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We present an experimental investigation aimed at understanding the effects of
surface roughness on the time-mean drag coefficient (C̄D) of finite-span cylinders
(span/diameter = aspect ratio, 0.51 ≤ AR ≤ 6.02) freely rolling without slip on an
inclined plane. While lubrication theory predicts an infinite drag force for ideally smooth
cylinders in contact with a smooth surface, experiments yield finite drag coefficients. We
propose that surface roughness introduces an effective gap (Geff ) resulting in a finite drag
force while allowing physical contact between the cylinder and the plane. This study
combines measurements of surface roughness for both the cylinder and the plane panel
to determine a total relative roughness (ξ ) that can effectively describe Geff at the point
of contact. It is observed that the measured C̄D increases as ξ decreases, aligning with
predictions of lubrication theory. Furthermore, the measured C̄D approximately matches
combined analytical and numerical predictions for a smooth cylinder and plane when the
imposed gap is approximately equal to the mean peak roughness (Rp) for rough cylinders,
and one standard deviation peak roughness (Rp,1σ ) for relatively smooth cylinders. As
the time-mean Reynolds number (Re) increases, the influence of surface roughness on
C̄D decreases, indicating that wake drag becomes dominant at higher Re. The cylinder
aspect ratio (AR) is found to have only a minor effect on C̄D. Flow visualisations are also
conducted to identify critical flow transitions and these are compared with visualisations
previously obtained numerically. Variations in ξ have little effect on the cylinder wake.
Instead, AR was observed to have a more pronounced effect on the flow structures
observed. The Strouhal number (St) associated with the cylinder wake shedding was
observed to increase with Re, while demonstrating little dependence on AR.
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1. Introduction

The free motion of a body rolling along a plane wall is of practical interest in many fluid
dynamics applications, such as the transport of sediment in rivers, the design of viscous
micro-pumps and the motion of leukocytes near vessel walls. Although these practical
flows typically feature irregular and varied geometries, much research has focused on
simplified geometries, including spheres (Carty 1957; Jan & Shen 1995) and infinite
cylinders (see Thompson, Leweke & Hourigan (2021) for a detailed review). The present
authors have recently highlighted the importance of surface roughness in determining
the drag on rolling spheres (Nanayakkara et al. 2024). In particular, surface roughness
elements generate an effective hydrodynamic gap between the sphere and the wall, and
the drag coefficient (CD) can be approximately predicted based on this effective gap.
We anticipate that this proposed mechanism of rolling motion applies to other rolling
body geometries. Therefore, the present article presents an experimental investigation into
the influence of surface roughness on the motion of finite-span rolling cylinders, where
the contact area is far more extensive than for a sphere. Our results strongly support
the hypothesis that surface roughness introduces an effective hydrodynamic gap between
the cylinder and the wall, and the effective drag coefficient can be determined from this
hydrodynamic gap using lubrication theory.

The paradox of rolling motion arises from the theoretical prediction for an
incompressible fluid that a perfectly smooth sphere or cylinder should be incapable of
rolling while in contact with a smooth wall. This theoretical expectation contradicts
experimental observations of rolling motion for both spheres (Carty 1957; Jan & Shen
1995; Houdroge et al. 2023) and cylinders (Rao et al. 2011). Specifically, analytic
expressions for the force and moment applied to either a sphere (Goldman, Cox & Brenner
1967; O’Neill 1967; O’Neill & Stewartson 1967) or cylinder (Jeffrey & Onishi 1981;
Merlen & Frankiewicz 2011) translating and rotating near a plane wall predict an infinite
drag force when the body is in contact with the wall. A resolution to this paradox is to
introduce an effective gap between the rolling body and the wall, thereby resulting in a
finite drag force. Proposed mechanisms to introduce this effective gap include cavitation
(Prokunin 2003; Ashmore, Pino & Mullin 2005; Seddon & Mullin 2006), compressibility
(Terrington, Thompson & Hourigan 2022) and surface roughness (Smart & Leighton
1989; Galvin, Zhao & Davis 2001; Zhao, Galvin & Davis 2002; Nanayakkara et al. 2024).
Which of these mechanisms is relevant for establishing the effective gap depends on
the experimental parameters (Terrington et al. 2022). For example, although cavitation
has been observed in some experiments, for both spheres (Ashmore et al. 2005; Yang
et al. 2006) and cylinders (Seddon & Mullin 2006), cavitation is entirely absent in others
(Houdroge et al. 2023; Nanayakkara et al. 2024).

In cases where cavitation is responsible for the motion (Ashmore et al. 2005; Seddon
& Mullin 2006), the formation of a cavitation bubble produces a lift force that results in
the sphere or cylinder losing contact with the wall. In such cases, there are no contact
forces between the body and the wall, and the sphere or cylinder experiences a rotation
rate different from that required to roll without slipping (Ashmore et al. 2005; Seddon &
Mullin 2006).

When cavitation and compressibility effects are either weak or absent, the effective
gap is a result of surface roughness. The rolling body and the wall maintain contact via
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Effects of surface roughness on finite-span cylinders

surface asperities, and this produces an average gap proportional to the height of surface
asperities. In such cases, the body may roll without slipping along the wall, due to contact
forces between the body and the wall. For the rolling sphere flow, this hypothesis is
supported by experimental measurements in both the Stokes flow (Smart, Beimfohr &
Leighton 1993; Galvin et al. 2001; Zhao et al. 2002) and inertial flow regimes (Thompson
et al. 2021; Houdroge et al. 2023; Nanayakkara et al. 2024). However, this proposed
mechanism has not yet been shown to apply to other geometries, such as the rolling
cylinder. Importantly, the nominal contact between a cylinder and the wall occurs at a
line, whereas contact between a sphere and a wall occurs at a single point, and this could
influence the mechanism of rolling motion. The present article presents experimental
results that demonstrate the occurrence of the same mechanism in the motion of finite-span
circular cylinders.

Although extensive experimental studies of isolated cylinders have been conducted,
including both long-span (Bénard 1908; Von Kármán 1911; Taneda 1965) and finite-span
(Norberg 1994; Williamson 1996) cylinders, experimental measurements of cylinders
rolling in close proximity to a plane wall remain relatively scarce. Bearman & Zdravkovich
(1978) and Zdravkovich (1985) considered the related problem of flow past a stationary
cylinder near a plane wall, with gap-to-diameter ratio (G/D) in the range 0 ≤ G/D ≤ 2.
The flow structures (Bearman & Zdravkovich 1978) and both the drag and lift coefficients
(Zdravkovich 1985) were found to vary significantly with G/D, whereas the Strouhal
number (St) was insensitive to G/D.

Although few experimental investigations of rolling cylinders at low and moderate Re
have been performed, this problem has been widely examined using both analytical and
computational approaches. Jeffrey & Onishi (1981) obtained expressions for the force
and moment applied to a circular cylinder both rotating and translating near a plane
wall in Stokes flow, which are valid for any G/D. Merlen & Frankiewicz (2011) found
corresponding expressions valid in the limit G/D � 1 using lubrication theory. These
solutions are accurate only for Stokes flow (Re = 0), and under-predict the drag coefficient
at non-zero Re, since inertial effects such as wake formation are neglected.

To account for inertial effects at non-zero Re, numerical simulations have been employed
(Stewart et al. 2006, 2010b; Rao et al. 2011; Houdroge et al. 2017, 2020; Wang et al.
2021). These studies typically consider only a single value of G/D, noting that the
flow outside the gap region is insensitive to G/D, when G/D is small. Although this
approach is sufficient to determine the wake dynamics and transitions, the drag coefficient
appears to be highly sensitive to G/D, and therefore simulations must be performed
for a range of G/D to completely determine the drag coefficient. To avoid performing
simulations for multiple G/D, Terrington, Thompson & Hourigan (2023) have introduced
a combined analytical–numerical approach, where the gap-dependent drag (CD,pred,gap)
for the two-dimensional flow over a circular cylinder is obtained using the analytical
lubrication solution, whereas the wake drag (CD,pred,wake), which is independent of G/D,
is obtained using numerical simulations. The total predicted drag coefficient is the sum
of the gap-dependent and wake drag coefficients; this predicted drag coefficient will be
denoted as CD,pred.

The gap-dependent drag coefficient obtained by Merlen & Frankiewicz (2011) is for the
infinite cylinder flow. Saintyves et al. (2020) computed the correction to this expression
due to end effects for a finite-span cylinder with a large aspect ratio. Teng et al. (2022)
extended this analysis, computing the correction to the gap-dependent drag valid for all
aspect ratios. The end effects result in a reduction in the gap-dependent drag coefficient
compared with the two-dimensional theory, particularly for small aspect ratios and larger
G/D.
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Although Teng et al. (2022) provided expressions for the gap-dependent drag for a
finite-span cylinder, solutions for the gap-independent wake drag for a finite-span rolling
cylinder have not been obtained in the existing literature. Although both Pirozzoli,
Orlandi & Bernardini (2012) and Javadi (2022) performed numerical simulations for
low-aspect-ratio finite-span cylinders (wheels) in contact with a plane wall, neither of these
studies discussed the numerical treatment of the contact point, nor the infinite pressures
that should arise in that region. Both studies reported finite CD,pred at G/D = 0, in contrast
with the infinite drag predicted by lubrication theory. As discussed by Terrington et al.
(2023), this is likely due to low grid resolution at the point of contact. The CD,pred values
reported by these works are therefore likely to be unreliable.

The effect of cylinder aspect ratio on the wake structures behind a freely rolling
finite-span cylinder has also not been documented in the existing literature. Zdravkovich
et al. (1989) conducted experiments on isolated cylinders with AR ≤ 1 and showed that C̄D
increases for decreasing AR, for high Re (approximately 105). Computational studies by
Inoue & Sakuragi (2008) investigated the effects of both Re and AR on isolated stationary
cylinders, and found five basic patterns of vortex shedding. The authors reported that these
patterns are dependent on both Re and AR of the cylinders, and end effects also play a
role in the flow patterns observed. Inoue & Sakuragi (2008) also observed double-sided
hairpin-like vortex patterns for moderate AR (2–10) and moderate Re (50–200). Recent
computational analysis by Yang, Feng & Zhang (2022) found a similar behaviour for a
cylinder with AR ranging from 0.5 to 2, at lower Re (0–300). It is noted that their results
also indicate that the difference in CD,pred for varied AR is higher at low Re, and the curves
seem to converge together at Re ≈ 500. In the present article we experimentally investigate
the effect of AR on the wake structures formed behind a rolling circular cylinder.

Numerical studies (Stewart et al. 2010a; Rao et al. 2011; Houdroge et al. 2017, 2020)
have also investigated the influence of gap size on the wake dynamics and vortex shedding
of a freely rolling infinitely long cylinder. Although a vanishing gap size has a strong
influence on the forces acting on the cylinder, at least for small gap ratios, the gap height
has minimal effects on the wake and wake transitions. Houdroge et al. (2020) visualised
the pressure distribution of a cylinder with large and small gaps, and showed that the
pressure coefficients were nearly identical, at the top and sides of the cylinder, even when
the gap size was reduced by a factor of 32. However, it is important to note that given
the coupling between a freely rolling cylinder and the flow, where the cylinder motion
responds to changes in drag forces as vortices are shed into the wake, the dependence
of drag force on the gap size has an indirect effect on the wake dynamics. A detailed
discussion of relevant literature regarding the wake–structure interaction of cylinders
rolling on a plane is given in § 5.1.

In this study, we experimentally investigate the effects of surface roughness on the drag
coefficient of finite-span cylinders freely rolling without slipping. Our primary focus is
on the low- to moderate-Reynolds-number regime (30 < Re < 1800), where the present
literature lacks experimental evidence of the dependence of C̄D on surface roughness.
We aim to provide experimental evidence that the time-mean drag coefficient (C̄D) is
dependent on both cylinder and panel surface roughness, and the effective gap (Geff )
between the panel and cylinder can be estimated using roughness parameters. Moreover,
we show that gap heights approximately equated to peak roughness (Rp) for rough
cylinders, or one standard deviation above the mean peak roughness (Rp,1σ ) for smooth
cylinders, yield predicted drag coefficients in general agreement with measured values.
This is the main finding of the present investigation and forms a basis on which the drag
coefficient of a cylinder can be predicted using a combined analytical–numerical approach
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Figure 1. Schematic free body diagram of a freely rolling cylinder, on an inclined plane under the influence
of gravity.

and using peak surface roughness as the gap height. The difference between the two types
of cylinders and the use of two different roughness statistics are discussed in § 4.5.2.

A limited set of experiments were conducted in air using foam cylinders to demonstrate
that cavitation is not required to allow cylinder motion in this Re range and that similar
drag trends are observed. Additional dependence of C̄D on cylinder aspect ratio (AR) is
also investigated and compared with analytical predictions. Furthermore, experimental
flow visualisations are employed to identify and validate critical flow transitions that have
been previously observed in numerical studies.

This paper is organised as follows. Section 2 describes the problem and the existing
analytical solutions, and § 3 presents a summary of the experimental method. Section 4
presents detailed experimental results of the investigation together with a discussion of
results. Wake–structure interactions including experimental flow visualisations are given
in § 5. Finally, § 6 draws final conclusions and points to future studies.

