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USE OF THE RABINOWITSCH POLYNOMIAL TO DETERMINE
THE CLASS GROUPS OF A REAL QUADRATIC FIELD

FLA. MOLLIN

The main result is a necessary and sufficient condition for the class group of a
real quadratic field to be determined by primality properties of the well-known
Rabinowitsch polynomial.

1. NOTATION AND PRELIMINARIES

Throughout d will be a positive, square-free integer and u — (<r — l + \/d]/cr
where

( 2 when d = 1 (mod 4)

1 otherwise

The discriminant A of K = Q(y/d] is given by A = (2/a) d. If [a, /3] denotes the
module {ax+(3y: x, y 6 Z}, then the maximal order O& of K is given by OK = [1> w].
For a G K, we use a to denote the algebraic conjugate of a and N(a) to denote the
value of aa, the norm of a.

An ideal of OA can be written as I — [a, b + cw] where a, b, c £ Z with a, c > 0,
c\b, c\a, and ac\N(b + cu>). Conversely, if a, b, c € Z with c\b, c\a, and ac\N(b + cu>)
then [o, b + cw] is an ideal of OK • For an ideal I = \a, b + cu>] with a, c > 0 the norm

of / , ^V(/), is given by N(I) = ac > 0. If c = 1, then / is said to be a primitive ideal.
The conjugate oi I = [a, b + w] is I' = [a, b + u]. A primitive ideal I is reduced if it
does not contain any non-zero element a such that both \a\ < N(I) and \a\ < N(I).

At this juncture, we introduce the connection between reduced ideals and continued

fractions. Let a £ K, then we can write a = yP0 + Vd)/Q0 where Po, Qo g Z. If we

put ao = [aj (where |_ J is the greatest integer function) and define

Pi+i = aiQi - Pi

QiQi+1=d-P?+1

ai+1 = L(Pi+1 + Vd) /Qi+i\ (i = 0, 1, 2, ...)
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then

a = (a0, au o2, . . . , a,-, . . .)

is the continued fraction expansion of a . Moreover,

THEOREM 1 . 1 . Let h - I = K b + <"] be a reduced ideal of OA- If a =
(b + w)/a then all of tie reduced ideals in the same equivalence class as I and only
these are given by

for j — 1, 2, 3, . . . where the values of the Pj 's and Qj 's are found by expanding a
into a continued fraction.

Fur t hermore,

THEOREM 1.2 . If I is a reduced ideal of OA then N(I) < \/A. If I is a
primitive ideal of OA such that N(I) < \/A/2 then I is a reduced ideal of OA •

By Theorem 1.2, then, there can only be a finite number of reduced ideals of OA
and since all the Ij's from Theorem 1.1 are reduced then we see that the sequence
of reduced ideals / i , I2, I3, • • •, Ij, ... produced by the continued fraction expansion
must be purely periodic; that is, there must exist a minimal positive / £ Z such that
7j+i = J i . We call 1(1) = I the period length of the continued fraction expansion of a.

We let CA denote the class group of K and /IA its order; that is, the class number
of K. Equivalence of ideals is denoted by I ~ J . Let {/} denote the class of / in CA •
We also have,

THEOREM 1 . 3 . (1) If I is a reduced ideal of OA then there exists an ideal of
J ~ I such that N(J) < N / A / 2 .

(2) CA is generated by the primitive ideals I with N(I) < \ /A/2.

Immediate from the above is,

THEOREM 1 . 4 . Let A > 0 be a discriminant and Ji, J2, . . . , Jk primitive

ideals, then CA = U {-̂ »} & an^ only if for each prime p < \Z~K/2 which is non-

inert, there exists an integer i with 1 ^ i ^ k and a reduced ideal Ii = [a ,̂ 6t- + w] ~ Ji
such that in the continued fraction expansion of (bi + w)/a; we have Qj/cr — p for
some j with 1 ^ j ^ Z,- — l(Ii) •

Now we define the Rabinowitsch polynomial which we wish to bring into the picture.

DEFINITION 1 . 1 . The Rabinowitsch polynomial for K is

fA(x) = -x2 + (a - l)x + (A - a + l)/4.

