
ON THE DEGENERATE CAUCHY PROBLEM 

R. W. CARROLL AND C. L. WANG 

1. The problem treated here is an abstract version of the Cauchy problem 
for an equation of mixed type in the hyperbolic region with initial data on the 
parabolic line (cf. 2, 3, 5, 11, 13, 14, 15, 16, 21, 27). A more complete bibliog
raphy may be found in (3, 5, 18). We begin with the equation (6) 

(1.1) u" + AaS(t)u' + A?R(t)u + Aq(2)u = / , 

where A is a (closed) densely defined self-adjoint operator in a separable 
Hilbert space H with (Aw, u) > c|H|2 , c> 0, 2 = A"1 £ 2(H) (2(H) is the 
space of continuous linear maps H —> H), q(X) = a(t) + B(t)2 (a(t), which 
vanishes as t —» 0, being a function of / whereas B(t) £ 2(H) for now), and 
S(t) 6 2(H), R(t) G 2(H). It is assumed that all operators commute, and we 
seek u 6 &2(H) (&m(H) is the space of w-times continuously difïerentiable 
functions of t with values in H) satisfying (1.1) with 

(1.2) «(0) = 0, w'(0) = 0. 

Precise hypotheses will be given later. We note in passing the possibility of 
exploiting techniques of the type developed in (20) to our problems; this will 
be considered in subsequent work. 

Existence and uniqueness theorems will be obtained for (1.1)-(1.2), under 
suitable hypotheses, by applying spectral techniques developed in (6, 7). We 
obtain results similar to those of (15) in the special case when a = tm, 
R(t) = Rr(t), r = tn (other assumptions on S(t), etc. also holding); we require 
slightly more in this case but our solution is stronger. This situation corresponds 
to the case 

1 J - < oo as T - > 0. 
JT a 

When 

I J—J— — » oo 

JT a 
some interesting new phenomena occur; it is possible to allow a to be non-
monotone (5) if much more is required of /and, of course, less of r since 

fk l2 

I J—•— — » oo . 

JT a 
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We have not tried to compare the results to those of (5) since the solutions are 
of a different nature, those of the present paper being stronger (i.e. more 
regular); on the other hand the conditions of (5) are weaker in general. 

2. In order to apply spectral methods we assume first that S(t) = Ss(t), 
R(t) — Rr(t), B(t) = Bb(t), where B, R, S, 2 commute and are bounded 
normal with b, r, s £ C°[0, /] , a £ C[0, I] (also assume that A commutes with 
By R, 5). The case of A " - ^ a n c j &P-iR bounded normal, for example, can also 
be treated (see 6). Let SI be the uniformly closed * algebra generated by 
2, B} R, S, B*, i?*, 5*, and 7; we associate with these operators the complex 
spectral variables z0, zi} . . . , z6 (I omitted ; cf. 6, 8). Then the map a: $% —> C7 

given by a(<t>) = (2(0), B(</>),... , o*(0)) is a homeomorphism of the carrier 
space $% with the joint spectrum a of the elements 2, B, R, . . . , S*; cf. 
(1, 6, 22). We consider now in connection with (1.1) the equation (X = 1/zo; 
So is real) 

(2.1) u" + \«zzs(t)u' + \Pz2r(t)u + \[a(t) + z0 zx b(t)]u = 0. 

Solutions Z(t, r, zu X) and F(/, r, zu X) of (2.1) with Z{T, r) = 1, Zt(r, r) = 0, 
Y(r, T) = 0, Yt(r, r) = 1 (cf. 7) will give rise to operators in the von Neumann 
algebra 31" if for example Y and Z are continuous in (zu X) for \zt\ < d 
(i = 1, . . . , 6), |X| < R0 (Ro arbitrary), and bounded for \zf\ < cïy \ZQ\ < 1/c 
(this is proved in (6)). The constant C\ is chosen so that 

C l > max(| |B|| , | |2?| | , | |S| |) 

and then the joint spectrum a lies within the region \zt\ < C\ (i = 1, . . . , 6), 
|zo| < 1/c (note that X —> oo corresponds to z0 —»0). 