2. Problem description

Figure 1 illustrates a cylinder with a diameter D undergoing free rolling without slip on
an inclined plane set at an angle θ relative to the horizontal axis. The cylinder density is
denoted as ρs, and the fluid density is represented as ρf . The typical relationship ρs > ρf
indicates negative buoyancy and a mass ratio is given by β = ρs/ρf . The coordinate system
is anchored at the centre of the body.

After the cylinder attains a quasi-steady state, it adopts a time-mean terminal velocity Ū
in the x direction and a time-mean angular velocity ω̄ around the y direction, as indicated
in the figure (referred to as prograde rolling). Here, the x direction corresponds to the
down-slope, whereas the y direction represents the cross-slope. The buoyant weight of the
body, denoted as WB, is calculated as WB = πD2L(ρs − ρf )/4, where L is the span of the
cylinder.

We assume that the cylinder is offset from the wall by an effective gap, Geff , which
is characterised by the non-dimensional parameter Ĝ = Geff /D. We propose that the
effective gap Ĝ can be determined from the measured surface roughness. This is discussed
further in §§ 2.2 and 4.

Furthermore, FD, FL and Ty are the instantaneous hydrodynamic drag, lift and torque,
respectively, applied to the body, whereas the time-mean counterparts of these parameters
are represented by F̄D, F̄L and T̄y, respectively. Correspondingly, N, N̄ and FC, F̄C are
the instantaneous and time-mean normal and contact forces, respectively. Finally, the
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time-mean Reynolds number of the cylinder is expressed as Re = ŪD/νf , where νf is
the kinematic viscosity of the fluid.

The drag coefficient considered in this study includes both hydrodynamic drag force F̄D
and the contact force F̄C, as

C̄D = F̄D + F̄C

1
2

DLρf Ū2
. (2.1)

Considering the time-mean force balance parallel to the plane wall (F̄D + F̄C =
WBg sin θ ), the drag coefficient can be expressed as

C̄D = WBg sin θ

1
2

DLρf Ū2
= 1

2
D(β − 1)gπ

Ū2
sin θ. (2.2)

Equation (2.2) is used to calculate the drag coefficient in experiments.

2.1. Combined analytical–numerical predictions
Assuming the cylinder is rolling without slipping, the total drag coefficient can be
determined from the hydrodynamic force and torque coefficients. Assuming quasi-steady
motion, the balance of torques applied to the cylinder is

Ty − FC
D
2

= 0, (2.3)

and therefore the effective predicted drag coefficient is written as

CD,pred,num = CF,fluid + CT,fluid, (2.4)

where CF,fluid = F̄D/(1
2 DLρf Ū2) and CT,fluid = (T̄y/D/2)/(1

2 DLρf Ū2) represent the
hydrodynamic force and moment coefficients, respectively. In this study, (2.4) is used to
predict the drag coefficient from numerical simulations.

For two-dimensional flow over a rolling circular cylinder, Terrington et al. (2023)
decompose the force and moment coefficients into a gap-dependent term and a
gap-independent ‘wake-drag’ term. Here, we express this result as a combined predicted
drag coefficient:

CD,pred(2D) = CD,pred,gap(2D) + CD,pred,wake(2D) (2.5)

The gap-dependent drag for an infinite cylinder is obtained using lubrication theory,
valid for small gap heights (G/D � 1) (Merlen & Frankiewicz 2011; Terrington et al.
2023):

CD,pred,gap(2D) = 8π

Re
√

G/D
, (2.6)

whereas the wake-drag term was obtained by Terrington et al. (2023) using numerical
simulations for steady-state flow. We obtain the following empirical fit to their numerical
data:

CD,pred,wake(2D) = 14.9 − 11.0(Re)0.033. (2.7)

This equation is valid for 10 < Re < 200 (see Terrington et al. 2023).
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Teng et al. (2022) compute the gap-dependent force and moment contributions for
a finite-span circular cylinder, both translating and rotating near a plane wall. When
expressed as an effective drag coefficient, their solution is given by

CD,pred,gap(3D) = 8π

Re
√

G/D
− 4I

Re AR
, (2.8)

where the integral I can be approximated using the following rapidly converging series:

I = 64
3π

sinh−1
(

AR√
G/D

)
− 16AR +

∑
n=1,3,5,...

64 exp(−nπ/2AR)

(
1

3nπ
+ 2AR

n2π2

)
.

(2.9)

Equation (2.8) represents the influence of the lubrication flow in a narrow gap
between the cylinder and the wall on the total predicted drag coefficient. The first term
on the right-hand side is the drag coefficient corresponding to two-dimensional flow
(infinite-span cylinder), whereas the second term is a correction representing the effect of
a finite aspect ratio. However, this expression does not include the influence of outer-flow
effects such as wake formation and shedding. To account for these effects, the total
predicted drag coefficient will be given by

CD,pred = CD,pred(3D) = CD,pred,gap(3D) + CD,pred,wake(3D), (2.10)

where CD,pred,wake(3D) is a function of both Re and AR, but not G/D. Unfortunately,
analytical or numerical results for CD,pred,wake(3D) have not been reported in the literature.

A detailed numerical study is required to obtain accurate estimates of CD,pred,wake(3D),
but is outside the scope of the present work. In the absence of a reliable estimate for
CD,pred,wake(3D), we assume it will be approximately the same order of magnitude as the
wake drag coefficient for the two-dimensional cylinder flow (CD,pred,wake(2D)). This is a
rough approximation only and is likely to introduce significant and unquantified errors
into our estimate of the wake drag coefficient. Fortunately, at the low and moderate
Reynolds numbers considered in the present study, the wake drag represents a relatively
small contribution to the total drag (10–20 % depending on Re), so reasonable predictions
of the total drag coefficient may still be obtained.

In addition, we note that the wake drag coefficient for the two-dimensional cylinder flow
is 1.5 ≤ CD,pred,wake(2D) ≤ 3 (Terrington et al. 2023) and the wake drag coefficient for the
rolling sphere flow is 1.0 ≤ CD,sph,wake ≤ 1.5 (Houdroge et al. 2023) for 10 ≤ Re ≤ 200.
Given that the three-dimensional sphere also exhibits a similar range of wake drag
values as the two-dimensional cylinder, our assumption that the three-dimensional wake
drag of a cylinder will be similar to the two-dimensional wake drag (CD,pred,wake(3D) ≈
CD,pred,wake(2D)) is sufficiently accurate. This approximation will enable an effective
comparison between measured C̄D and CD,pred.

2.2. Relationship between gap and surface roughness
The primary objective of this investigation is to establish the correlation between surface
roughness parameters and the effective gap (Geff ) required to determine the drag force
acting on the cylinder. The British Standard Geometric Product Specifications (GPS) -
Surface texture: Profile method - Terms, definitions, and surface texture parameters, BS
ISO 4287:1997 provides a comprehensive framework to characterise surface roughness.
Among these parameters, the most frequently used are the mean absolute deviation, root
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Figure 2. Visual representation of the three roughness statistics on a sample cylinder profile.

mean square (r.m.s.) and the peak roughness, which are denoted by Ra, Rq and Rp,
respectively. Figure 2 indicates these parameters for a sample profile from a cylinder. See
Gadelmawla et al. (2002) for detailed descriptions and analytical expressions for typical
roughness statistics.

Drawing upon these roughness parameters, a new non-dimensional relative roughness
denoted by ξ is introduced as follows:

ξ = Rpanel + Rcylinder

D
, (2.11)

where Rpanel and Rcylinder denote the roughness parameters corresponding to the panel
and cylinder surfaces, respectively. A subscript is employed to indicate the specific
surface-roughness statistic used to compute ξ . For instance, ξp, is the non-dimensional
roughness determined using the peak roughness of both the panel (Rp,panel) and the
cylinder (Rp,cylinder), whereas ξa and ξq are calculated using the mean absolute deviation
and r.m.s. roughnesses, respectively.

Equation (2.11) assumes that the effective gap at the point of contact results from a
linear summation of two simple roughness statistics. In general, elementary roughness
statistics such as Rp may be insufficient to completely describe the complex nature of
the surface, and a linear summation of surface roughness statistics may not fully describe
the interaction between two complex surfaces. The accuracy of these assumptions and
simplified measurements are discussed in detail in § 4.5.

3. Experimental set-up and methodology

The rolling cylinder experiments were conducted within the Fluids Laboratory for
Aeronautical and Industrial Research (FLAIR laboratory) at Monash University. A
detailed review of the experimental set-up and methodology used for the present study
can be found in the previous work of Nanayakkara et al. (2024). A summary is provided
in the following.

3.1. Summary of experimental set-up and methodology
The present experiments were conducted in a water tank with a glass panel mounted on
an adjustable stainless steel frame. Other test panels with various surface roughnesses
were also adopted. The inclination angle ranged from 1.5◦ to 23◦. Panel flatness was
determined by measuring surface height variation at discrete points, revealing that panel
non-flatness was negligible compared with the panel’s downward slope. The test cylinders
were pre-soaked underwater, with air bubbles removed by vibration and stirring, prior to
carrying out the experiments. The cylinders were then placed on a collection port on the
plane and gently released to minimise water surface disturbances. A waiting period of at
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least 2 min followed any water perturbation before measurements were taken, ensuring the
water had adequately settled. Regular cleaning of the water tank prevented dust or fibre
deposition on the panel surface.

The velocity of rolling cylinders was determined by timing their travel over a fixed
distance. A minimum of 20D rolling distance was allowed prior to measurements to ensure
the cylinders attained their time-mean terminal velocity. Initially, a stopwatch measured
the time for a 200 mm distance on the removable panel (constituting 30 % of data). Later,
a system with three laser-based object detectors was introduced for improved accuracy and
efficiency (70 % of data). The results presented in the present study incorporate both data
sets, and an uncertainty analysis in Appendix B accounts for measurement errors from
both methods. Specifications of the tested panels and cylinders are provided in tables 1
and 2, respectively, in Appendix A. Table 2 specifies unique identifiers for each group of
cylinders used with the same diameter and aspect ratio. These identifiers are used herein
to refer to distinct cylinders.

The data outlined in § 4 represent average measurements obtained from eight separate
runs using cylinders of similar diameter and density. Furthermore, occasional checks were
performed at randomised locations on the curve to confirm the consistency of the data,
even when the fluid temperature varied. Table 2 indicates that the uncertainty regarding
the cylinder diameter within each group of cylinders was generally below 1 %. To prevent
any distortion caused by water absorption, the cylinders and panels were regularly removed
from the water tank outside measurement intervals and dried.

The uncertainty in cylinder diameter was used to estimate deviations in roundness.
Given that the uncertainties in the diameter cylinders were generally below 1 %, it was
assumed that deviations in the roundness of cylinders could be neglected.

Preliminary experiments were conducted with a selection of cylinders at various
inclination angles ranging from 2◦ to 23◦ to examine potential cylinder slippage in our
trials. A marker was placed on the surface of the cylinder, and the cylinder rolling motion
was then recorded using a digital camera. The calculated rotational speed was compared to
the measured linear down-slope velocity, revealing no significant difference between the
two velocities (less than 1 %). As such, any slippage between the cylinder and the surface
was considered to be negligible.

To establish the effects of cylinder deformation due to the normal contact force, Hertzian
contact theory was used. A simple case of a two-dimensional spherical body in contact
with a flat plate was assumed, and the formula for plastic deformation is found in textbooks
such as Johnson (1985). For an acrylic cylinder of D = 19.7 mm rolling at θ = 2◦ on a
glass plate, where the largest normal contact force is acting on the cylinder, the calculated
deformation of the cylinder was in the order of 10−12 m. This deformation is small
compared with the height of asperities (typically 10−6 m), hence the effect of cylinder
deformation on the gap imposed by surface asperities was deemed negligible.

3.2. Surface roughness measurements
Non-contact surface roughness measurements for both the cylinders and panels were
acquired using an optical profilometer, specifically the Bruker Contour GT-I. This
instrument is housed at the Melbourne Centre for Nanofabrication (MCN), situated
within the Victorian Node of the Australian National Fabrication Facility (ANFF). The
measurements were performed with a 50× magnification, employing the vertical scanning
interferometry (VSI) technique. VSI relies on a broadband light source and is particularly
accurate for evaluating surfaces that are rough. The obtained measurements are detailed in
tables 3 and 4 in Appendix A.
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In the present work, roughness statistics, such as Rp, were obtained for a minimum of
four different samples. Each sample was generated using the combination of 24 individual
measurements conducted under 50 × 1 magnification of each surface. The reported values
represent the average across all samples. This means that the peak roughness (Rp) reported
in this study is a sample-averaged value, and does not represent the highest peak observed
across all samples. In addition to the sample-averaged peak roughness, it is also useful to
report the parameter Rp,1σ , signifying one standard deviation above the sample-mean peak
roughness. This parameter will be used to differentiate the gap imposed by two types of
roughness textures observed, which will be elaborated on further in § 4.5.

