition already given for real functions, and

P(f+ra+ -r + a +2mM) = P(f) + a mod 2-ni.

We extend these results to ^e .

PROPOSITION 2. Let V be the linear map from 9e to 9% defined in § 1, and let
U = V"1 U+, an open set in &e. Then pressure P can be defined locally in U so that it
is analytic and so that

P(f + r'o-A - r' + a'+2iri\f') = P(f) + a' mod 2m,

whenf, r', M'e &g, f'e U, M' is integer valued and a' is constant.

Proof. In fact we need only define P(f') = P( Vf) where Vf is considered as a member
of 9%. I f / ' e 99 and r,s<E&e satisfy f' + mA-re U+ a n d / + scrA-se U+ then we
require

PW + r<rA -r) = p(f + saA - s).

Evidently this is the same as requiring

when/€ &$, te C(XA) and tcrA-te &%. This follows from the fact that te 9% (i.e.
t depends only on future coordinates). For we have

t(o-Ax)-t(o-Ay)=t(o-"A
lx)-t(o-A'ly), n = l , 2 , . . . (2.1)

when x, = yh i > 0. Moreover o-Ax and o-Ay are asymptotic as n -*• oo so the equations
(2.1) show that t(x) = t(y) when x, = y{, i > 0. We can therefore consider t as a
member of C(X^). Finally if 5£fv = P(f)v, v e 9%, then

Hence e'v e ̂  from which one concludes e' e 9+
B and f e ^ J . •

3. Extending the zeta function on 9%, S'e
We have already mentioned the fact that C is analytic in the open set {/: P($lf) < 0}
of &e (or of &B). To see this it suffices to show that if P(&tf)< 0 then there exists
e > 0 such that

I-Iexpg-(x) (3.1)
n = r n Fix,,

is uniformly convergent in De(f).
If g = h+ik (h, k real functions in 9t) then the absolute value of (3.1) is dominated

by

I - I
n = ] n F ix .

and since h<M(f) + e we have

I exp/i"(x)
l / n

exp
Fix,,

l / n
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However (cf. [14]), |£Fix exp 9?(/"(x))|' /n converges to exp P(&tf)< 1, so that for
some e > 0 and some N

l/n

ee X exp <%(/"(*)) < P < 1 ,
Fixn

for n > N. Uniform convergence of (3.1) follows.
For the time being we shall restrict attention to functions in 3F%. The proof of

our next result is a modification of a method employed by Ruelle [14].

PROPOSITION 3. Iffe&g is real and P ( / ) = 0 then there exists e > 0 such that P
extends to an analytic function in De(f) and

I — X exp g"-*""<*> (3.2)
n = l n \Fixn /

converges uniformly in De(/). (a is a real constant.)

Proof. We shall consider 9% <= 9%-, with d < 6' < 1 and we first choose e > 0 sufficiently
small that when | | |g-/ | | | 9<e then ifg, acting on &%• (g£&(>•), has a maximum
eigenvalue eP(g) with |P(g)| < 8 and for A in the remainder of the spectrum we have
|A| < 1 -25 where 8<\. (Note that |eP(g)| > e~s > 1 -25.) Here we are using perturba-
tion theory for the operator <£f acting on 9% (fe 9% <= Jr+). We shall decrease e > 0
as necessary.

Let g e D.CO then |||g - / | | | 9 .s |||g - / | | | , < e and i?gu = eP(g)v, v = vge 9%. Suppose
that e > 0 is small enough that |||t)-iy|||e< TJ, where 0<Tj<minty, for all v = vg,
geD.( / ) .

Define gm, um (functions of x0>... ,xm) so that

llg-gm||=o^l|g|U0m, \\v-vm\\^\\v\\ee
m

and define

wm = 2gmvm - eP(g)vm, um = vm +(wm/eP{g))

then

\\wm\\oo*BemeB0m, UvJu^-n^Bd-e89'",
for m > N, for constants B, N, depending o n / e only. Hence, writing vm/um = e'm+'ym

with -ym suitably chosen mod 2tr and rm, ym real functions of x 0 , . . . , xm, we have
UrJIoo*: C6m, | | r m | U ^ C6m if m > N 2 > AT, where N2, C depend on/ , e only. Since