In [4, Lemma 3.1, p.830] we proved the following useful result.
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LEMMA 1 . 1 . If p < \ /A /2 is prime then / A ( ^ ) = 0 (mod p) for some integer

x with 1 ^ x ^ LWJ ^ an£^ oniy if p is not inert in K (that is, all non-inert primes

p < \ /A/2 divide / A ( Z ) for some integer x with 1 Sj x ^ [wj a n (^ they are the only

such prime divisors of / A ( Z ) less then \fA~/2).

Thus from Lemma 1.1 and Theorem 1.4, we have the well-known class number

1 criterion (for example see Hendy [2]), which seems to have been rediscovered by

Louboutin [3].

COROLLARY 1 . 1 . If A > 0 is a discriminant then AA = 1 if and oniy if p =

Qi/er for some i with 0 < i < I in the continued fraction expansion of w, for ail primes

p < N / A / 2 which divide /A(a:) for any x with 1 ^ x < y/K/2.

We shall also have need of the following concept introduced in [7].

DEFINITION 1 . 2 . Let A > 0 be a discriminant and let I = [a, (b + VA)/2\

be a reduced ideal in O& . If I is in an ambiguous class (that is, I ~ I') then in the

continued fraction expansion of (b + \ /A j / 2 a we must have I' = Ip for some integer

p with 1 ^ p ^ / ( / ) . We caii p = p(7) the pahndromic index of I.

In [7] we proved,

THEOREM 1 . 5 . Let A > 0 be a discriminant and let I = [a, (b + \/A)/2J be

in a reduced ambiguous class of CA • £et Qi be in the continued fraction expansion

on (\/A + bj / 2a . Then Qi/<r is a square-free divisor of A if and only if one of the

following holds:

(a) p = I and i = 0 or /

(b) p is even and i = p/2

(c) p and / have the same parity and i = (p + l)/2.

The next result which we proved in [6] is the key to our Rabinowitsch criterion for

determination of CA •

THEOREM 1 .6 . Let A > 0 be a discriminant and let I = [a, 6 + w] be a reduced

ideal in OA • If, in the continued fraction expansion of (b + w)/a, Qi/a is a prime

for some positive integer i ^ /(/) = I, then f&(x) = 0 (mod Qi/<r) for exactly a; + 1

values of x with 1 ^ x ^ [wj whenever Qi/cr is not a divisor of A. If Qi/<r is either

1 or a prime divisor of A for 0 < i ^ / then i — I = p or i = p/2 or i — (p + /)/2 and

there are exactly [(a, + 1)/2J such values of x. If Qi/cr > 1 is not prime then there

are at ieast that many values of x.

The reader is referred to [8] for further details and proofs of the above results.
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2. THE CRITERION

First we need some definitions.

a, (b+ -\/AJ/2 is a

reduced ideal in OA then in the following we are considering the continued fraction
expansion of (6 + A)/2a. Let

T(I) — {j: 1 ^ j ^ 1(1) = I with Qj/<r < \fK/2 and Qj/<r a prime counted once,
that is, without multiplicity} and,

R(I) — {j: 1 ^ j ^ / and one of j - I = p(I) = p or j - p/2 or j - {p + l)/2 holds}.

DEFINITION 2 . 2 . If A > 0 is a discriminant and p is a given prime then set

Sf(p) = \{x: 1 < x ^ [wA\ with P | / A ( Z ) } | •

REMARK 2.1. We observe that R(I) = 0 unless / is in an ambiguous class. Moreover,
we need only concern ourselves about multiplicity in T(I) when / is in an ambiguous
class, (see Theorem 1.5).

Now we are in a position to prove the main result.
k

2 . 1 . (The Criterion). Let A > 0 be a discriminant. Then CA = U {Ji} toT

primitive ideals Ji if and only if there exists a reduced ideal Ii ~ J,- for each i with
1 ^ i ^ A; such that

(1) E Sf(p) = t E (a«,;) + l
p<VE/2 i=l jeTi-Ri

where the left hand sum ranges over unramified primes, and

E sf(p)=ib E
p<VA/2 i=

where the left hand sum ranges over ramified primes and where T, = T(Ii), Ri = R(Ii),

and a,(ij) — l[Pj + vD)/Qj} J n ^ne continued fraction expansion of Ii.