Figure 3 presents the surface roughness measurements obtained from two panels and
four cylinders that were employed in the present experimental investigations. The surface
roughness profiles of the acrylic panel depicted in figure 3(a) span a range from −1.0
to 0.7 μm, which is indicative of a typically smooth surface. The ceramic panel surface
displayed in figure 3(b) displays notably higher asperities and deeper valleys, with some
reaching heights as large as 2 μm and valleys as deep as −4.6 μm, characteristic of a
typical rough surface.

The surface roughnesses observed in all four cylinders shown in figure 3 display
pronounced directional characteristics, with a series of ridges and valleys aligned parallel
to the direction of cylinder rolling. These ridges arise from the fabrication process, where
the acrylic cylinders were produced using a lathe. Comparatively, the two smaller diameter
cylinders shown in figures 3(c) and 3(d) possess a smoother surface compared to the larger
cylinders in figures 3(e) and 3( f ). In the case of the larger cylinders, the peaks of the
ridge-like structures typically exceed 4 μm, whereas the smaller cylinders exhibit peaks
within the 1–2 μm range.

4. Results and discussion

This section presents the experimental results of the effect of surface roughness on the
mean effective drag coefficient. The drag coefficient for experimental measurements
is determined using (2.2), and it is compared with analytical evaluations under the
assumption that the effective gap is equal to the peak surface roughness.

This section is structured as follows. First, we present the observed variations of C̄D with
Re for a set of cylinders with a fixed span in § 4.1. Note that maintaining a constant cylinder
span (L) while varying the cylinder diameter (D) leads to a variation in aspect ratios.
Subsequently, the influence of aspect ratio (AR) on C̄D is discussed in § 4.2. Furthermore,
§ 4.3 discusses the role of cavitation (or lack thereof) on cylinder motion and the limited
set of results obtained for foam cylinders rolling in air. In § 4.4 the variation of C̄D with ξ is
discussed, whereas § 4.5 discusses the relationship between peak roughness and effective
gap. § 4.6 presents additional considerations that may influence cylinder C̄D. Finally, § 4.7
compares the C̄D–Re relationships between a cylinder and a sphere.

4.1. Measurements of C̄D as a function of Re for cylinders with a fixed span (in water)
To investigate the effects of surface roughness on C̄D of a rolling cylinder, a set of C̄D
measurements were obtained with a fixed span (L = 10.1 mm), while the cylinder diameter
and surface roughness of the panel were varied. This approach ensures that the contact
region between the panel and cylinder remains constant which enables the comparison
of the effects of surface roughness on C̄D of cylinders with varying D. Figure 4 presents
the measured C̄D vs Re values within 20 < Re < 1800 for these fixed-span cases. Given
the fixed span and variations in D, the AR of these cylinders varies from 0.51–2.15.
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Figure 3. Surface roughness profiles obtained using the optical profilometer, under 50× magnification:
(a) acrylic panel; (b) ceramic panel; (c) D4.7-A2.2 cylinder; (d) D7.7-A1.3 cylinder; (e) D11.7-A0.9 cylinder;
( f ) D19.7-A0.5 cylinder. The arrow at the top right corner of each panel image indicates the approximate
down-slope direction, whereas for cylinder images, the arrow shows the direction of rolling of each cylinder,
with respect to the directional surface textures.

The influence of AR on C̄D is considered in § 4.2. Any variation in C̄D with AR is less
than the scatter in the data, at least for the experimental parameters considered in this
study.
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Figure 4. Variation of C̄D with Re for the five types of panels, Re = 20–1800 range in log–log scale. The
cylinder span was fixed at 10.1 mm which results in varied AR ranging from 0.51–2.15.

Figure 4 shows all of the data gathered, with the legend indicating the marker shapes
corresponding to seven cylinder diameters, and marker colours corresponding to the
five panels used. The measured C̄D data exhibit a clear inverse relationship with Re,
particularly evident at low Re, as depicted by the grey dashed line in figure 4. In addition,
there is a noticeable degree of scatter in the measured C̄D with different surface finishes.
This scatter is more significant at low Re, but decreases with increasing Re. Specifically,
there is a difference of 70 % between the smallest and largest C̄D values at Re = 100;
however, this scatter is reduced to 60 % by Re = 400.

The results of foam cylinders are not included in figure 4, but are presented in § 4.3.1.
These observations can be explained using the decomposition of C̄D into gap-dependent

and wake drag contributions (2.10). Specifically, the gap-dependent drag is approximately
proportional to 1/Re, while the wake drag is expected to have an order of magnitude
(O(1)) dependence on Re at moderate to large Reynolds numbers (Houdroge et al. 2023;
Nanayakkara et al. 2024). Therefore, the gap-dependent drag is dominant over the wake
drag for small Re, leading to the observed 1/Re dependence and large scatter.

The scatter in the experimental C̄D data arises from differences in surface roughness. To
illustrate this point, figure 5 depicts the C̄D vs Re curves for a single cylinder D19.7-A0.5
rolling on five tested panels. Each of the panels yields a different C̄D vs Re profile.
In particular, C̄D decreases with an increase in the panel roughness (or increasing ξp).
Corresponding ξp values are also indicated in the figure. This behaviour can be attributed
to the larger roughness producing a larger effective gap, resulting in a reduction of
gap-dependent drag.

Figure 6 presents profiles of C̄D vs Re for cylinders of various diameters rolling on
two separate panels. Figure 6(a) is for the cylinders rolling on a glass panel (Rp =
0.308 μm), while figure 6(b) is for the rough ceramic panel (Rp = 33.18 μm). The ξp
values corresponding to each cylinder are indicated in the figure legend. These figures
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Figure 5. Variation of C̄D against Re for a cylinder with a fixed diameter and aspect ratio, D19.7-A0.5, while
varying the panel surface roughness. Least-squares lines of the form a + b/Re have been fitted through data
that correspond to individual panels. The coefficient of determination R2 values are approximately 0.9.

demonstrate that, for a fixed panel roughness, C̄D increases with increasing cylinder
diameter. Despite an approximately 45-fold difference in peak roughness between the two
panels, a similar increase of C̄D with increasing D was observed. This held true for all
panels examined in this study.

Assuming the effective gap is proportional to the surface roughness, the dimensionless
surface roughness ξp reduces with increasing cylinder diameter, resulting in increased
gap-dependent drag.

Figure 7 presents a comparison between experimentally measured drag coefficients
and analytical evaluations using lubrication theory. The dashed green lines represent the
gap-dependent drag (as per (2.8)) using G/D = ξp,1σ for the D4.7-A2.2 cylinder, and
G/D = ξp for the D7.7-A1.3 cylinder. The difference in roughness statistics is associated
with a difference between the surface textures of the two cylinders, as discussed further
in § 4.5. It is worth noting that the gap-dependent drag generally under-evaluates the drag
coefficient since it does not include the wake-drag effects and possibly other sources of
drag such as rolling resistance that is discussed further in § 4.6. The wake-drag coefficients
for a finite-span cylinder are not available in the literature. For now, we use the wake-drag
coefficient for two-dimensional flow (2.7). The solid red lines in figure 7 represent the
sum of the gap-dependent and wake drag components, which is in good agreement with
the measured C̄D.

4.2. Effects of aspect ratio on C̄D vs Re
To investigate the effect of cylinder aspect ratio on C̄D, a series of experiments was
conducted with a consistent cylinder diameter of D ≈ 4.7 mm while the cylinder span
L was varied.
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Figure 6. Variation of C̄D with Re for cylinders of different diameter rolling on the (a) glass panel and
(b) rough ceramic panel. Least-squares lines of the form a + b/Re have been fitted through data that correspond
to the individual diameters of the cylinders used. The R2 values are approximately 0.9. Error bar indicate bias
error only.
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Figure 7. Comparison of C̄D vs Re of two cylinders rolling on a glass panel against analytical prediction (2.8).
The total drag when two-dimensional CD,pred,wake predictions from (2.7) is added to (2.8) is also indicated in
the figure. Physical parameters are (a) ξp,1σ = 0.00096 and AR = 2.16 and (b) ξp = 0.00035 and AR = 1.31.

Figure 8(a) presents the relationship between C̄D and Re for cylinders with AR ranging
from 0.5 to 6.02 rolling on a glass panel (Rp = 0.308 μm). In general, all cylinders with
varying aspect ratios follow the previously observed 1/Re trend outlined in § 4.1. In
addition, the same convergence of C̄D at high Re is observed, regardless of the cylinder
aspect ratio. This behaviour implies that the influence of end effects on C̄D also decreases
with increasing Re.

There is a significant amount of scatter in the experimental data shown in figure 8(a). To
investigate whether this scatter is due to aspect ratio effects, figure 8(b) plots the variation
of C̄D with AR for three constant Reynolds numbers, Re = 50, 100 and 150. Since the
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Figure 8. Cylinder C̄D variation with AR. (a) Variation of C̄D vs Re for a fixed diameter cylinder (D ≈ 4.7 mm)
with varied AR. All measurements were obtained on the glass panel with Rp,1σ = 0.46 μm. Least-squares lines
of the form a/Re + b have been fitted through the data points corresponding to fixed AR. (b) Variation of C̄D
vs AR for a fixed diameter (D ≈ 4.7 mm) cylinder for three constant values of Re(50, 100, 150). G/D = 0.008
value was used for CD,pred shown which corresponds to the cylinders rolling on the rough ceramic panel.

surface roughness values of the cylinders varied (table 4), the rough ceramic panel was
used to obtain the data in this figure. The roughness of this panel is approximately 10
times larger than the cylinder roughness values, which maintains a consistent ξp across the
different ARs. The C̄D values corresponding to each Re were determined through linear
interpolation from the nearest neighbouring Re. We observe no significant variation of C̄D
with AR.

Solid lines in figure 8(b) indicate the predicted drag obtained by adding the estimated
wake drag to the gap drag (2.10). The approximate peak roughness of the rough ceramic
panel Rp/D = 0.008 was used to approximate G/D to calculate CD,pred. We observe
reasonable agreement between measured and predicted values, particularly at higher AR
and higher Re. The predicted CD,pred increases with AR, and approaches a constant
value in the limit AR → ∞. However, the predicted change in C̄D against AR, using
(2.8), is relatively small over the range of AR considered in this study and is within the
variation in C̄D observed. There is a marginal increasing trend in C̄D against decreasing
AR, in contrast to the decreasing trend predicted by theory. We attribute the difference
in drag at small aspect ratios (AR < 1) to the use of two-dimensional wake drag in
(2.10). While this assumption is valid for larger AR cylinders, it becomes less accurate
for smaller AR cylinders where three-dimensional effects are more prominent. Further, the
influence of the large roughness of the panel on the cylinder motion also increases for
the smaller AR cylinders. Small AR cylinders were observed to change directions easily
following collisions with large asperities, and increased vortex-induced oscillations were
also observed. The theoretical model does not consider these added effects. Extending the
range of AR to smaller than 0.5 may produce useful insights, which we recommend as
future works.

In addition, the wake drag was estimated by assuming it to be equal to the wake drag
of an infinite cylinder. The true wake drag for a finite-length cylinder is unknown, and
it may also vary with AR. If the wake drag were to decrease with AR, then the total
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drag may be approximately constant with respect to AR. For a finite length cylinder in
an unbounded flow, Yang et al. (2022) observed a reduction of C̄D from approximately
1.5 to approximately 1 for an increase of AR from 0.5 to 2.0 at Re = 100. The wake drag
behind a rolling cylinder might be expected to follow a similar trend in AR. However, the
wake will be modified by both the presence of the wall and the rotation of the cylinder.
Numerical simulations of the flow over finite-length cylinders rolling near plane walls are
needed to determine the true variation of the wake drag with AR. Further, the numerical
study on the variation of C̄D with AR for the same G/D value will provide useful insight
into the influence of end effects on C̄D. We recommend this as future work.

Additional experiments that were excluded from figure 8 were conducted using larger
AR cylinders. A decline in C̄D was observed for AR > 6 which is likely attributed to the
potential wobbling of the cylinders during rolling, which, in turn, increases the effective
gap. Again, producing perfectly straight cylinders with large aspect ratios is difficult,
and we cannot ensure that consistent contact along the span exists between the rolling
cylinder and the plane. Given that the gap-dependent drag is extremely sensitive to the
imposed gap height (see § 4.4), a twofold increase in gap height at Re = 50 could lead to
a reduction in C̄D on the order of 40–50 %, the same order of magnitude as observed in
the reduction of C̄D. However, the high AR cylinders were included in § 5 where cylinder
wake is discussed. Gap height (or roughness) has minimal influence on the cylinder wake
(see § 5.4), where the effects of the non-straightness of the large AR cylinders on wake
formation and shedding, will be minimal.

4.3. Effects of cavitation on C̄D

Merlen & Frankiewicz (2011) tentatively propose that the mechanism allowing cylinder
motion involves a gap induced by cavitation lift force, rather than a gap caused by surface
roughness. This proposal is also supported by experimental observation of cavitation
bubbles near the body–plane contact for steel cylinders in silicone oil (Seddon & Mullin
2006). The formation of a cavitation bubble produces a lift force that allows the cylinder
to travel along the wall without contacting the wall. Due to the absence of a contact force,
the rotation rate of the cylinder is theoretically zero assuming an infinite cylinder in Stokes
flow (Jeffrey & Onishi 1981). This is supported by experimental measurements of Seddon
& Mullin (2006), who find that the onset of cavitation results in a significant decrease
in the cylinder rotational velocity compared with the translational velocity, and, in some
cases, reverse rotation of the cylinder.