cp Em. u = e
p ( « ) u

we have <£gmum = ePis)um, where gm = gm + rm + iym. Since \\gm - g m | U s 2 C 0 m and
| |g m -g | | o o <( | | | / | | | e + e )0 ' " it follows that

| | g m - g | | e ^ D ( 0 / 0 ' ) m form>JV2

where D depends on f, e only. Hence

and |||g - / | | | , . < e/2 if g e DE / 2(/) and m > N3. Thus |||gm - / | | | , . < s if g e D. / 2( /) and
m > N3. We see then that S£im acting on &# has an eigenvalue eP(g) with |P(g)| < 5
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and its other eigenvalues A satisfy |A| < 1 -28. This is therefore also true of the finite
dimensional operator Lm acting on functions q(x0,..., xm) by

(Lmq)(x0... xm) = 1 expg m ( i ,x 0 . . .x m _ , ) - <?(», *o, . . . ,*„ ,_ , ) .
Mi. *o>= 1

Consequently

where A is kxk. But

so we have

|Trace Ln
m-enP(g)\<km(l -28)n,

Trace L"m= £ expg^(x),
Fix,,

l / n

if m =[na]> N3 (0< a < 1), i.e. if n > N4= (N3 + l)/a. Choose a so that fca(l -25)
< 1 - 8, then for n> N4we have

Fix,,

l / n

(3.3)

Finally, we have

Fix,,
(expg^-expg")

Fixn

Fix,,

Thus

X (expg^-expg")
l / n

VFixn

,PU)ocaa _ eaa

exp(f+ns)

if«>JV5>N4.

) )/n

nv"EUn6a,

and the latter converges to e u'ee0a = ecda, so that if e > 0 is small enough

Fix,,
(expgl-expg")

I / "

<p<\ if n>N6>N5. (3.4)

The inequalities (3.3) and (3.4) show that (3.2) converges uniformly in De/2(f) and
the proof is complete. •

If we define <£(g + ia) to be the exponential of (3.2) then <j> is a non-vanishing
analytic function in a neighbourhood of f+ia whenever/e ^ is real, P(f) = 0 and
a is real.

Suppose now that / e ^ is complex and P(S?/) = 0. There are three cases to
consider:

(i) J(f) is cohomologous to (2vM +a), where M is integer valued and a is not
a multiple of 2ir. In this case £(g) can be extended analytically to a neighbourhood
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124 W. Parry

of f since a neighbourhood of 5?(/) + ra maps to a neighbourhood of/ under

Wg = g +2mM + r<r+ - r,

and £(g) = £( Wg). Moreover we have seen that <j> is analytic in a neighbourhood
of 0l(f) + ia. So we define

(ii) When ^ ( / ) is cohomologous to 2irM where M is integer valued, we define
£ as in (i) except for g with P(g) = 0 (or a multiple of 2m).

(iii) When ${f) is not cohomologous to 2wM +a where M is integer valued and
a is a real constant, Pollicott [12] (see also [10]) has shown that if/ has a spectral
radius strictly less than 1 and this gives rise to a non-vanishing analytic extension
of £ to a neighbourhood of /

We are now in a position to discuss the zeta function and its extension for functions
fe 2Fe (defined over XA rather than X\). For such functions we employ the operator
V: &e^&~!> (of § 1.) Since £(Vf) = £(f), P(f) = P(Vf) we can transfer our results
to 5Fe and obtain:

THEOREM 1. Letfe&g. Then
(a) IfP(9tf)<0 or ifP(0lf) = O and 3>{f) is not_ cohomologous to 2irM+a where

M is integer valued and a is a real constant then £ is well defined non-vanishing and
analytic in a neighbourhood off.

(b) 7/P(5?/) = 0 and if^(f) is cohomologous to 2nM + a where M is integer valued
and 0<a<27r then

exp I - ( l expg"-en P ( g ) )
n=\ n \Fix,, /

converges uniformly to a non-zero analytic function <f>(g) in a neighbourhood De(f)
off and £ can be extended analytically in DE{f)- E by defining

Ug) = <t>(g)/1 - eP{g\ where E = {g: P(g) = 0}.