We know by classical results (cf. 10, 12) that f o r 0 < r < / < / < œ there 
exist unique Z and Y as required, continuous in (t, r, zu X) in the region 
0 < r < t < / < oo, \Zi\ < a (i = 1, . . . , 6), 0 < zo < 1/c (note Z, Y are 
not analytic single-valued in zu X because a, fi may be fractional). Thus the 
Green's operator associated with (2.1) will be 

(2.2) 9 = / / V F̂\ B ( T f T ) = 7 | 

and will satisfy the first-order equation 

(2.3) dz/dt + \*Ut)S = 0 , 

where (6, 9) 

( 2 . 4 ) ^ = \ a ( 0 + zo «i 6(0 + X^-^2 KO Xa"^3 5(0 

The problem now is to find suitable bounds for g. Such estimates will be 
based on a method developed in (7, 8). First note (24) that 

• 
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(2.5) d%(f, r)/dr - \k(t, TMT) = 0. 

Hence if u , + A*$(/)u = *, then (u(r) = 0) 

(2.6) u(*) = f'i(t, l)f(Z)dli. 

Therefore recalling the nature of g in (2.2) and associating operators Z, Y, G, H 
with Z, F, fl, Ï), we obtain formally for the solution of (1.1) 

(2.7) u(t) = £ Y ( * , {)/(*)# 

(here Wi = u,u2 = u'/\/\ (6); thus f above corresponds to (/7^x))* Relations 
for Y of the form derived in (7, 8) will also be valid. 

Therefore let Y(t, r, zu X) be the unique solution of (2.1) with Y(T, r) = 0, 
Yt(r, T) = 1. Replace t by £ and multiply (2.1) by F$. This gives, taking real 
parts and assuming a(t) real, 

(2.8) d\ Y^/dl- + 2 Re(X«*8*të))| F*|2 + 2 Re(X%2r(£) Y?i) 
+ \a(£)d\Y\ydt + 2 Re(*i i({) F?*) = 0. 

Now note that |rX^FF^| < |(kl2X2/3l Y\2 + l^ l 2) and thus, on integration, 

(2.9) |F , | 2 - 1 + J ^ 2 R e ( X * 0 3 s ( £ ) ) | F ^ ^ + Xa(*)|F|2 

- X P a ' | F | 2 < r ' | , 1 | ( | 6 | 2 | F | 2 + | F , | 2 ) ^ + f M(k | 2 X 2 * |F | 2 + l ^ l ^ t 

If now Re(z3 s(t)) > 0, then the term in zz may be neglected; we assume this 
holds for the moment, and assume further that 2/? < 1. Recalling that \z\ < ci, 
\ZQ\ < 1/c, there results for X > 1 (recall that 0 < X0 < X, X0 = c) 

(2.10) | F , | 2 + X a ( 0 | F | 2 < l + 2 d J j F € I
2 ^ + X j'p\Y\2d£, 

where 

(2.11) P = a' + C l ( | r | 2 + i | & | 2 ) . 

Adding now 

2ci j \a\Y\2d£ 

to the right-hand side of (2.10), we have 

(2.12) | F,|2 + \a(t)\Y\2 < 1 + X J'P\Y\*dl- + 2a J " ( |F f |
2 + \a\ Y\2)d£ 

and to this the Gronwall lemma (23) may be applied to give 
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(2.13) \Yt\
2 + Xa(/)|F|2 < exp[2ci(* - r)] + j \P|7|2exp[2ci(* - £)]#. 

In particular we have, setting E(t, r) = exp[2ci(£ — r)], 

(2.14) Xa(0|F|2 < E(t, r) + j \P\Y\2E(t, £)d£. 

We shall now prove a lemma which will be used to treat (2.14); for our 
purposes it will give a much better result than merely rough estimates for E, 
etc. and another application of the Gronwall lemma would produce. We remark, 
however, that a simultaneous bound for \Yt\

2 + \a(t)\Y\2 can be obtained 
directly from (2.10) (26). 

LEMMA 1. Given (2.14) with P > 0, it follows that for 0 < r < / < / < °o 
and X > 1 

(2.15) Xa(/)|F|2 < E(t, r) expf j ~dU . 