In our experiments, the cylinders were observed to roll without slipping. Contact
forces are required to ensure the cylinder rolls without slip, and therefore our cylinders
must remain in contact with the wall, via a distribution of surface asperities. Therefore,
cavitation is not responsible for determining the effective gap in our experiments.

Merlen & Frankiewicz (2011) give the condition for cavitation to occur as p∞ < Pmin,
where p∞ is the ambient pressure, and

Pmin = 3
√

3

4
√

2

μf (1 + k)Ū
G

√
D
2G

(4.1)

is the maximum magnitude of the pressure decrease in the lubrication region. In addition,
k = ωyD/2U is the slip coefficient, equal to unity for our experiments, and μf = ρf νf
is the dynamic viscosity. Assuming G is equal to either Rp or Rp,1σ as discussed in
§ 4.5, the maximum value of Pmin is approximately 1.3 kPa, which is below the ambient
pressure p∞ ≈ 101.7 kPa. This confirms that cavitation is not likely to be significant in our
experiments.
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Figure 9. Variation of C̄D with Re for foam cylinders rolling in the air on the glass panel. The cylinder span
was fixed for all measurements (L = 10.1 mm) while the aspect ratio varied. The results of acrylic cylinders in
water are also plotted for comparison.

4.3.1. Measured relationship of C̄D vs Re for foam cylinders in air
Additional experiments were performed using foam cylinders rolling down inclined
surfaces in air. If cavitation, rather than surface roughness, indeed determines the effective
gap, we would expect to observe significant differences in drag coefficient between air and
water, given the absence of cavitation in air.

The profiles of measured C̄D vs Re for foam cylinders on a glass panel in air are shown
in figure 9, along with the results for acrylic cylinders in water rolling on the same panel.
The C̄D for foam cylinders in air are generally lower compared with those for acrylic
cylinders in water. As shown in table 4 in Appendix A, the Rp roughness of foam cylinders
(approximately 100 μm) is an order of magnitude greater than that of acrylic cylinders
(approximately 5 μm). The ξp values corresponding to each cylinder are indicated in
the figure legend. This significant difference in roughness contributes to the observed
differences between the two sets of results. Nevertheless, despite the large difference in
surface roughness, the C̄D values are within the same order of magnitude.

As such, the relative consistency between the results of measurements conducted in air
and water suggests that under present experimental conditions, effects of cavitation, if any,
are negligible.

Furthermore, the C̄D results for foam cylinders in air (figure 9) also follow the same
increasing trend with increasing cylinder D. Similar to the experiments in water, this
observation can be attributed to the decrease in ξ caused by the increase in D.

4.4. Variation of C̄D with relative roughness ξ

Figure 10 shows the variation of C̄D with the relative roughness ξp for two constant
Reynolds numbers, Re = 100 (figure 10a) and Re = 150 (figure 10b). The data are
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Figure 10. Variation of C̄D with ξp for AR ≈ 1 at (a) Re = 100 and (b) Re = 150. A line of best fit of the
form a + b/

√
ξ is used to show the general trend with R2 approximately 0.9.

presented in two figures at each corresponding Re to highlight the overall trend at each
Re, and enable comparison with lubrication theory predictions, without data clustering.
The cylinder AR was maintained close to unity (0.8 < AR < 1.2) and only larger cylinders
(D > 6 mm) were used in the figure.

The corresponding C̄D values for each Re were determined through linear interpolation
from the nearest neighbouring Re values. Error bars indicate the bias (formal) error of
measurements, which are approximately 2 % for C̄D and 5 % for ξ . Analytical evaluations
of the gap-dependent drag (2.8) (dashed green) are also plotted in this figure, as well as
the sum of the gap-dependent and two-dimensional wake drag (solid green) for AR = 1
cylinder.

In figure 10, the general trend of decreasing C̄D with increasing ξ for the experimental
data is shown using a line of best fit of the form a + b/

√
ξ . A dashed line in blue is used

in figures 10(a) and 10(b), respectively. The R2 values of the curve fit were approximately
0.9, indicating that variations in ξp account for the majority of the variation in C̄D.

As shown in the figure 10, it is evident that as ξ decreases, C̄D tends to increase for both
Reynolds numbers. A smaller gap leads to a higher C̄D, in agreement with lubrication
theory and numerical predictions. However, figure 10 shows that the predictions made
by Teng et al. (2022) ((2.8), dashed green line) underestimate C̄D for both Reynolds
numbers, due to the omission of wake-drag effects and other sources of drag such as
rolling resistance that is discussed further in § 4.6. At Re = 100, for a 10-fold increase
in ξ (0.0005 to 0.005), an approximate 65 % reduction in C̄D is observed. However, at
Re = 150, the same increase in ξ causes only an approximate 60 % decrease in C̄D. This
observation is in agreement with analytical evaluations, where the gap-dependent drag is
inversely proportional to Re.

When an approximate wake drag contribution is added (solid green line), we observe
better agreement between experimental C̄D and combined analytical and numerical
predictions. The observed reduction in C̄D at both Re is larger than the experimental
uncertainty of the measured C̄D values. This observation coupled with the relative
agreement between Ĝ and roughness statistics, discussed in § 4.5, supports the present
argument that surface roughness provides the gap required by lubrication theory, and is
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dependent on both cylinder and panel roughness. Despite the scatter in data, the measured
and predicted trends follow a similar curve. The inclusion of wake drag improves the
agreement between results. Although the measured and predicted curves do not agree for
all ξ values when G/D = Rp/D is assumed, it gives a simple approximate solution that is
valid for a large range of G/D values. That is, Rp roughness is a good approximation of the
gap height, despite the limited accuracy at low Re and small AR. A more comprehensive
model including additional sources of drag such as rolling resistance will likely improve
the accuracy of the model.

4.5. Roughness analysis
Up to this point, we have progressed under the assumption that the effective gap (Geff ) is
of the same order of magnitude as the peak roughness (Rp) or the peak roughness plus one
standard deviation of the cylinder and panel (Rp,1σ ). However, as mentioned previously,
simple statistical measures such as Rp or Rp,1σ may not adequately account for various
scales of surface roughness. To further explore these effects, we examine four specific
cases in detail: the four cylinders D4.7-A2.2, D7.7-A1.3, D9.7-A1.0 and D11.7-A0.9, all
rolling on a glass surface. Given that the roughness of the glass panel (Rp = 0.3 μm) is
approximately 10 times smaller than those of the cylinders (Rp ≈ 3 μm), we anticipate that
the dominant factor determining the gap will be the roughness of the cylinders.

4.5.1. Relationships between dimensionless effective gap (Geff /D), ξp and ξp,1σ

Let us introduce Ĝ = Geff /D as the non-dimensional effective gap required to match the
analytical predictions of the drag coefficient (2.8) with the experimental measurements.

Figure 11 presents a comparison between the measured surface roughness statistics and
the Ĝ values. Two scenarios are considered here. First, the non-dimensional effective
gap without wake drag is shown (Ĝ and Ĝmean). The effective gap including wake drag
approximated using (2.7) (Ĝ(2D wake) and Ĝ(2D wake),mean) is presented to enable an effective
comparison between experimental and analytical–numerical predictions including wake
drag.

(i) Ĝ and Ĝmean: Red markers and red dashed line in figure 11.
Note that the wake drag is not considered by (2.8), so the Ĝ will be smaller than the
actual gap introduced by surface roughness. The Ĝ is presented in figure 11 for the
four cases introduced earlier. In general, the Ĝ is approximately independent of Re,
and the mean effective gap Ĝmean is also shown in the figure.

(ii) Ĝ(2D wake) and Ĝ(2D wake),mean: Cyan markers and cyan dashed line in figure 11.
Since the Ĝ does not consider the wake drag, an additional parameter, Ĝ(2D wake), is
also shown in figure 11 for comparison. Ĝ(2D wake) predicts the effective gap when
two-dimensional wake drag (2.7) is also considered. We use Ĝ(2D wake),mean to denote
the mean Ĝ(2D wake). In general, Ĝ(2D wake),mean > Ĝmean as a larger gap is required
for agreement between experimental and analytical solutions when wake drag is
considered. We consider Ĝ(2D wake) a better estimate of the effective gap than Ĝ,
since it includes an estimate of the wake drag effect. The value of Ĝ(2D wake) increases
with Re, indicating that the effective gap increases with Re. A similar observation
was made for the rolling sphere by Nanayakkara et al. (2024). However, this trend
may be due to the limitations of using the two-dimensional wake drag.
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Figure 11. Non-dimensional effective gap (Ĝ = Geff /D) vs Re for four cylinders rolling on a smooth glass
panel: (a) D4.7-A2.2 cylinder; (b) D7.7-A1.3 cylinder; (c) D9.7-A1.0 cylinder; (d) D11.7-A0.9 cylinder.
Cylinder span L = 10.1 mm for all diameters. The measured roughness parameters of the cylinders are plotted
in the figure.

(iii) Roughness statistics ξp and ξp,1σ : Purple and green solid lines in figure 11.
The measured relative roughnesses ξp and ξp,1σ for each cylinder (including panel
roughness) are also shown in figure 11. For each case, Ĝ is of the same order of
magnitude as the measured relative roughnesses. This supports our hypothesis that
surface roughness produces the effective gap responsible for allowing the cylinder
to roll. Other roughness parameters (such as Ra and Rq, which are smaller than Rp)
were also considered; however, they were found to significantly underestimate Ĝ.

For the three larger cylinders (D7.7-A1.3, D9.7-A1.0 and D11.7-A0.9), ξp

provides a excellent approximation for Ĝ(2D wake),mean. However, ξp underestimates
the effective gap for the smallest cylinder (D4.7-A2.2), and better agreement is
obtained by using the parameter ξp,1σ , especially in the range Re < 80. The use of
different roughness statistics for the larger and smaller cylinders is reasonable, given
the qualitative differences in the surface textures of smaller and larger cylinders (see
§ 4.5.2).

It should also be noted that with increasing cylinder diameter, the range of Re of the
data increases while the AR decreases. The effects of varying AR on these results will be
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Figure 12. Detailed review of D4.7-A2.2 and D9.7-A1.0 cylinders. The direction of the cylinder rolling with
respect to the surface elements is indicated in the arrow at the top right corner. (a) Three-dimensional surface of
D4.7-A2.2 cylinder. Measurement Rp = 3.16 μm, Rq = 0.27 μm. (b) Three-dimensional surface of D9.7-A1.0
cylinder. Measurement Rp = 5.72 μm, Rq = 1.79 μm. (c) Section A–A of figure 12(a). The two-dimensional
surface profile of D4.7-A2.2 cylinder. (d) Section A–A of figure 12(b). The two-dimensional surface profile of
D9.7-A1.0 cylinder.

minimal as shown in § 4.2. In addition, (2.7) is only valid for 10 < Re < 200; as such, the
Ĝ beyond Re > 200 will be unreliable.

4.5.2. Comparison of surface textures of the two cylinders with different roughness
characteristics

In § 4.5.1, we found that different surface roughness parameters, ξp and ξp,1σ , give the best
agreement between experimental measurements and analytical–numerical predictions of
the drag coefficient for larger- and small-diameter cylinders, respectively. We propose that
this difference can be attributed to a difference in the surface finish between the small- and
large-diameter cylinders examined in this study.

Figures 12 compares the surface textures of a cylinder D4.7-A2.2 (figure 12a) with
cylinder D9.7-A1.0 (figure 12b). Two-dimensional excerpts of each three-dimensional
measurement are also shown in figures 12(c) and 12(d). Sections A–A were selected at
the location with the largest observed asperity.
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The surface textures of the two cylinders shown in figure 12 are notably different
from each other. Although both surfaces are highly directional, covered with regularly
spaced grooves and ridges, the height of these ridges differs significantly between the
two cylinders. The D4.7-A2.2 cylinder is relatively smooth (Rq = 0.27 μm), with a sparse
distribution of surface asperities that are much larger than the directional ridges. The ridges
on the D9.7-A1.0 cylinder are much larger and are of comparable height to the largest
asperities. Therefore, the D4.7-A2.2 cylinder will contact the wall via a sparse distribution
of large asperities, whereas the D9.7-A1.0 cylinder contacts the plane via the regularly
spaced large ridges. This difference in microscopic surface features is likely responsible
for the different roughness statistics required to predict the effective gap.

This observed variation of the roughness statistic that best describes the effective gap
between two types of cylinders further highlights that simple roughness measures such as
Rp do not capture all effects of surface roughness sufficiently. However, they do provide
a simple approximation of G/D within an order of magnitude, which may be useful for
some applications. Further detailed analysis of the surface roughness, especially while
under contact, is required to effectively capture the exact mechanism through which
surface-to-surface contact occurs.