4. Restricting the zeta function
In this section we fix real functions f ge !Fe and suppose that / is strictly positive
with P ( - / ) = 0. Define £(s, z) = £(-sf-zg) whenever this is defined by theorem 1
for (s, z)eC xC. Clearly if 3?(so)> 1 we have £(s, z) well defined and non-vanishing
in \s — so| < e, \z\ < e for e > 0 small enough. Now let s0 = 1 + it0. If f0 ^ 0 and tof is
not cohomologous to a function 2TTM +a (M integer valued, a real) then £(s, z) is
again well defined, non-zero and analytic in |s— 1 — jfo|<e, H<£- If 'o/ 15

cohomologous to 2irM+a (and this includes the case to = O) then <f>(s, z) =
<f>(-sf- zg) is non-vanishing and analytic in \s - 1 - ifo| < e, |z| < e. Hence

is also non-vanishing and analytic in this region and extends £, except where
P ( - s / - zg ) = 0. In this case if e > 0 is small enough we have P ( - s / ) # 0 when
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0 < | s - 1 - » 7 0 | < e, for otherwise P(—sf) would be identically zero. So for 0 <
|s - 1 - ifo| < e there exists e(s) > 0 such that P(-sf- zg) ^ 0 when \z\ < e(s).

By differentiating logarithmically with respect to the second variable at z = 0 we
obtain

l-eP(-sf) <t,(s,O)

where

V(s)= = I - I g exp(-s/)
£(S, 0) „ = ! /I Fixn

is analytic in a neighbourhood of $?(s)>l minus the points 1 +it0 where tof is
cohomologous to 2irM for an integer valued M. If such to^O exist there is a least
positive one such that all others are multiples of t0. (See § 5.) We note that in any case

lim(s- 1)̂ (5) = - <i; _^-0 =\gdn^ fd,,,

where /z is the unique equilibrium state for - / (cf. [14].)
To summarize, we have the following:

PROPOSITION 4. Suppose/ g e SFg, /strictly positive and P(-f) = 0. When there is no
tg^O with t0/cohomologous to 2TTM (M integer valued') we have

f
5 — I

where i/»(s) is analytic in a neighbourhood o/0l(s)> 1.
When t0/ is cohomologous to 2irM{tQ>0 least) (M integer valued) we have 17 is
simply periodic with period it0 and 77 is analytic in £%(s)> 1-e, for some e > 0 ,
except for simple poles at 1 + nit0, neZ with residue Jgd/j,/j/d/j,. (The justification
of the word 'least' appears in the next section.)

5. Suspensions 0/shifts 0/finite type
Let F be a strictly positive function in &<,, and consider the flow c/ on Xf

A. As with
any other flow we say that (/ is (topologically) weak-mixing if the equation

g(<r{) = eia'g, all / 6 R, g e C(Xf
A) (5.1)

has no solution other than a =0 , g constant, cr7 is not weak-mixing and (5.1) has
a non-trivial solution if and only if a/ is cohomologous to 2rrM for some integer
valued function, (cf. [11].) (We used this fact in § 4, when we claimed that if there
is a number t^O such that t//2ir is cohomologous to an integer valued function,
then there is a least such positive t0 and all other t are multiples of t0.)

Assume that h e C(Xf
A) and denning

=
Jo

assume that ge &e. For each closed orbit T of o-f let A(T) be the least period of T
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and define
fA(r)

A»,(T)= h<r{(x,u)dt where (x, w)€ T.

Jo

Clearly A(T) =/(*) + • • • +f(<rTlx) and \h(r) = g(x)+-• • +g(o-^lx) where
(x, u)er (for some u) and where m is the least crA period of x.

For 77 denned as in § 4 with respect to / g we have

V(s)= I - I gnexp(-5/n)
n = I H Fixn

= I TlfcA,(r)exp(-sfcA(T))

= I lA,(T)exp(-5A(r)fc).

The following theorem is an immediate consequence of proposition 4.

THEOREM 2. Iffe ^ s «s strictly positive and if

g(x)=\ h((r{(x,0))dte&e
Jo

where h e C(Xf
A) then

= Z ZAh

is analytic in 0l(s)> h(crf), and
(a) 1/ a-f is topologically weak-mixing then rj(s) has an analytic extension to a

neighbourhood of ffl(s)>h{oJ) except for a simple pole at hia') with residue
J g dfj,/$fdn = J h dm, where m = fi x Lebesgue (locally) is the measure of maximal
entropy for o-f;

(b) if o-f is nol topologically weak-mixing then ij(s) is simply periodic with least
period ia, (where a is the least positive eigenfrequency, that is, solution of (5.1)) and
has an analytic extension to £%(s) > h(af) - e, for some e > 0, except for simple poles
at h(o-f) + nia, neZ, with residue J h dm.