Proof. Let 

X(*,T) = J\P\Y\2 E(t, m-, 

then 

(2.16) x' = *P(t)E(t,t)\Y\*+ J^ 'xP |F | 2 £ ' (* ,€)df 

= XP(0 |F | 2 + 2c lX. 

Multiplying (2.14) by XP and using (2.16), we obtain 

(2.17) a(x' -2clX)<PE + Px. 

Thus denning 

F(*,r) = e x p ( - X ' ( a + 2 e W ' 

we obtain from (2.17) 

(2.18) (FxY < (P/a)E(t,r)F(t,T). 

However, clearly 

E(t, T)F(f, r) = e x p ( - j ' ~ dï) , 

and hence (2.18) gives 

(2.19) (Fxy<[_exp(- X'f*)]. 
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Since F(j, T) X(T, T) = 0 (recall r > 0 here), we have from (2.19) 

(2.20) F(t, T) x < 1 - e x p ( - j ' -a d^j , 

which may be written 

(2.21) X + E(t,r)< E(t, T) exp( J' ~ dç) . 

This yields the lemma. 

Now note that 

£ = ^Wi,i*+i|6i*) 
a a a V A / 

and hence 

If A0 < 1 we can carry through the estimates with |r|2 replaced by |r|2A2^~ 
and hence there results 

PROPOSITION 1. The function F, solution of (2.1) with 

Y(T, T) = 0, F^r , r) = 1 (0 < r < / < / < » ) , 

satisfies the estimate for r > 0 (a > 0) : 

(2.23) „ ( , ) | i f < iEV, r) e x p ^ J " ( ^ + M ! ) ^ ) 

where d = d max(l, A0
2^-1). 

Now besides a(r) —» 0 as r —* 0, the functions 

|2 

(2 ,24) ^(<,r) = expc1 f ' - ^ d f , ^ , r ) = e x p ^ f -^-d£ 

may become infinite as r —» 0. Thus noting that <£(£, r) < </>(/, r), 
^(/, r) < ^(/, r), we may state, recalling that A > A0 > 0 and observing that 
thatiK/, r; A) < ^(/, r; A0), 

COROLLARY. r&e function Y satisfies the estimate 

(2.25) 0( r )^ ( r )a ( r ) |F | 2 <^ 2 /A, 

^/zere <£(r) = </)_1(^ r)> ^(T) = ^ _ 1 ( ^ ?•; Ao); thus 

(2.26) * ( r ) - « p ( - a J " J £ * ) , ^ ) = e x P ( - g j ; ^ ^ ) . 
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3. It has been shown that for 0 < r < £ < / < <», \zt\ < c\ (i = 1, . . . , 6) 
and 0 < 0o < 1/c, Y(t, r, zu X) is continuous in (/, T, ZU X) (and is the unique 
solution of (2.1) with Y{r, r) = 0, Yt{r, r) = 1). Moreover, for r > 0 

W = 0 ( r ) ^ ( r ) a ( r ) | F | 2 < ^ 2 / X . 

It is easily seen that this estimate holds for r = 0 as well. Hence 

W(t,T,zi9\) = (0(r)^(r)a(r))*F 

defines an operator W Ç 31" for example; we write V0ftA#) = Q and thus 
W = QY] cf. (6). In order to exploit these facts we make use of an inter
mediate stage of a continuous direct sum of Hilbert spaces related to SI (6). 
Thus it is known (cf. 19, 12a) that there is a basic measure v on a and an iso
metric isomorphism 6: H-^h = /®h(£) dv{£) diagonalizing the algebra 21. 
Now, for example, if h Ç iJ, then WOh Ç 0Z>(A*); this means that 

iïw\eh\hw e L 2 W 

(Z>(A*) has graph topology). As in (7, 8) to IF corresponds the operator 
W = 6~lWd and proceeding exactly as in (6, 7, 8) we have (the subscript 5 
denotes the strong operator topology) 

PROPOSITION 2. Under the assumptions of Proposition 1 

(U)^W(U) € @>(8,(ff,a(A*))),*-W(*,É) € <gi(8,(tf)), 

and 

*->w(*,£) e @ 2 (? S (^(A^), /7)) , 

«;/zere 7 = max (a, i ) . 