Recall that the peak roughness Rp is an ensemble average of the largest peaks observed
over 4 or more different samples, each consisting of 24 combined measurements under
50× magnification. For the small-diameter cylinder (figure 12a), there are only two large
surface features in the sample area, whereas for the large-diameter cylinder (figure 12b),
there are a large number of large surface features (the directional grooves). Therefore,
fewer large peaks are sampled when measuring the small-diameter cylinder, as compared
with the large-diameter cylinders. We expect only the largest peaks to contact the wall and,
hence, govern the effective hydrodynamic gap. The use of Rp,1σ for the small-diameter
cylinders represents a ‘larger-than-average’ representative asperity contacting the surface.
For the small-diameter cylinder, as more measurements are obtained, a larger portion
of tall peaks could be captured and the average peak height (Rp) could be larger than
the reported value. However, obtaining a larger data set was found to be impractical
due to time constraints, and the use of Rp,1σ is a sufficiently accurate approximation to
represent the largest peaks in small cylinders or, more particularly, those with this type
of surface roughness pattern. Again, we note that one standard deviation peak roughness
for smaller cylinders was chosen based on the agreement between Ĝ values shown in
figure 11(a) and the discussion provided in § 4.5.1. If other roughness statistics were used,
such as two standard deviation peak roughness, it would significantly overestimate the gap
height. Therefore, one standard deviation peak height was chosen to yield an approximate
agreement between the gap height required by theory and roughness measurements for
smaller, smoother cylinders.

Note that for the rolling sphere problem, the r.m.s. roughness Rq was found to give the
best predictions of the drag coefficient (Nanayakkara et al. 2024). This is due to only a
small contact area for the sphere, whereas the cylinder contacts the plane over a line of
contact. Therefore, it is much more likely for the cylinder to contact a large asperity at
any given time, whereas the sphere may often be in contact with small asperities. Hence,
the effective gap for the cylinder is of the order of the peak roughness Rp, whereas the
effective gap for the sphere will generally be substantially less than the peak roughness.

In addition, the direction of the grooves on the cylinder surface (see figures 3(e), 3( f )
and 12) with respect to the rolling direction may influence the gap height. However, since
the gap is determined by the peak height of roughness asperities, and is larger than the
grooves, this effect is likely to be negligible.
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4.6. Other considerations
In addition to surface roughness effects, there are additional mechanisms that have not
been considered in the analytical analysis. These mechanisms could potentially influence
the disparities observed between experimental and analytical predictions.

First, the effects of rolling resistance have not been considered. Bikerman (1949)
and Halling (1958) have highlighted several mechanisms that are characterised as
rolling resistance on a rolling sphere, whereas Sharma & Reid (1999) discussed a
general case applicable for a rolling sphere or disc. Some of these mechanisms include
continuous collisions, elastic deformation, capillary action, hysteresis effects, inter-facial
slip and molecular adhesion. Exploring the contribution of each of these mechanisms
is beyond the scope of the present work; however, a summary of experimental results
is given here to highlight the potential contribution of rolling resistance to the total
drag coefficient. Typically, rolling resistance is expressed as a non-dimensional rolling
resistance coefficient, μroll. Experimental measurements of μroll ranges from 0.0002
for spheres rolling on relatively smooth panels (Cross 2016) to 0.04 for teethed gears
rolling on smooth panels in air (Cross 2015). For acrylic cylinders assuming a rolling
resistance of 0.001, if treated as a drag coefficient (C̄D,roll = F̄roll/(

1
2 DLρf Ū2)), where

F̄roll = μroll(WBg cos θ − F̄L). This C̄D,roll contribution would likely fall within the order
of 0.5. However, accurately determining the precise contribution of rolling resistance to
C̄D without a dependable analytical model is challenging. Developing such a model is not
within the scope of the present study and is recommended for future research.

Further, it should be highlighted that the rolling resistance force (F̄roll) is distinct from
the contact force (F̄C) described in § 2. The frictional force at the point of contact is
essential for the cylinder to roll without slip; however, it does no work on the cylinder
and therefore does not reduce the cylinder’s total kinetic energy. Instead, it transfers the
cylinder’s total kinetic energy between translation and rotation to maintain no slip.

Second, the analytical predictions using lubrication theory have assumed ideally smooth
surfaces. Surface roughness generally results in an increased resistance to fluid flow
through the lubrication film (Patir & Cheng 1978), which may result in an increased drag
force which has not been considered in the present study. Further analytical and numerical
studies would yield insights into the variation of the drag on a cylinder due to the rough
lubrication layer.

Third, it is important to highlight that the area used for measuring roughness can
influence the statistical data of roughness presented in this study. A larger area of
measurement may encompass more peaks, leading to more accurate Rp and Rp,1σ values.
To acquire roughness measurements that accurately represent the surfaces of the cylinders
and panels, a considerably larger set of measurements would be necessary. However, this
was considered impractical due to time constraints and other considerations.

In addition, experimental limitations will introduce errors into the presented results.
Local gradients on the panel surface and unevenness of cylinder diameters and spans lead
to perturbations to the cylinder rolling path. Dust deposited on the panel surface, and micro
air bubbles although (mostly) systematically removed, may also lead to systematic errors.

Finally, although surface roughness provides an effective gap for fluid flow allowing for
a finite effective drag coefficient, contact occurs via asperities. Lubrication theory predicts
infinite pressure peaks at these contact points, due to zero gap, which restricts cylinder
motion (‘the rolling paradox’). Goldman et al. (1967) argued that non-continuum flow
could be a probable mechanism that allows sphere motion, which may be applicable to
the rolling cylinder problem as well. Goldman et al. (1967) states that effects of surface
roughness, with larger length scales, should be evident prior to the effect of non-continuum
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Figure 13. Comparison of C̄D vs Re variation for a cylinder (D9.7-A1.0) with the aspect ratio of 1 and a
sphere, both with diameter D ≈ 9.7 mm on the glass panel. Least-squares lines have been fitted through the
data points corresponding to cylinders and spheres. The relative roughnesses are ξp = 5.8 × 10−4 for cylinders
and ξq = 6.1 × 10−5 for spheres. Data corresponding to isolated spheres for both spheres and cylinders are
also presented for comparison.

flow. Since we have observed the effects of surface roughness on C̄D, an inter-asperity level
gap height could be sufficiently small that lubrication theory is no longer valid and wall
slip corrections to the Navier–Stokes equation should be considered. On the length scale
of asperities, if fluid–wall slip occurs (non-zero fluid velocity at the wall–fluid boundary),
it will provide an alleviation of the large pressure peaks generated at the contact points,
which will allow cylinder motion. However, these considerations are beyond the scope of
the present study.

4.7. Comparison of Re vs C̄D of a rolling cylinder and rolling sphere with the same
diameter

Figure 13 illustrates the Re vs C̄D curves for a freely rolling cylinder with an aspect ratio
close to unity (1.07), and a sphere of similar diameter. The freely rolling cylinder has an
estimated gap–diameter ratio of G/D ≈ ξp = 5.8 × 10−4, whereas the rolling sphere has
an estimated gap–diameter ratio of G/D ≈ ξq = 6.1 × 10−5. In addition, numerical data
from Yang et al. (2022) for an isolated cylinder and from Johnson & Patel (1999) for an
isolated sphere are included for comparison.

The isolated cylinder and isolated sphere have a similar drag coefficient, whereas the
drag coefficient for the rolling cylinder is nearly double that of the rolling sphere for all
Re. Moreover, both of the freely rolling bodies exhibit much higher drag coefficients than
the isolated sphere and cylinder. The increase in drag for freely rolling bodies is largely
due to the gap-dependent drag, which characterises the effects of the lubrication flow in
the inner region.
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For the cylinder flow, the gap-dependent drag is given by (2.8), and is inversely
proportional to (G/D)1/2. For the sphere, the gap-dependent drag is given by (Goldman
et al. 1967; Houdroge et al. 2023)

CD,pred,gap,sphere = 1
Re

(−44.2 log10(G/D) + 34.0), (4.2)

and depends logarithmically on 1/(G/D). The gap-dependent drag coefficients for both the
cylinder and the sphere are indicated by solid lines in figure 13, and wake drag is indicated
by dashed lines. Here, the wake drag was estimated by subtracting the gap-dependent drag
from the measured drag coefficient, for both sphere and cylinder. The wake drag of the
cylinder and the sphere are similar to each other, within the Re range considered here.
For the cylinder, the gap-dependent drag is more prominent than the wake drag; however,
at a lower range of Re, the same could be true for the sphere as well (Re < 50). The
relative contribution of wake drag to gap-dependent drag on total drag will be dependent
on G/D. The G/D values are fixed in the examples shown here and under different
G/D, gap-dependent drag will be different for both the cylinder and sphere. However, the
gap-independent wake drag is similar in magnitude for both sphere and cylinder, which is
not surprising owing to their geometrical similarities.

With increasing Re, the wake drag and gap-dependent drag converge for the cylinder
and diverge for the sphere. The point of intersection between gap-dependent and
wake-dependent drag is Re ≈ 800 (approximated by extrapolating the observed trends)
for the cylinder and Re ≈ 80 for the sphere. Although the Re at which the transition from
gap-dependent drag dominant to wake drag dominant varies for the cylinder and sphere,
both display the same general trends of behaviour.

Although the drag coefficient for both spheres and cylinders approaches infinity in
the limit G/D → 0, the sphere C̄D diverges only logarithmically (4.2), whereas the
cylinder C̄D diverges much faster, with an inverse square-root (power law) behaviour
(2.8). Therefore, for a sufficiently small G/D, the cylinder will exhibit a much larger
drag coefficient than the sphere. Physically, we attribute this difference in behaviour to
the much larger contact region for the cylinder, which results in a larger region over which
lubrication forces act.

5. Wake–structure interactions

Due to the influence of wake shedding, the velocity of a freely rolling cylinder varies
in the down-slope (x) and cross-slope (y) directions and these variations have a direct
influence on C̄D. As such, we have conducted an analysis of the cylinder wake–structure
interaction to visualise the wake of a freely rolling cylinder, and its variation with Re,
AR and ξ . A UV-induced fluorescent dye visualisation technique was used to visualise
the wake structures behind the freely rolling finite-span cylinders. High-resolution (Nikon
D7100 and GoPro Hero 10) cameras were used to capture images of wake formations.

5.1. Background of wake–structure interaction of cylinders
An isolated stationary cylinder in free flow transitions from steady two-dimensional
to unsteady periodic shedding at Re = 46 (Bénard–von Kármán shedding), and further
three-dimensional instabilities occur at Re = 190 and Re = 260 (Taneda 1956; Barkley
and Henderson 1996; Williamson 1996; Henderson 1997). It is also well known that at
Re ≈ 1200, the shear layers separating from the cylinder surface becomes unstable, and
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the boundary layer becomes turbulent before separation beyond Re ≥ 3 × 105. Adding
cylinder rotation to this problem gives rise to a range of additional modes of shedding
and instabilities, dependent on Re, of which a thorough review has been presented by Rao
et al. (2015a). Interestingly, at a rotation rate (the ratio of the cylinder surface speed to the
relative free stream speed) of unity, the wake transitions are similar to those of an isolated
non-rotating cylinder.

The presence of a plane or a boundary near the cylinder acts to stabilise the flow (Taneda
1965), and delays the onset of vortex shedding to Re = 100 for G/D ≤ 0.3 (Lei, Cheng
& Kavanagh 1999). At much smaller gap ratios (G/D ≤ 0.1), the vortices are generated
from the interaction between the separating shear layer at the top of the cylinder and the
secondary vorticity formed by the wall boundary layer (Stewart et al. 2010a).

The addition of rotation to this system further complicates the flow dynamics. Stewart
et al. (2010a) and Rao et al. (2011) found that the direction of rolling, prograde or
retrograde, acts to either destabilise the flow or delay instabilities, respectively. Houdroge
et al. (2020) investigated numerically the wake of a freely rolling cylinder with a small gap
(G/D = 0.005), and discovered that as Re increases, the cylinder wake becomes unsteady
and leads to cylinder oscillations. Previous studies (Stewart et al. 2010a; Rao et al. 2011;
Houdroge et al. 2017) have found that a uniformly rolling cylinder transitions from steady
to unsteady vortex shedding at Re = 88. Rao et al. (2015b) found numerically that the
presence of the wall alters the centreline symmetry of the wake, and as such significantly
modifies the transitions. When the gap height approaches small values (G/D ≈ 0.2), they
observed that the steady flow transitions to mode E instability prior to the transition to
unsteady base flow. At such gap heights, more common instabilities, such as modes A and
B, were not observed in the Re < 400 range. We note that mode A is three-dimensional
spanwise instability with an approximate four-diameter wavelength, whereas mode B has
a shorter (one-diameter) spanwise wavelength (Williamson 1996).