6. Axiom A flows
Let M be a compact Riemannian manifold and let <f>,: M -* M (t € R) be a differenti-
able flow. A closed invariant set ft c M without fixed points is hyperbolic if the
tangent bundle over O is a Whitney sum

TnM = E+Es+E"

of three T#,-invariant sub-bundles, where E is the one-dimensional bundle tangent
to the flow and Es, E" are exponentially contracting and expanding, respectively:

(i) \\T<t>t(v)\\<Ke-x'\\v\\ forall veE\ *>0
(ii) ||T0_,(t;)||<Xe"A'||t;|| for all i>e E", r > 0

where A > 0, K are constants.
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A basic set ft of an Axiom A flow <f>, is a hyperbolic set in which periodic points
are dense, 0,|ft is topologically transitive and ft = PI ,ERcf>,U for some open neigh-
bourhood of ft.

We shall be interested in an Axiom A flow restricted to a basic set ft and will
always assume that ft is not a topological circle.

We shall need the following result of Bowen's (cf. [4]) to help us count closed orbits.

PROPOSITION 5. If</>, is an Axiom A flow restricted to the basic set ft then there exist
suspensions of shifts of finite type <x' = crA , i = 0, 1 , . . . , q, Lipschitz maps ir^. XA_-* ft,
7T,cr', = cr,77v, where each Wj is at most N to 1, / e &e for some 0 < 8 < 1 and

(i) 7T0 is surjective and a.e. one-one with respect to the Pleasure m0 of maximal
entropy for cr0;

(ii) 7T, is not surjective if i ̂  0;
(iii) if v{, x) denotes the number of closed orbits of smallest period x then

p(4>,x)=V(cr0,x)+i (-l/'Ko-U)
1 = 1

for certain integers / , , . . . , /q.

It is important to note certain ingredients in the proof of proposition 5. A small
Markov partition of a transverse section is constructed, from which the shift of
finite type (X^, o-^) is defined. Initially TT0 maps X^ to this section in such a way
that Vo'x consists of at most N points and IT0 is one-one on the interiors of elements
of the partition. TT0 semi-conjugates cr^ to the Poincare map of the section, and is
extended to a semi-conjugacy between a suspension of o-^ and <f>, by following the
flow <f>,. The suspending function f0 at x is the time of first return of vox to the
section. As for the other suspensions (XA_, o-1), i ^ 0, these are defined 'com-
binatorially' and canonically in terms of the data,

7T0O", = 4>,TT0.

In fact each TT, is initially TT0 composed with a canonical map p, of XA. into X^

If k is a C°° function on M which is strictly positive, it is possible to define a
new flow <f>k on M which has the same orbits as $ and which has a velocity at each
point obtained by multiplying the velocity of <f> by k. It can be shown that </>k is
also an Axiom A flow. (The proof of this fact was given by Anosov and Sinai in
[1] for Anosov flows. Their proof seems to work just as well for Axiom A flows.)

The corresponding velocity changes for the above suspensions a' are effected by
the functions fc ° TT, = fc, and one obtains new flows on the suspension spaces XAj

which we denote by a\ These flows can also be represented as suspension flows
(over XA.) although, in general, the suspending functions have to be modified. Using
proposition 5 we therefore obtain:

PROPOSITION 6. For k a C00 function on M which is strictly positive and with iTj, kt

as defined above we have
(i) TT-.o-i^^fTT,;
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(ii) 77-0 is surjective and a.e. one-one with respect to the measure m1^ obtained from
m by the velocity change;

(iii) 77, is not surjective if i 7*0;
(iv) if v{ , x) denotes the number of closed orbits of smallest period x then

Strictly speaking, this is deduced from the proof of proposition 5 (see the remarks
following proposition 5) and this proof also shows that n0 is a.e. one-one with
respect to the maximal measure for a-*0.