PROOF: By Theorem 1.6, the right hand sides of (l)-(2) actually represent
S Sf(p) where the sum ranges over only those p < \/A/2 which appear as some
Q{itj)l<r in the continued fraction expansion of (bi+w)/di where Ii = [a;, 6; + w).
Therefore, the equality fails to hold precisely when some prime p < \/A/2 does not
appear on the right but does (as it must by Lemma 1.1) appear on the left. The result
now follows from Theorem 1.1-1.5. D
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The following illustrates Theorem 2.1.

EXAMPLE 2.1: Let A = 23 • 11 • 23 = 2024. Then fA(x) = 506 - z2 and we have,

X

1
2
3
4
5
6
7
8
9
10
11

/A(*)

5-101
2-251
7-71
2-572

13-37
2 • 5 •

457
2-13-
52-17
2 - 7 •
5 • 7 •

47

17

29
11

X

12
13
14
15
16
17
18
19
20
21
22

2-181
337
2-5-31
281
2-53

7-31
2-7-13
5-29
2-53
5 13
2 11

Thus, observing that the non-inert primes less than \/A/2 are 2, 5, 7, 13, and 17

we have 5/(2) = 11, 5/(5) = 9, 5/(7) = 6, 5/(11) = 2, 5/(13) = 4, and 5/(17) = 2.

Now consider the ideals /i = [1, u], I2 = [2, \/506], I3 = [5, 1 + \/506], and

h = [7, 17 + V506].

The continued fraction expansion of u> is

i 0 1 2
Pi 0 22 22

Qi 1 22 1
o; 22 2 22 .

The continued fraction expansion of v506/2 is

I

Pi

Qi
a.

0
0
2
11

1
22
11
4

2
22
2

22 .

The continued fraction expansion of (l + \/506) /5 is

t 0 1 2 3 4
Pi 1 19 10 18 21
Qi 5 29 14 13 5
a; 4 1 2 3 8
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and, the continued fraction expansion of (17 + \/506)/7 is

i 0 1 2 3 4 5 6
Pi 17 18 8 9 16 14 17
Qi 7 26 17 25 10 31 7

a; 5 1 1 1 3 1 5 .

Hence, we have that Tj = 0, T2 = {1,2}, T3 = {3,4} and T4 = {2,6}. Also,
# ! = {1, 2} = R2 whereas R3 = 0 = A,. Therefore,

£ £
i=

and

£ E
t=l j

On the other hand, for unramified p , we have

/ ( P ) / ( ) / C ) / ( ) + / ( ) 9 + 6 + 4 + 2 = 2 1
p<v/A/2

and for ramified p we have

5/(p) = S/(2) + 5/(11) = 11 + 2 = 13.

Hence, by Theorem 2.11 we have the CA~ (j iJi} • Observe that / | = [25, 9 + y/506]
»=i

is not reduced but I\ ~ I* and in fact / | ~ I2. Therefore, C& = ({^3}) with /IA = 6.
Also, CA = ({/2}> x ({J4}> since / | ~ 1 and /4

3 ~ 1.

Now we state a class number one criterion which is immediate from Theorem 2.1.
In what follows we are considering only the continued fraction expansion of w.

COROLLARY 2 . 1 . Let A > 0 be a discriminant. Then /IA = 1 if antf only if

L'/2J

E
where

a,- + 1 if j 7̂  i/2 and Qj/<r is prime
6j = { l(a3 + 1)/2J XJ = ll2 and Qila is

0 otherwise.
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REMARK 2 .2 . Corollary 2.1 is a much simpler criterion than that given by Lu [5] (see

Theorem 2.2). Fur thermore, Corollary 1.1 is an immediate consequence 2.1 in view of

Lemma 1.1.

We now illustrate the ease of use of Corollary 2.1.

EXAMPLE 2 .2 : Let A = 4 • 94 then the continued fraction expansion of w is

i 0 1 2 3 4 5 6

P,- 0 9 4 8 7 2 8

Qi 1 13 6 5 9 10 3

Oi 9 1 2 3 1 1 5

7 8 9 10 11 12 13 14 15 16

7 8 8 7 8 2 7 8 4 9

15 2 15 3 10 9 5 6 13 1

1 8 1 5 1 1 3 2 1 18

Moreover,

X

1
2
3
4
5
6
7
8

9 = KJ

fA(x) = 94 - x2

3-31
2 • 3 2 • 5

5 17
2 - 3 - 1 3
3-23
2-29
3 2 -5
2 - 3 - 5
13

The non-inert primes less than vA/2 are 2, 3, 5, and 13. Also,

whereas,

5/(2) + 5/(3) + 5/(5) + 5/(13) =4 + 6 + 4 + 2 = 16,

0j = 2 + 4 + 6 + 4 = 16.