Pirozzoli et al. (2012) investigated the flow around a wheel of AR = 0.4 at various
Re, and observed steady laminar flow up to Re ≈ 300, followed by unsteady planar
symmetric flow, with the shedding of hairpin vortices up to Re ≈ 400. The first transition
from periodic, planar symmetric flow to quasi-periodic, asymmetrical flow was found
to occur at Re ≈ 500, with further increase in Re leading to increase in turbulence in
the wake of the rolling cylinder. Pirozzoli et al. (2012) also attributed the formation of
the hairpin vortices to a combination of spanwise, streamwise and wall-normal vorticity
around the rolling cylinder. Through iso-surface vorticity visualisations, they have shown
that spanwise vorticity forms the upper part of the hairpin vortices, whereas streamwise
vorticity provides the legs and wall-normal vorticity contributing to the necks. Although
these critical transitions have been observed numerically for a cylinder of AR = 0.4,
variations in cylinder AR may influence the Re at which these transitions occur. We
experimentally investigate these phenomena further in the present study.

Wang et al. (2020) studied numerically (three-dimensional) the wake of an infinite
cylinder near a moving wall, at G/D = 0.2 and 150 < Re < 300. They observed three
different modes of shedding and concluded that the transition to chaotic flow at high Re
occurs due to the strong nonlinear interaction between these modes with different spanwise
wavelengths. We expect similar spanwise modes for the large AR cylinders for the freely
rolling case studied here; however, cylinder end effects will also contribute to the wake
structures formed.

Houdroge et al. (2020) reported on the Strouhal number, St, of two-dimensional freely
rolling cylinders, and observed St decreasing from 0.065 at Re = 100 to 0.051 at Re = 300
for G/D = 0.0003125. With increasing G/D, St was observed to increase at a given Re.
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(e)

(b)(a)

(c) (d )

(g) (h)

(i) ( j)

( f )

Figure 14. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique for a
cylinder with AR ≈ 1 with Re ranging from 79–598: (a) Re = 79(±1), (b) Re = 95(±1), (c) Re = 116(±1),
(d) Re = 134(±2), (e) Re = 157(±2), ( f ) Re = 275(±3), (g) Re = 317(±4), (h) Re = 368(±4), (i) Re =
469(±6) and ( j) Re = 598(±9). Images were captured using a GoPro camera and post-processed. The cylinder
is rolling from right to left. The video recordings are provided as supplementary movie 1 available at https://
doi.org/10.1017/jfm.2024.833.

A similar observation was made for the three-dimensional case, with a weak dependence
on the mass ratio of the cylinders. Stewart et al. (2010a) also observed St for the
two-dimensional cylinders within the same range, with St increasing with decreasing
rotation rate of the cylinder. The largest St(≈ 0.1) was observed for a non-rotating cylinder
at 160 < Re < 200. Experimental flow visualisations obtained in this study are compared
against these numerically observed values.

5.2. Variations in the cylinder wake with Re
Figure 14 displays the evolution of the wake behind a freely rolling cylinder with a fixed
AR ≈ 1, as Re is increased. As observed in figures 14(a) and 14(b) at lower Re, the wake of
the cylinder is steady and attached. The shear layer separating from the top of the cylinder
forms a recirculation zone comprising a counter-rotating vortex pair which is attached to
the cylinder. As the cylinder moves down the panel, this recirculation zone oscillates,
causing some minor fluctuations in the cylinder path. Figure 14(c) presents the first
instance that we observed unsteadiness in the wake of the cylinder. This corresponded to
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Re = 104(±2) Re = 134(±2)Re = 89(±1)Re = 50(±1) Re = 45(±1)Re = 28(±1)

(e)(b)(a) (c) (d ) ( f )

Figure 15. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Comparison of the near wake of a freely rolling cylinder D4.7-A10.7 with Re ranging from 28–134, for a
constant D (4.69 mm). Cylinder rolling from right to left. The video recordings are provided as supplementary
movie 2 available at https://doi.org/10.1017/jfm.2024.833.

the detachment of the shear layer from the top of the cylinder to form hairpin vortex loops.
This image indicates that the first critical transition to unsteady periodic flow occurs in the
range 95 < Re < 116. The observed hairpin loop appears symmetrical. From figures 14(d)
to 14( j) as Re is increased, the wake of the cylinder becomes progressively more unstable
and chaotic. The frequency of shedding of hairpin vortices also increases with Re, and we
observe some degree of cross-slope movement, generated by this shedding.

Figure 15 visualises the near-wake of a freely rolling cylinder D4.7-A10.7, while Re
was varied. As the Re is increased from 28–134, the near wake becomes more chaotic. At
Re = 28, the wake is shorter and no hairpin structures are observed. At Re = 45, we note
one hairpin-like structure with increased vorticity in the remaining wake as well. Unlike
the AR = 1 case shown in figure 14, for this cylinder with a higher AR, the transition to
unsteady periodic shedding of hairpin vortices occurs at a much lower Re (≈45). This
indicates that the cylinder AR plays an important role in the wake characteristics of a
rolling cylinder.

In addition to the streamwise hairpin vortices, there is an increase in spanwise vorticity
with increasing Re. Following the transitions to periodic shedding of hairpin vortices first
observed at Re = 45, two distinct structures are observed at Re = 50 and Re = 89. As Re
is increased further, the wake becomes more chaotic and distinct hairpins are no longer
visible; rather, multiple vortices are observed. As discussed by Wang et al. (2020), the
nonlinear interaction of different spanwise modes may contribute to the evolution of the
wake to the chaotic state observed at Re = 134. The shape of the near wake also changes
with increasing Re. At low Re (28 < Re < 50), the near wake appears to be shorter than
the span of the cylinder. However, at higher Re, the near-wake vortices are observed across
its full span.

5.3. Cylinder wake variations with AR
In this section, we investigate the variation of a cylinder wake with AR. The wake
of a three-dimensional cylinder (limited span) differs from that of a two-dimensional
cylinder (infinitely long) primarily due to the flow around the ends, more commonly
categorised as end effects. End effects are an important consideration for limited-span
bodies, where a pressure difference between opposing sides drives the fluid around its
ends. To visualise these effects, the wake of a cylinder with a fixed D ≈ 4.7 mm and with
varying AR(1.01–29.84) was visualised while rolling down a plane at a fixed angle of
inclination.
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Re = 101(±1)
AR = 19.72

Re = 113(±2)
AR = 29.84

Re = 104(±1)
AR = 10.68 

Re = 117(±2)
AR = 4.29 

Re = 67(±1)
AR = 2.16

Re = 79(±1)

AR = 1.01

Re = 101(±1)
AR = 19.72

Re = 104(±1)
AR = 10.68

Re = 117(±2)
AR = 4.29 

Re = 67(±1)
AR = 2.16

Re = 79(±1)

AR = 1.01

(e)

(b)(a)
(c)

(d )

( f )

Figure 16. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Comparison of the near wake of a freely rolling cylinder, for different AR ranging from 1.01 to 29.84, for a
constant D (4.7 mm) and θ = 14◦. Cylinder rolling from right to left. White arrows indicate the shedding of a
pair of vortices per shedding cycle. The video recordings are provided as supplementary movie 3 available at
https://doi.org/10.1017/jfm.2024.833.

Figure 16 shows the images of the near wake of the cylinders. First, even at the same
angle of inclination, the induced Re of the cylinders generally increases with increasing
AR. The smaller AR cylinder displays a steady attached wake whereas the larger AR
cylinders display a high degree of unsteady shedding of hairpin vortices and turbulence in
the wake. The wakes of the cylinders are clearly distinct, indicating that the cylinder AR
has a significant effect on the cylinder wake shedding.

Similar to the observations made by Inoue & Sakuragi (2008) for an isolated stationary
cylinder, we observe a range of patterns within the wake as the AR of the cylinder is
varied. One important difference to the observations made by Inoue & Sakuragi (2008)
is that the wake is one-sided, due to the presence of the plane wall. However, similar to
Inoue & Sakuragi (2008), for a low Re (67–113), we observe a counter-rotating vortex pair,
which transitions to periodic shedding of hairpin vortices (referred to as type IV shedding
by Inoue & Sakuragi 2008) as AR is increased. As AR is further increased to 19.72 and
29.84, we observe some remnants of oblique vortex shedding (type I) with a combination
of hairpin vortices. Spanwise wavelengths are also visible for the high AR cylinders; at
AR = 29.84, two pairs of hairpins are shed per shedding cycle. This pair of hairpins is
shown in figure 16 using two white arrows for the AR = 29.84 case.

Another key observation that can be made from figure 16 is the streamwise length of
the near wake, compared with its span, decreasing with increasing AR. For the first three
cases (AR = 1.01, 2.16, 4.29), we note that the near wake spans the full length of the
cylinder. However, at the higher AR (AR = 10.68, 19.72, 29.84), the near wake gradually
becomes narrower compared with the cylinder span. That is, we see more fluid flow
around the ends to the low-pressure region downstream of the cylinder. This phenomenon
could reduce the pressure differential between the front and rear of the cylinder, reducing
pressure drag. The near wake of the high-AR cylinders is also increasingly turbulent, with
multiple hairpin-like structures observed in the wake. For the lower-AR cases, the near
wake comprised a pair of attached counter-rotating vortices, with no hairpin structures
shed into the wake.
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(a)

(b)

Figure 17. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique of the
cylinder D9.7-A1.0: (a) glass panel (Rp = 0.308 μm) at Re = 275(±3), St = 0.13; (b) frosted glass panel (Rp =
5.96 μm) at Re = 277(±3), St = 0.13. Comparison of flow structures between glass panel and frosted glass
panel Rp roughness of the frosted glass panel is approximately 20 larger than the glass panel. The cylinder is
rolling from right to left.

5.4. Cylinder wake variations with ξ

To establish the effects of surface roughness on the cylinder wake, visualisations of
the same cylinder (D9.7-A1.0) rolling on two panels with different surface roughnesses
were obtained. Figure 17 shows the wake of the cylinder rolling on a glass panel
(Rp = 0.308 μm) and a frosted glass panel (Rp = 5.96 μm), which is 20 times rougher
than the glass panel. As observed in the figure, the wake of the cylinders shows a high
degree of similarity and the St are also nearly identical. This observation indicates that
the panel surface roughness, or the gap imposed by roughness, has little influence on the
wake of a rolling cylinder. The same observation was made from the numerical studies of
Merlen & Frankiewicz (2011) and Houdroge et al. (2020).

5.5. Temporal evolution of the wake of a cylinder
The wake of a freely rolling finite-span cylinder is complex, varying with cylinder Re
and AR. At higher Re, the wake also exhibits a high degree of unsteadiness which
increases with Re, and the hairpin vortices are shed at a higher frequency. To further
investigate this unsteadiness, we have captured the temporal evolution of the wake of three
cylinders under varied flow conditions. First, in figure 18, we present snapshots taken of a
cylinder D4.7-A10.7 at Re = 89(±1). Then, the flow around a larger cylinder D9.7-A5.16
(D = 9.7 mm and AR = 5.16) at Re = 205(±3) is presented. Finally, the flow around a
cylinder D19.7-A0.5 at a much higher Re = 558(±9) is shown to highlight the increased
unsteadiness in the wake at higher Re.

Figure 18 depicts the temporal evolution of the near and far wake of a freely rolling
cylinder D4.7-A10.7 at Re = 89(±1). Snapshots were taken at varied time intervals
over three fundamental shedding cycles, both dimensional (t) and non-dimensional (t∗ =
tŪ/D) timescales have been used to describe the flow. At t = 0 s (t∗ = 0), we observe
the initial development of the vorticity within the near wake of the cylinder. Two distinct
hairpin structures are observed developing, with their corresponding ends attached to the

998 A39-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

83
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.833


Effects of surface roughness on finite-span cylinders

t = 0 s t = 1 s t = 2 s t = 3 s

t = 4 s t = 6 s

(e)

(b)(a) (c) (d )

( f )

Figure 18. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Temporal evolution of the wake of a freely rolling cylinder D4.7-A10.7 at Re = 89(±1). The images depict
the evolution of the wake from t = 0 s (t∗ = 0) to t = 6 s (t∗ = 23.3). Three hairpin vortices are shed into
the wake within this time period. Cylinder rolling from right to left. The video recordings are provided as
supplementary movie 4 available at https://doi.org/10.1017/jfm.2024.833.

ends of the cylinder and joined in the middle. The vorticity generated by end effects
appears to feed each of the hairpins developed. At t = 1 s (t∗ = 3.9) and t = 2 s (t∗ = 7.8),
the two structures grow in size and move further away from the cylinder surface. At
t = 3 s (t∗ = 11.6), the individual hairpins intertwine and form a single larger hairpin
structure, which is detached from the cylinder and shed into the wake at t = 4 s (t∗ = 15.5).
At the same time, we note that another set of hairpin vortices are being developed, grow
and join from t = 3 s (t∗ = 11.6) to t = 4 s (t∗ = 15.5) and shed into the wake at t = 6 s
(t∗ = 23.3). At t = 6 s (t∗ = 23.3), three such vortices are observed in the far wake of the
rolling cylinder, and another is still attached to the rear end of the cylinder. These shed
vortices move away from the panel and dissipate downstream of the cylinder. In addition,
we note that in figure 14, the transition to unsteady vortex shedding occurs at Re ≈ 100;
however, at this larger AR, this transition appears to occur at a lower Re.