Now let g be a C°° real function on M and consider variable real numbers a, x
with a close to the topological entropy h(<j>) of <j> and x close to zero so that
k = o-+xg is strictly positive. Define

oo J

£g(o-, x) = exp £ -Xexp(-n(A(T)er+xAg(T)))
n = i n T

= exp X - .
n = l M

then by proposition 6 we have

By theorem 1 and the fact that the maps TT, are at most N to 1, TT0 is surjective and
77j (i^O) are not surjective we know that ^g.Wo(s,, z) is non-zero analytic in 9?(s)>
h(<f>), (z small), and for iVO, fg.Wl(s, z) is non-zero analytic in 9?(s)> ft(0)-e, (z
small), for some e > 0. Hence

is non-zero analytic in 0t(s)> h(<f>)-e, (z small), and

in 3?(s)>ft(</>) when z is small. (The smallness of z above may depend on the
locality of s.)

By logarithmically differentiating (6.1) we obtain, using theorem 2, the following:

THEOREM 3. If<f> is an Axiom A flow restricted to a basic set ft and ifg is a C°° real
function then

oo

V(s)= I lAg(T)exp(-sA(T)n)
n = l T

is analytic in £%(s)> h(<f>). Moreover
(a) If <f> is topologically weak-mixing then T/(S) has an analytic extension to a

neighbourhood ofSk{s) > h(<f>) except for a simple pole at h((j>) of residue \gdm where
m is the measure of maximal entropy for <J>.
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(b) If 4> is not topologically weak-mixing then 7){s) is simply periodic with period ia,
where a is the least positive eigenfrequency, and has an analytic extenstion to 0l{s)>
h(4>)— e', for some e '>0 , except for simple poles at h{(f>) + nia, neZ, with residue
\gdm.

Remark. In part (b) one has to correlate eigenfunctions of <j>, with eigenfunctions
of a-0,. For more details see [10].

7. Equidistribution theorems I
In this section we consider an Axiom A flow <f> restricted to a basic set fl c Af. Let
g be a non-negative C°° function defined on Af and denote the topological entropy
of 4> by h. Let m be the measure of maximal entropy for cf>.

Modifying the 17 function slightly we write

Vt(s) = 1 1 h\g(r) exp (-snhX(r)) (7.1)

for $(s)> 1, and note that

Vg(s) = I x~'dFt{x),
J11

where

(7.2)Fg(x)= ^ Ag(r)/j= j : M T )*[j -^]-
We have to consider the two cases, 4> weak-mixing, and </> not weak-mixing
separately.

(j> weak-mixing. In this case, according to theorem 3,

J| x *dFg(x^
*x ' s-\

where ip is analytic in an open neighbourhood of £%(s)> 1. By Ikehara's Tauberian
theorem ([19]) we conclude that:

PROPOSITION 7

0 no/ weak-mixing. In this case, J^ *~s dFg{x) is simply periodic with least period
ia/h where a is the least positive eigenfrequency of <f>. Moreover this function is
analytic in £%(.$)> 1-e ' (e '>0) except for simple poles at l+nia/h, neZ, with
residue j g dm. Thus

where i(/ is analytic in £%(s)> 1 - e ' . Hence
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and comparing this equation with (7.1) we conclude that

I h\g(T)-—\gdm-e2™h/a^0
(r) = 2iTl/a a J

exponentially fast. Consequently:

PROPOSITION 8. If <fi is not weak mixing then

Fg(x)~\gdm.2-^ I
J a 2w,/«.

2-rrnh/ a

By (7.2) we have

Fg(x)<7rg(x)logx (7.3)

where irg{x) = Xf
A(T>*Sx Ag(r)/A(T). Asymptotically the inequality in the reverse direc-

tion is also true as we shall now show. To do this we note that 7rg(x)/x"->0 as
x-»oo when cr> 1. To see this, consider the inequality

h\g(r) Ag(r) 1

^*<T)iî  (e — i) f iMi i < ; ( CTA(T) x

which implies that

i7g(cr) > ™s\, when a' > a- > 1.

Hence, since a> 1 is arbitrary, 77g(x)/x'r-»0 as x-»oo.
Now let <r> 1 and define _y = (x/logx)") then

7rg(x)-TTg(y)= Z() Ag(r)/A(T)< ^ 1 /»Ag

<Fg(x)/log>>.