Proof. We need only check the bounds with regard to X since the rest of the 
proof follows (6, 7, 8) exactly. The first statement has been shown; for the 
second we note from (2.13) that 

(3.1) \Yt\
2<E(t,r)^r4>(t,r)Ht,r). 

a{T) 

Hence the second statement follows from 

(3.2) G 2 ( T ) | F , | 2 < C 3 . 

Finally for the last statement we go back to (2.1) to obtain 

(3.3) \Ytt\<ct\\Y\+cb\«\Y,\. 

Thus (recall that 2/3 < 1) 

(3.4) Q\Y„\ <c6X^ + c7X°. 

The proposition follows. 
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Now we consider (2.7) and will give it meaning for certain/and show that it 
is the required solution of (1.1). Clearly if h(£) — /(£)/(?(£) is continuous with 
values in H, then (2.7) is 

(3.5) u(t) = J^Wfc *)*(€)<% 

which is well defined (for integration of vector-valued functions see 4). We 
need only show that it actually gives a solution. First formally 

(3.6) «' = vt(t, mit) + J' wt(t, e)i({)d£ = J'wt(t, mm-
Using Proposition 2, equation (3.6) may be justified rigorously if we note in 
addition that (J, £)—» W*(J, £) is continuous with values in 2S(H) for 
0 < £ < / < / ; cf. (6, 7, 9). Similarly we obtain 

(3.7) u" = W,(*f t)h(t) + f'vïuit, S)h(Z)dZ 

where now we require, say, h G Ê° (D(Ay)); t h u s / is continuous with values in 
D(Ay). Note also here that (t, £) —•» W»(l, £) is continuous with values in 
%S(D(A?), H) for 0 < £ < t < I (recall that we have been assuming throughout 
that a G C^O, /] and i, r, s £ C°[0, / ] ; also P > 0 is stipulated). Therefore 
if h is as above, the function u satisfies u G &2(H), u G 6°(Z)(A7+^)), 
w G ÊK^KA7)). Note that hypotheses of the form h G Ll(D(Ay)) may also be 
envisioned, but we shall not treat this kind of theory here. Now since y > J, 
equation (1.1) will be satisfied by the function constructed above. It should 
be pointed out that we must have closed Aa, Â  in order to carry A ,̂ say, 
under an integral sign (25); however, for self-adjoint A this is automatic. We 
may now state 

THEOREM 1. Assume that a G C"[0, / ] ; b, r, s e C°[0, / ] ; P > 0; h = 
f/Q G e°(£>(A7)); 7 = m a x ( i a); 2/3 < 1; Re(s3 s(t)) > 0. Then there exists a 
solution of (1.1) given by (2.7) with u G Ê 2 (#) , « G @°(£>(A^)), and 
u G ^ ( ^ ( A 7 ) ) . 

We turn now to uniqueness via the relation (2.5), which when applied to Y 
yields (7, 8) 

(3.8) YT = - Z + A«z3 s(r)F. 

Hence we shall need to know something about Z. In the first place Z(t, r, zu X) 
is the unique solution of (2.1) satisfying Z(r, r) = 1, Zt(r, r) = 0 (by classical 
results). Thus as with Y we need only bound Z in some sense. Duplicating 
our previous estimates (2.8), etc., there results 
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(3.9) \Zt\
2+ j 2Re(X a23s(£)) |Z5 |2^ + X a ( 0 | Z | 2 - X a ( r ) 

- X f a ' [ Z | 2 J £ < f |3i|( |&|2 |Z|2+ |Z* | 2 )^ 

+ Jj22|(k!2x^|z|2+|zf|
2)^. 

Under the same assumptions as before it follows that 

(3.10) Xa(0|Z|2 + |Z ( |
2 < Xa(r) + 2d f |Zj|2d£ + X J P|Z|2</£, 

(3.11) |Z ( |
2 + X a ( * ) | Z | 2 < X a ( T ) £ ( ; , r ) + J XP|Z | 2 E(U)<^. 

Hence, in particular, 

(3.12) a(t)\Z\2 < a(r)E(t, r) + J P |Z | 2 £(*, $)d$. 