Figure 19 depicts the temporal evolution of the near and far wake of a freely rolling
cylinder D9.7-A5.16 at Re = 205(±3). This case is at a higher Re than figure 18,
with a larger D and half the AR. Two dyes with different shades of green were used
on either end of the cylinder, to visualise the interaction between opposite vorticity
generated by opposing ends of the cylinder. We observe that the wake is more chaotic
than figure 18; however, hairpin vortices are shed periodically. The streamwise distance
between consecutive hairpins is also reduced. The intertwining of the two opposite vortices
generated by each end of the cylinder is more clearly observed in this figure. At t = 0 s
(t∗ = 0), we observe the two dyes are coating each end of the cylinder, but as time
progresses, there is significant mixing induced by the rolling motion of the cylinder. There
is some degree of separation between the two dyes, even in the shed vortices, but as the
wakes move downstream, there appears to be a remnant of a single colour.
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t = 0 s t = 1 s t = 2 s t = 3 s

t = 4 s t = 5 s

t = 7 s

(e)

(g)

(b)(a) (c) (d )

( f )

Figure 19. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Temporal evolution of the wake of a freely rolling cylinder D9.7-A5.16 (D = 9.7 mm and AR = 5.16) at
Re = 205(±3). The images depict the evolution of the wake from t = 0 s (t∗ = 0) to t = 7 s (t∗ = 16.1). Two
dyes of different shades of green have been used to indicate opposite vorticity generated due to the rolling
motion. Cylinder rolling from right to left. The video recordings are provided as supplementary movie 4
available at https://doi.org/10.1017/jfm.2024.833.

Figure 20 depicts the temporal evolution of the near and far wake of a cylinder
D19.7-A0.5 at Re = 558(±9). Shedding of hairpin vortices is pseudo-periodic, with
varying angles to the streamwise direction. The cylinder wake is chaotic and clear hairpin
structures are no longer observed. However, some resemblance of hairpin structures is
noted. The frequency of shedding is further increased compared with figures 18 and
19, and the streamwise distance between each vortex is also reduced. As the vortices
move away from the cylinder, they grow in size and dissipate downstream. The vortical
structures numerically visualised by Pirozzoli et al. (2012) at Re = 500 for a cylinder with
a similar AR were compared against the structures observed in figure 20. They were in
excellent agreement with the structures observed here. They observed numerically that
the alternately shed vortices under these conditions have a tendency to bend to alternating
sides in the cross-slope direction, which also corresponds to peaks in the frequency spectra
of force coefficients. The shedding of these vortices can be used to calculate the St of the
cylinders, which is presented in § 5.5.1.
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t = 0 s t = 2 s t = 4 s

t = 6 s

t = 8 s

6

(e)

(b)(a) (c)

(d )

Figure 20. Plan view of experimental flow visualisation using UV-induced fluorescent dye technique.
Temporal evolution of the wake of a freely rolling cylinder D19.7-A0.5 at Re = 558(±9). The images depict
the evolution of the wake from t = 0 s (t∗ = 0) to t = 8 s (t∗ = 12.1). Cylinder rolling from right to left. The
video recordings are provided as supplementary movie 4 available at https://doi.org/10.1017/jfm.2024.833.

It should be noted that in experimental visualisations, even a small perturbation in the
initial conditions can break the wake symmetry. It has been difficult to capture a purely
symmetrical wake, due to cylinder oscillations and the lateral movement across the plane.
Pirozzoli et al. (2012) observed a symmetrical wake up to Re = 400; however, we have not
been able to observe that experimentally.

5.5.1. Strouhal number (St) calculations
The shedding of hairpin vortices into the wake of a freely rolling cylinder allows the
calculation of the Strouhal number (St = fD/Ū). Here, f is the vortex shedding frequency,
D is the cylinder diameter and Ū is the mean down-slope velocity.

Figure 21 depicts the variation of cylinder St with Re for cylinders of varied aspect
ratios (0.5–29) and diameters. The numerical results of Houdroge et al. (2020) for a
two-dimensional cylinder with G/D = 0.0003125 and two-dimensional results of Stewart
et al. (2010a) for G/D = 0.004 are also shown in the figure. Three-dimensional numerical
St determined from the peak St from the lift coefficient time histories given by Pirozzoli
et al. (2012) for a cylinder with AR = 0.4 are also indicated in the figure for comparison.

The experimental St of the present study shows a clear increasing trend with
increasing Re. There is general agreement between the results of the present study
and numerical results in the range 100 < Re < 200, but diverge beyond Re > 200.
Experimental results indicate an increasing St with increasing Re, whereas the
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Figure 21. Comparison of St vs Re variation for a freely rolling cylinder with varied aspect ratios (≈0.5–30)
and diameters. For experimental data, Stewart et al. (2010a) and Yang et al. (2023) the St of vortex shedding
in shown. For Houdroge et al. (2020) and Pirozzoli et al. (2012) the St of oscillations is indicated. Numerical
predictions from previous literature have also been plotted for comparison.

numerical studies predict a decrease in St. Three-dimensional effects, which are not
effectively captured in the two-dimensional numerical studies by Houdroge et al.
(2020) and Stewart et al. (2010b), likely play a significant role in this observed
divergence. As observed in figure 16, higher AR cylinders display increased unsteadiness
in the wake and pronounced wake shedding, even at the same angle of panel
inclination and at similar Re. Experimental data presented in figure 21 contain a
large range of ARs (≈0.5–30) and cylinder diameters, which also likely contributes
to the divergence, and also the scatter observed in the figure. Yang et al. (2022)
numerically observed a similar increase in St from 0.12 to 0.22 for an increase of Re
from 50 to 500 for an isolated three-dimensional cylinder for similar AR (also shown in
figure 21). We anticipate that the introduction of a plane will alter the shedding behaviour,
but will retain the general Re dependence. Therefore, the observed increase in St with Re
in figure 21 is generally within the expected range of St for a three-dimensional cylinder.

Given the complex coupling of contact forces, fluid forces, frictional forces,
three-dimensional effects, gap effects and other minor experimental factors such as plate
unevenness, dust and air bubbles, the mechanisms that affect cylinder motion and wake
shedding are difficult to quantify. Experimentally, we cannot measure the forces acting
on a freely rolling cylinder; as such, a detailed explanation of the observed behaviour is
not presented here. We simply present the measured St data, which highlight the general
behaviour of a freely rolling cylinder. We acknowledge that some of the experimental
factors mentioned earlier will affect the presented results. A detailed three-dimensional
numerical investigation (including a numerical stability analysis), with sufficiently small
gap ratios, of the effects of AR and Re on St is required to obtain a deeper understanding
of these observed behaviours, and the mechanisms contributing to the observed periodic
fluctuations of the freely rolling cylinder problem. To the best of the authors’ knowledge,
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such an investigation has not yet been reported in the current literature, and it is considered
to be beyond the scope of the present study, which we recommend for future work.

6. Conclusions

We have investigated the effects of surface roughness on the time-mean drag coefficient
(C̄D) of a finite-span cylinder rolling, without slip, down an inclined plane due to gravity.
In addition, we have also considered the effects of time-mean Reynolds number (Re),
cylinder aspect ratio (AR), wake dynamics and the potential influence of cavitation on
cylinder C̄D.

The most noteworthy discovery was the dependence of the C̄D vs Re relationship
on surface roughness. Increased roughness, represented by the parameter ξ , resulted in
reduced C̄D, aligning with lubrication theory predictions, assuming that roughness creates
an effective gap between the cylinder and the plane. Both cylinder and panel surface
roughness contributed to C̄D variations. For instance, when ξ increased by a factor of 10,
approximate C̄D reductions of 65 % and 60 %, at Re values of 100 and 150 were observed.

The experimental results of the study aligned well with the three-dimensional analytical
model of Teng et al. (2022). This model divided C̄D into two components: gap-dependent
drag (CD,pred,gap(3D)) and wake drag (CD,pred,wake(3D)). CD,pred,gap(3D) can be predicted
using three-dimensional lubrication theory (2.8) and is a function of Re, AR and ξ . Here
CD,pred,wake(3D) should be calculated numerically, and depends on Re and AR. Teng et al.
(2022) do not provide the numerical estimates of CD,pred,wake(3D) but Terrington et al.
(2023) provide results for a two-dimensional cylinder CD,pred,wake(2D) (2.7), which have
been used as baseline values in this study to enable effective comparison. It is assumed
that CD,pred,wake(3D) will be of the same order of magnitude as CD,pred,wake(2D).

Matching drag coefficients for an ideally smooth cylinder with an imposed gap with
rough cylinders in contact with the plane demonstrated agreement between the effective
gap ratio (Ĝ = Geff /D) and the measured relative peak roughness (ξp = Rp/D). For the
comparatively smoother D ≈ 4.7 mm cylinders, Rp,1σ /D was observed to better represent
the value of Ĝ. Differences in the value of Ĝ and measured roughness between cylinders
were attributed to limitations in using simple statistical roughness measures. Smaller
cylinders were generally smoother with a sparse distribution of tall asperities, whereas
larger cylinders exhibited more uniform directional asperities, leading to discrepancies in
estimated effective gaps. However, it was promising that the gap required by lubrication
theory can be estimated using a simple roughness statistic such as Rp roughness, with a
high degree of accuracy. This agreement provides evidence to the assertion that surface
roughness is a primary mechanism that allows cylinder motion under solid–solid contact,
while providing a finite gap required for lubrication theory, within the Re range considered
in this study.

The C̄D vs Re curves for individual panels and cylinders diameters corresponding to
distinct ξ values were observed to converge with increasing Re. This observation can be
explained by using the decomposed version of the total drag coefficient. The contribution
to total drag from gap-dependent drag decreases with increasing Re whereas the wake
drag remains relatively constant. As such, at higher Re, wake drag begins to dominate.
The observed convergence at high Re is due to this effect, where the gap-dependent drag
is small and the wake drag is more prominent.

The analytical predictions of Teng et al. (2022) predicts CD,pred to decrease with
decreasing AR; however, the experimental results of the present study indicate that C̄D
remains relatively constant to variations in cylinder AR. This may be due to the effects
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of AR on the wake drag coefficient, which are currently unknown. Alternatively, the
increased contact area with increasing AR may result in a larger effective gap. The drag
coefficient decreased with increasing AR beyond AR > 6, due to imperfect contact between
the cylinder and panel for large AR cylinders.

Calculation of the minimum pressure in the gap region using a formula derived by
Merlen & Frankiewicz (2011) for the experiments conducted in water suggests that
cavitation is unlikely to occur for our range of experimental parameters. The relative
agreement of the observed trends between C̄D for foam cylinders rolling in the air to
acrylic cylinders in the water suggested cavitation was not a necessity for cylinder motion,
contrary to previous suggestions (Merlen & Frankiewicz 2011), as cavitation does not
occur in the air.

Investigation of the wake–structure interaction of a freely rolling cylinder with AR
approximately 1 indicated that the wake becomes increasingly unsteady with increasing
Re. The first transition to unsteady periodic shedding of hairpin vortices was observed at
Re ≈ 100, with the wake prior to the transition being steady with a pair of counter-rotating
vortices attached to the cylinder. Following this critical transition, the shedding of hairpin
vortices becomes prominent with increasing Re, and the wake becomes increasingly
chaotic and turbulent.

Cylinder AR was also found to influence critical transitions to unsteady flow. Decreasing
AR was observed to delay this first critical transition. A cylinder with AR = 1.01 was
observed to transition at Re ≈ 100 whereas a cylinder with AR = 10.68 was observed to
transition at Re ≈ 50. Visualisation of the transient variations of the wake of a cylinder
highlighted the interaction of opposite vortices generated from the end effects which merge
to form the hairpin vortices that are shed into the wake. Cylinder wake shedding St was
observed to increase with increasing Re, and general agreement with previous numerical
results was observed at Re ≈ 100, whereas experimental results diverged from numerical
predictions at higher Re. This divergence was attributed to three-dimensional effects which
were not effectively captured in two-dimensional numerical investigations.

Overall, further research is needed to understand the effects of rolling resistance
generated by energy losses due to collision between asperities, or other mechanisms
(such as interfacial slip or hysteresis) and the contribution that makes to the overall drag
coefficient. In addition, the three-dimensional effects of wake drag should be studied
further, and the development of these mechanisms may lead to a more comprehensive
model to describe cylinder motion.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.833.
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Effects of surface roughness on finite-span cylinders

Panel type Panel thickness (mm) Max. deviation (mm) Max. gradient

Glass panel 10 0.05 0.10 %
Frosted glass panel 10 0.06 0.18 %
Acrylic panel 15 0.25 0.30 %
Ceramic panel 15 0.10 0.22 %
Rough ceramic panel 15 0.34 0.30 %

Table 1. Panel types used as inclined planes are detailed here. Max. deviation is the maximum absolute
deviation of surface height measurements from the mean plane. Max. gradient is the maximum cross-slope
gradient over a minimum cross-slope measurement distance of 50 mm.