Consequently

so that
lim 77g(x)logx/Fg(x)< l/o- as x->oo, for all o-> 1. (7.4)

(Here we have used the fact that Fg(x)/x is bounded away from zero (propositions
7 and 8) and ng(y)/yu<T ^0.) Clearly (7.3) and (7.4) show that

PROPOSITION 9. Whether or not (j> is weak mixing we have vg(x) log x ~ Fg(x).

Combining propositions 7, 8 and 9 we have proved

THEOREM 4. If 4> is weak mixing then

TTg(x)~-^- \ gdm. (7.5)
log x J

If 4> is not weak mixing then

/ \ I J ATTit I 2-rrnh/a z-7 s\

J a log x 2^,,,/Us
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Remark 1. In this theorem g may be replaced by an arbitrary continuous function
on fl, or for that matter by XB when B is a Borel set whose boundary has zero m
measure. The proof is provided by a simple approximation argument.

Remark 2. If we put g = 1 we recover the main theorem of [10] mentioned in the
introduction.

Suppose (f> is weak mixing and let e > 0. Define a measure /xx £ on fl by

^As)= I (\ g(4>,p)dt/x(T)j
X — £ < A ( T ) < X + £ \ J T /

and normalize it so that Mx,e(g) = Mx,E(g)/Atx,c(l)- From (7.5) we see that

and

and hence

fixAs)^ sdm (7-7)

as x -> oo, when g is a non-negative C°° function on M.
When 4> is not weak mixing we insist that 0 < e <2n/a. With this restriction,

however,

1-nnhja f

/*2^n/o,E(g)= I Ag(T)/A(r) — J gdm

and hence

I gdm. (7.8)I
A simple approximation argument will show that (7.7) and (7.8) are valid for any
continuous function on fl, or for that matter for a characteristic function \B of a
Borel set when the m measure of the boundary of B is zero. These facts justify:

THEOREM 5 ([4]) (Equidistribution theorem; first version). The closed orbits of an
Axiom A system are uniformly distributed with respect to the maximal invariant measure
m.

8. Equidistribution theorems II.
We return to our 17 function

where h is the topological entropy of the Axiom A flow on fl and g is a non-negative
C°° function on M. Define
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and

vl(*)= I Ilg(T)he~sh"Hr\
n=2 T

so that
1 2

We shall show that 77 g contains the essential part of r)g. Evidently

Vg(s) = Z Ag(x)/i e s A (1 — e )

Moreover,

for some constant K when o- is real and a > 1 - e ' , (e '>0) . Therefore

I |Ag(T)A e-***<T>(e***<T>- 1)- ' |< 2rf

with s = o- + i7. Since XT h\K(r) e"<r/lA(T) converges for <r>\ we see that
XT h\g(r) e~2crK(T) converges for <r>\. Hence r)),(s) is well denned and analytic in
0l(s)>\-e', ( 0<e '<^ ) . We see then that

enjoys all the properties listed for rjg in theorem 3. Clearly

i»i(s)=| x-dFl
g(x), (8.1)

where

Again we have to consider the weak mixing and not weak mixing cases separately.

4> weak mixing. Ikehara's Tauberian theorem applied to (8.1) shows that Fg(x)~

x \ g dm as x-*<x>, or equivalently

exh f
I Ag(r)~— gdm.

A(T)S3C H J

<t> not weak mixing. In this case, as before, we have

7,̂ (5) = — I g d w I e2™hlae-27rnhs/a+il,\s),
a J n=o

where i/»'(s) is analytic in 9l(s)> 1 — e'. Comparing this equation with the definition
of vi(s) we have

exponentially fast. To summarize, we have
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THEOREM 6. If<t> is weak mixing then

v w , eh* f
2, Ag(x)~-— gam.

//"<£ 15 not weak mixing then

A(T)==JC " J 2irn/a^x

This time we introduce rather different closed orbital measures. Define

xAs)= < A Z ^ + J g(4>,p)dt

and

where e > 0, and in the not weak mixing case e <2TT/a.
Using our asymptotic formula for r}g note that in the weak mixing case pxe

| g d m as x-»oo. And in the not weak-mixing case we obtain

J
| gdm

n/a J
so that (using the case g = 1) we have

Pi™/a AS)-* I gdm as «->oo.

We have therefore proved, with a second (equivalent) interpretation

THEOREM 7 ([2], [3]) (Equidistribution theorem; second version). The closed orbits
of an Axiom A flow are uniformly distributed.
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