Now using Lemma 1 slightly modified (set x = jP\Z\2Ed%; then 

a(x' ~ 2clX) < a(r)PE + P x 

and 
X + a(r)E < a ( r )£ exp (f ( P / a ) ^ ) , 

we obtain 

(3.13) a(/) |Z|2 < a(r)E(t, r) ^ \ <j>(t, r)^(t, r). 

Therefore it has been proved that 

LEMMA 2. Under the assumptions of Theorem 1 

(3.14) ^ ( T ) < K T ) | Z | 2 < C 2 . 

This implies that, setting a = V(W>)> T = qZ will determine an operator 
T in 21". Also we observe from (2.5) that 

(3.15) ZT = Y[\a(r) + X*22 r(r) + zx b(r)]. 

It is easily seen now that the following'results hold. 

PROPOSITION 3. Under the above assumptions (t, r)—»T(£, r) G (£°(%S(H)) 
and also \Q(r)ZT\ < c% X̂ . 

Now for T > 0, F and Z define themselves as perfectly good operators Y 
and Z in 21". Also using (3.8) and (3.15) we see that | YT\ < c9 \

a~^ if a > \ and 
if a < J, | FT| < c<è\ thus for a > \ (the case a < \ is simple and similar and 
hence omitted explicitly in our proof) 

* -> Y(*, f) G (gKS.OHA"-*), ff)) for { > 0. 
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Similarly, \zT\ < c10\* means that £->Z(/,£) G ^ ( ^ ( ^ ( A * ) , # ) ) . Therefore 
assuming that r > 0 we suppose u is a solution of (1.1) with w(r) and w'(r) 
prescribed, rewrite (1.1) with / replaced by £, and "multiply" by Y (J, £) 
( 0 < r < £ < / < / < oo ). This gives formally 

(3.16) Y(*f £)«* f - P[Y«- A"&(£)Y]M5 

+ jY[Aaft) + 56({) + k'RrWudt = J'Yfd£. 

Using now (3.8) and (3.15) (7, 8), we obtain, if « € <g°(2?(Ai**)), u € @2(#), 
and w € (51(-D(A7)), a rigorous justification of (3.16), and the result 

(3.17) u(t) - Z(f, T)M(T) - Y(*. T)U,(T) 

- J " [Yt - A-55(f)Y + Z]««d£ = J " Y/# 

where by (3.8) it is seen that the integral on the left side of (3.17) is zero. 
When U(T) = u'(j) = 0 we have the result (24) that any solution of (1.1) must 
have the form (2.7) (with r > 0 as lower limit of integration). If now r = 0, we 
first proceed as above for the lower limit r + e = e. From (3.17) it is then seen 
that 

(3.18) u(f) = Z(f, e)u(e) + Y(t, e)ut(e) + j ' Y(/, £)/(£)#. 

Whereas for (3.17) with r > 0 it is only necessary to suppose that 
u G Ê°(Z}(A7_h0), etc., we must require more for r = 0. Thus, if 

t-^u/qe <&°(D(Ay+*)) 

and t—>u'/Q G S°(^(A7)), then by hypocontinuity (7, 8) it follows that 
Z(t, e)u(e) —» 0 and Y(t, e)uf (e) —> 0 as e —» 0. Assuming that 

h=f/Qe <g°(0(AO), 
all of the terms in (3.18) have limits as e -» 0 (jl Vî(t, Ç)h{£)d$ -* Jô WM£). 
Hence for/ = Owe obtain: 

THEOREM 2. Under the hypotheses of Theorem 1 /Aere w only one solution of 
(1.1) with u'/Q G g0(£KAO), « G @2(#), «/g G g 0 ( P ( A ^ ) ) . 

In general the requirements of Theorem 2 are too strong, however. Therefore 
we shall give another uniqueness result in the case q > 0. Let u be a solution 
of (1.1) with u G g°(£>(A^)), u G @2(#), « G &(D(Jby)), u(0) = u'(0) = 0, 
and / = 0. Then under the hypotheses of Theorem 1 

exp(-X% £*(*)#) 
determines an operator in 31" which we denote by 
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expf- A"5 J s(£)dt) = L(t, T). 