Cylinder material Cylinder density Cylinder diameter (mm) Cylinder spans (mm) AR Identifier
ρs(g cm−3)

Acrylic 1.2 4.70 ± 0.02 (0.4 %) 2.34 ± 0.02 (0.8 %) 0.50 D4.7-A0.5
4.68 ± 0.01 (0.5 %) 3.52 ± 0.01 (0.5 %) 0.75 D4.7-A0.8
4.69 ± 0.01 (0.5 %) 4.74 ± 0.02 (0.5 %) 1.01 D4.7-A1.0
4.71 ± 0.05 (1.0 %) 5.87 ± 0.02 (0.3 %) 1.25 D4.7-A1.3
4.70 ± 0.02 (0.4 %) 7.04 ± 0.03 (0.4 %) 1.50 D4.7-A1.5
4.70 ± 0.02 (0.4 %) 8.30 ± 0.11 (1.3 %) 1.77 D4.7-A1.8
4.69 ± 0.02 (0.4 %) 10.11 ± 0.03 (0.3 %) 2.16 D4.7-A2.2
4.68 ± 0.03 (0.3 %) 14.11 ± 0.02 (0.1 %) 3.01 D4.7-A3.0
4.69 ± 0.03 (0.7 %) 20.11 ± 0.05 (0.2 %) 4.29 D4.7-A4.3
4.68 ± 0.01 (0.5 %) 23.52 ± 0.02 (0.1 %) 5.03 D4.7-A5.0
4.69 ± 0.01 (0.5 %) 28.23 ± 0.08 (0.3 %) 6.02 D4.7-A6.0
4.67 ± 0.02 (0.6 %) 32.92 ± 0.05 (0.1 %) 7.05 D4.7-A7.0
4.68 ± 0.02 (0.3 %) 35.37 ± 0.12 (0.4 %) 7.56 D4.7-A7.6
4.68 ± 0.03 (0.5 %) 37.66 ± 0.05 (0.2 %) 8.05 D4.7-A8.1
4.69 ± 0.03 (0.6 %) 50.09 ± 0.07 (0.1 %) 10.68 D4.7-A10.7
4.69 ± 0.02 (0.4 %) 92.48 ± 0.06 (0.1 %) 19.72 D4.7-A19.7
4.69 ± 0.01 (0.3 %) 139.93 ± 0.08 (0.1 %) 29.84 D4.7-A29.8

Acrylic 1.2 5.70 ± 0.02 (0.4 %) 10.10 ± 0.02 (0.2 %) 1.77 D5.7-A1.8
7.70 ± 0.03 (0.4 %) 10.10 ± 0.04 (0.4 %) 1.31 D7.7-A1.3
9.70 ± 0.05 (0.5 %) 10.09 ± 0.03 (0.3 %) 1.07 D9.7-A1.0
11.69 ± 0.05 (0.4 %) 10.08 ± 0.08 (0.8 %) 0.86 D11.7-A0.9
15.70 ± 0.03 (0.2 %) 10.07 ± 0.02 (0.2 %) 0.64 D15.7-A0.6
19.73 ± 0.05 (0.2 %) 10.08 ± 0.03 (0.3 %) 0.51 D19.7-A0.5
7.78 ± 0.04 (0.6 %) 7.73 ± 0.07 (1.1 %) 1.01 D7.7-A1.0

Foam 0.04 5.08 ± 0.05 (1.3 %) 10.31 ± 0.10 (1.1 %) 2.03 F-D5.7-A2.0
7.53 ± 0.05 (0.8 %) 10.15 ± 0.08 (0.9 %) 1.35 F-D7.5-A1.3
10.06 ± 0.03 (0.4 %) 10.09 ± 0.08 (0.9 %) 1.00 F-D10.1-A1.1

Table 2. Specifications of cylinders used for experimental evaluation. Each cylinder diameter corresponds to
a set of 10 individual cylinders, and 3 measurements of cylinder diameter and 1 measurement of cylinder span
was measured for each cylinder. The mean values of diameter and span including the error for each set is shown
above. Refer to Appendix B for details on error analysis.

Appendix A. Measurement data tables

The properties of panels and cylinders used during the experimental process are described
in tables 1 and 2. Tables 3 and 4 present the measured surface roughness values.
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Panel type Ra Rp Rp(μ + 1σ) Rq
(μm) (μm) (μm) (μm)

Glass 0.023 ± 0.005(20 %) 0.308 ± 0.155(50 %) 0.46 0.029 ± 0.006(19 %)

Acrylic 0.02 ± 0.01(53 %) 0.57 ± 0.20(35 %) 0.77 0.04 ± 0.02(63 %)

Ceramic 0.70 ± 0.07(11 %) 3.43 ± 1.38(40 %) 4.81 0.91 ± 0.10(11 %)

Frosted glass 1.86 ± 0.12(6 %) 5.96 ± 1.03(17 %) 6.98 2.33 ± 0.15(6 %)

Rough ceramic* 13.96 ± 2.41(17 %) 33.18 ± 5.47(16 %) 38.65 17.06 ± 2.64(15 %)

Table 3. Measured surface roughness values of panels. Values presented are the arithmetic mean of five
individual measurements. The measurement area of one measurement is 0.25 × 0.25 mm2 (12 measurements
under 50 × 1 magnification joined together).

*Measurement area of 10 × 10 mm2 was used for the rough ceramic panel which was obtained by stitching
together 100 profile scans using a stylus profilometer. No waviness correction was used.

D L AR Ra Rp Rp,1σ Rq Id
(mm) (mm) (μm) (μm) (μm) (μm)

4.70 2.34 0.50 0.25 ± 0.08(33 %) 6.59 ± 3.23(49 %) 9.82 0.34 ± 0.11(32 %) D4.7-A0.5
4.68 3.52 0.75 0.16 ± 0.14(91 %) 2.04 ± 0.34(17 %) 2.38 0.21 ± 0.17(80 %) D4.7-A0.8
4.69 4.74 1.01 0.09 ± 0.03(31 %) 2.16 ± 0.36(17 %) 2.52 0.13 ± 0.04(33 %) D4.7-A1.0
4.71 5.87 1.25 0.17 ± 0.01(9 %) 2.78 ± 1.66(59 %) 4.44 0.23 ± 0.03(13 %) D4.7-A1.3
4.70 7.04 1.50 0.17 ± 0.01(8 %) 3.27 ± 1.95(60 %) 5.22 0.23 ± 0.02(10 %) D4.7-A1.5
4.70 8.30 1.77 0.29 ± 0.06(19 %) 2.50 ± 1.63(65 %) 4.13 0.36 ± 0.07(21 %) D4.7-A1.8
4.69 10.11 2.16 0.26 ± 0.10(40 %) 2.88 ± 1.17(41 %) 4.06 0.33 ± 0.12(36 %) D4.7-A2.2
4.68 14.11 3.01 0.10 ± 0.02(19 %) 2.91 ± 1.30(45 %) 4.21 0.14 ± 0.03(18 %) D4.7-A3.0
4.69 20.11 4.29 0.61 ± 0.25(42 %) 3.58 ± 0.43(12 %) 4.02 0.73 ± 0.29(39 %) D4.7-A4.3
4.68 23.52 5.03 0.06 ± 0.01(17 %) 1.65 ± 0.36(22 %) 2.01 0.09 ± 0.02(22 %) D4.7-A5.0
4.69 28.23 6.02 0.10 ± 0.05(48 %) 1.77 ± 0.34(19 %) 2.11 0.15 ± 0.06(39 %) D4.7-A6.0
4.67 32.92 7.05 0.13 ± 0.06(44 %) 2.03 ± 0.38(19 %) 2.41 0.20 ± 0.09(46 %) D4.7-A7.0
4.68 35.37 7.56 0.36 ± 0.08(23 %) 3.93 ± 1.50(38 %) 5.43 0.51 ± 0.09(18 %) D4.7-A7.6
4.68 37.66 8.05 0.12 ± 0.05(40 %) 2.12 ± 1.39(66 %) 3.51 0.18 ± 0.07(38 %) D4.7-A8.1
4.69 50.09 10.68 0.30 ± 0.07(22 %) 2.71 ± 1.22(45 %) 3.92 0.38 ± 0.09(23 %) D4.7-A10.7
4.69 92.48 19.72 0.48 ± 0.31(65 %) 3.90 ± 1.41(36 %) 5.31 0.66 ± 0.39(60 %) D4.7-A19.7
4.69 139.93 29.84 0.36 ± 0.05(15 %) 3.56 ± 1.97(55 %) 5.52 0.50 ± 0.13(26 %) D4.7-A29.8

5.70 10.10 1.77 0.22 ± 0.08(37 %) 3.04 ± 1.73(57 %) 4.77 0.32 ± 0.17(52 %) D5.7-A1.8
7.70 10.10 1.31 0.21 ± 0.05(24 %) 2.36 ± 0.97(41 %) 3.33 0.27 ± 0.06(23 %) D7.7-A1.3
9.70 10.09 1.04 1.49 ± 0.05(4 %) 5.39 ± 1.77(33 %) 7.16 1.74 ± 0.06(4 %) D9.7-A1.0
11.69 10.08 0.86 1.01 ± 0.29(29 %) 5.59 ± 3.25(58 %) 8.84 1.21 ± 0.36(30 %) D11.7-A0.9
15.70 10.07 0.64 1.33 ± 0.07(5 %) 7.02 ± 2.19(31 %) 9.21 1.56 ± 0.10(6 %) D15.7-A0.6
19.73 10.08 0.51 1.35 ± 0.11(8 %) 4.60 ± 0.78(17 %) 5.37 1.60 ± 0.16(10 %) D19.7-A0.5

7.78 7.73 1.01 1.84 ± 0.31(17 %) 7.42 ± 1.02(14 %) 8.44 2.19 ± 0.31(14 %) D7.7-A1.0
5.08 10.31 2.03 17.52 ± 3.44(20 %) 99.29 ± 24.39(25 %) 123.68 23.82 ± 3.02(13 %) F-D5.1-A2.0
7.53 10.15 1.35 15.75 ± 4.17(26 %) 91.66 ± 29.19(32 %) 120.84 19.83 ± 4.23(21 %) F-D7.5-A1.3
10.06 10.09 1.00 17.47 ± 3.30(19 %) 92.50 ± 40.10(43 %) 132.59 22.29 ± 4.06(18 %) F-D10.1-A1.1

Table 4. Measured surface roughness of cylinders. Values presented are arithmetic mean of four (or more)
individual measurements of four separate cylinders of the same diameter. The measurement area of each
presented measurement is 0.4 × 0.4 mm2 for all diameters (24 measurements under 50 × 1 magnification
joined together). All measurements were corrected for cylinder curvature prior to obtaining roughness statistics.
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Effects of surface roughness on finite-span cylinders

Definition (unit) Symbol Reference value δB Estimation δR Estimation δ

Distance (mm) l 200 1 IR — — 1
Time (s) t 13.47 0.1 IR 0.14 STD 0.24
Fluid viscosity (mm2 s−1) ν 1.080 0.005 IR* — — 0.005
Diameter (mm) D 7.70 0.01 IR 0.02 STD 0.03
Span (mm) L 10.10 0.01 IR 0.03 STD 0.04
Angle (degree) θ 5.5 0.05 IR — — 0.05
Fluid density (g cm−3) ρf 1.000 0.001 IR* — — 0.001
Relative density β 1.190 — — 0.0012 STD 0.0012

Table 5. Reference values for uncertainty calculations. IR = Instrument resolution, STD = Standard
deviation of measurements.

*Fluid density and viscosity were calculated using the temperature measurement; the given value is the
deviation of viscosity for the instrument resolution of the temperature measurement.

Appendix B. Uncertainty analysis

Accurate estimation of experimental uncertainties for both measured and calculated
parameters is crucial for establishing the reliability of observed behavioural trends. In
figures 5–7, the error bars on data points represent the uncertainty in calculated values
of Re and C̄D. This section outlines the methodology used to calculate these error bars,
illustrated with an example calculation.

For each variable of interest, the total error (δ) is assumed to be the sum of two
components: bias error (δB) and random error (δR). In figures 5–7, only bias error is
depicted as error bars. To perform error propagation analysis, the Python uncertainties
package (Lebigot 2023) was used. This package calculates the standard deviation of
variables using the linear approximation of error propagation theory. An example
calculation is provided here, and table 5 summarises the reference values utilised for
a cylinder rolling on a glass panel. This approach ensures that the figures accurately
represent the uncertainties associated with the presented data, helping readers understand
the reliability of the observed trends in the behaviour of the parameters.

The values of Re and C̄D are given by the following equations:

R̄e = ŪD
ν

= LD
tν

, (B1)

C̄D = D(β − 1)gπ sin(θ)

2U2 . (B2)

Based on the reference values given in table 5, the measured Re and C̄D are

Re = 106 ± 2 (1.9 %), (B3)

C̄D = 9.8 ± 0.4 (4.1 %). (B4)

Approximately 50 % of the measured error in Re and C̄D is due to the natural variation
of the rolling cylinder velocity. The bias error (error due to measurement uncertainty) is
approximately 1 % for Re and 2 % for C̄D in this instance, and only the bias error is shown
as error bars in all figures.
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