Hence, by Corollary 2.1, h&. = 1.

REMARK 2.3. Lu's result [5] for h&. — 1 is stated in a rather complicated form involving
solutions to diophantine equations as follows. We present it here since we wish to
compare it now to our chief result.

THEOREM 2 . 2 . (Lu [5]) Let A > 0 be a discriminant. Then h& — 1 if and only
i

it c+ 53 a« — ^i(A) + A2(A) where Ai(A) is the number of solutions of x2 + 4yz = A

with integers x,y, z ^ 0, A2(A) is the number of solutions of x2 + 4y2 = A with
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integers x, y ^ 0 and

0 if I is even, a\ji is odd when A = 1 (mod 4)

1 otherwise when A = 1 (mod 4)

1 if I is even, aj/2 is °dd when A = 0 (mod 4)

2 otherwise when A = 0 (mod 4).

1
REMARK 2.4. As noted by Dubois and Levesque in [1], Lu's c + Yl a> ' s precisely the

i=l

number of all those ideals \Q, (P + V / A ^ I such that P2 + 4QQ' - A where Q ap-

L'/2J
pears as some Qi in the continued fraction expansion of w. In Corollary 2.1 our ^ &j

3=1

is precisely the number of ideals (counted without multiplicity) \Q, ( P + \ / A ) / 2

where P2 + 4QQ' = A with Q appearing as some prime Qi < \ /A/2 in the contin-

ued fraction expansion of w. Thus, our result is easier to implement and closer to the

kernel of truth of the matter in view of Theorem 1.3. For instance, if we look back to

Example 2.2, and consider / = [5, (p + N / A ) ^ ] we get that P2 + 4 • 5 • Q' - A

precisely where 2x = P — 4, 5, 14, 16. Thus, there are exactly 4 ideals of type

I : [5, 2 + x/94] = [5, 7 + VM] ~ [5, 8 + y/§4] = [5, 3 + y/§4]. Moreover, these ac-

count for the exact four.values of z : 2, 3, 7, and 8 for which 5 divides / A ( * ) when

x ^ L Ĵ > th a t is> -5/(5) = 4 = 03 + 1. This is a rather neat illustration of how the

phenomenon! works.

In any case, the fact, missed by Dubois-Levesque [1] is that Lu's result is intimately

linked to the divisor function r(x) by its very nature, (here T(X) denotes the number
of positive divisors of a;). All we have to do is recognise that Ai(A) + A2(A) is just

X) T(/A(a;))- To see this we observe that x\ + Ayz = A implies that yz =

(A — a;?)/4 = / A ( X ) where X\ = ax — a + 1, and x\ + 4y2 = A is just x\ + Ayz = A
with y = z. Finally, observe that since y and z are non-negative then Po ^ x $J [wj .
Hence,

THEOREM 2 . 3 . (Lu reinterpreted) [5] If A > 0 is a discriminant t ien

where c is as in Theorem 2.2.

If we now re-examine Example 2.2, we see that

1 is
at+2 = 56
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whereas,

Hence, by Theorem 2.3, h^. = 1.

REMARK 2.5. In Lu's main result [5, Theorem 2, p.119] restated (in a different and

better format) as Theorem 2.3, there is a case value of (what he calls) 8 which is

vacuous, when A = 1 (mod 4) , / i s even and a j / 2 even. This case cannot occur because

a-i/zQi/i - Pi/2 — Pi/2+1 = Pi/2 implies that P , / 2 = (ai/2/2)Qi/2 is even. However,

Q1/2 is even and D = P?,2 + Q1/2Q1/2-1 forcing D to be even, a contradiction.

In conclusion, Theorem 2.1 is a completely general criterion for the determination of

the class group of a real quadratic field, given in terms of the Rabinowitsch polynomial.
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