By going to h under 6, integrating (1.1) partially, and returning then to H, 
we have 

(3.19) u'= - f L(t, m^Rr(0 + Aa(£) + J36(*)]«(£)#. 

Hence since ||A%|| and ||A^|| are bounded by assumption, 

(3.20) | M | < c j (a + cn|r| + d*\b\)dt 

<<i>04[(x^)4+-(r^)i-.<rf!)i] 

(recall that q > 0 means J | r | 2 /a < °° and J\b\2/a < oo). Now 

« . ^ [ V a W l Y ^ T ) 

is continuous here with values in 2S(H, D(A*)), and the term Y(t, e)u'(e) in 
(3.18) may be written, for example, as 

(3.21) Y(/, €)«'(€) = (VifâY(tt e)) \ Jo a V tt'CO . 

But 

• / ( / ; 
ad£ 

is continuous for 5 < J. Hence since the Xu term in (3.18) tends to zero now 
(since q > 0), we have 

THEOREM 3. Assume u is a solution of (1.1) with 

u G ®2(H),u £ &(P(A?)), u e ®°(D(Ar+*)), 

and let j\r\2/a < oo, J|5|2/a < oo with (joad£)8/x/a continuous for some 8 < §. 
Then u is unique. 

If a = tm it is seen that 

is continuous if 

à> 
1/ m \ 
2\m + 1/ ' 
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Various other criteria for uniqueness can easily be envisioned. We note that 
our problem gives rise to a turning-point situation at t = 0; cf. (17). However, 
this will not be exploited here. 

4. We shall now examine the condition P > 0 and compare the present 
results with (15) in a special case (assume X0 > 1). First recall that 
P = af + Ci(\r\2 + \b\2/\) ; and in order to have P > 0 for all X, we must have 
Q>' + Ci\r\2 > 0 (conversely this is a sufficient condition). This gives a bound 
for a', viz. 

(4.1) a' > -ci | r |2 . 

Thus a is not required to be monotone. Also since no condition is imposed on 
Ji(\r\2/a)di; as to growth, it is possible for a' to oscillate while going to zero 
faster than \r\2. For example let a = tm, r = tn\ then (if 2n — m ^ —1) 

(4.2) X,J£*-° 
Now roughly if a = 0(tm) with a' = 0(tm-1), then to ensure (4.1) with 
oscillation, we shall want — tm~1 > — ct2n which will hold (for / small) if 
m — 1 — 2n > 0 (and sometimes when m — 1 = 2n). Thus the case of non-
monotone a seems to be associated with the case of Jt(\r\2/a)d^-^co. The case 
jl

T\r\2/a < oo corresponds roughly to the situation of (15), where it is assumed 
that if a = 0(tm) then r = 0(pm-lp{i)) with 0 -» 0. In our case if Jl

T\r\2/a < oo , 
then we require n > \m — \. This is a stronger hypothesis than that of (15); 
but our solution is stronger. The case Jl

T\r\2/a —><* seems to involve a new 
situation (cf. (5) where non-monotone a are also allowed) as indicated 
below (assume J\b\2/a < oo) 

(4.3) j\r\2/a < *> ~ n> \m — \ ~ f/Fm continuous, 

(4.4) ^\rY I a —> °° ~ n < \m — \ ~ //(Fm\/<l>) continuous; 

here 

4, = exp(-Cl J t
l r j - ^ 

In (4.3) no oscillation in a is allowed (essentially) whereas (4.4) permits a to 
be wilder in the nature of its oscillations (recall that a > 0 always and a > 0 
for t > 0). However, if/arises from an initial-value problem, then for example 
/ ~ a = 0(tm) and then in (4.4) Fm/^/4) is required to be continuous. But 

0 ~ exp ( -^ r ( m - 2 n - 1 ) ) (m > 2n - 1), 

which vanishes faster than Fm. Suppose on the other hand that 2n — m = — 1 ; 
then J\r\2/a = 0( — logt) and <j>~tk for some &. Therefore if k < w , / / V ( ^ 0 ) is 
continuous and hence some initial-value problems seem to admit oscillation 
in a. Some further discussion of examples is given in (26). 

• 
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