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KNASTER AND FRIENDS III: SUBADDITIVE COLORINGS

CHRIS LAMBIE-HANSON AND ASSAF RINOT

Abstract. We continue our study of strongly unbounded colorings, this time focusing on subadditive
maps. In Part I of this series, we showed that, for many pairs of infinite cardinals � < κ, the existence of a
strongly unbounded coloring c : [κ]2 → � is a theorem of ZFC. Adding the requirement of subadditivity
to a strongly unbounded coloring is a significant strengthening, though, and here we see that in many cases
the existence of a subadditive strongly unbounded coloring c : [κ]2 → � is independent of ZFC. We connect
the existence of subadditive strongly unbounded colorings with a number of other infinitary combinatorial
principles, including the narrow system property, the existence of κ-Aronszajn trees with ascent paths, and
square principles. In particular, we show that the existence of a closed, subadditive, strongly unbounded
coloring c : [κ]2 → � is equivalent to a certain weak indexed square principle �ind(κ, �). We conclude
the paper with an application to the failure of the infinite productivity of κ-stationarily layered posets,
answering a question of Cox.

§1. Introduction. For any pair � < κ of infinite regular cardinals, the positive
partition relation κ → (κ)2

� , which asserts that every coloring c : [κ]2 → � has a
homogeneous set of cardinality κ, is equivalent to κ being weakly compact. For non-
weakly compact cardinals κ, though, one can seek to measure the incompactness of
κ by asking whether certain strengthenings of the negative relation κ � (κ)2

� hold.
One natural such strengthening is to require that there exist colorings c : [κ]2 → �
witnessing certain strong unboundedness properties. In [20], which forms Part I
of this series of papers, the authors introduce the following coloring principle,
which asserts the existence of such strongly unbounded colorings, and use it to
answer questions about the infinite productivity of the κ-Knaster condition for
uncountable κ.

Definition 1.1. U(κ, �, �, �) asserts the existence of a coloring c : [κ]2 → � such
that for every � < �, every pairwise disjoint subfamily A ⊆ [κ]� of size κ, and
every i < �, there exists B ∈ [A]� such that min(c[a × b]) > i for all a, b ∈ B with
sup(a) < min(b).

Much of [20] is devoted to analyzing situations in which U(...) necessarily
holds and, moreover, is witnessed by closed or somewhere-closed colorings (see
Definition 2.1). In Part II of this series [22], we studied Cspec(κ), the C-sequence
spectrum of κ (see Definition 5.5), which is another measure of the incompactness
of κ, and found some unexpected connections between Cspec(κ) and the validity of
instances of U(κ, ...).
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KNASTER AND FRIENDS III: SUBADDITIVE COLORINGS 1231

In this paper, which can be read largely independently of [20, 22], we investigate
subadditive witnesses to U(...).

Definition 1.2. A coloring c : [κ]2 → � is subadditive if, for all α < � < 	 < κ,
the following inequalities hold:

(1) c(α, 	) ≤ max{c(α, �), c(�, 	)};
(2) c(α, �) ≤ max{c(α, 	), c(�, 	)}.

Adding the requirement of subadditivity significantly strengthens the coloring
principle, and we prove that the existence of closed, subadditive witnesses to U(...)
is equivalent to a certain indexed square principle. Our first main result improves
Clause (1) of [20, Theorem A].1

Theorem A. Let � < κ be a pair of infinite regular cardinals. The following are
equivalent:

(1) �ind(κ, �) holds.
(2) There is a closed, subadditive witness to U(κ, 2, �, 2).
(3) There is a closed, subadditive witness to U(κ, κ, �, sup(Reg(κ)).
In addition, �(κ,��) implies (1)–(3).

We also prove that a version of square with built-in diamond for a singular cardinal

 gives rise to somewhere-closed subadditive witnesses to U(
+, ...), which in turn
imply that the C-sequence spectrum of 
+ is rich:

Theorem B. Suppose that 
 is a singular cardinal, �f is a scale for 
 of length 
+ in
some product

∏ �
, and ♦(�
) holds. Let Σ denote the set of good points for �f.
Then, for every � ∈ Reg(
) \ (cf(
) + 1), there exists a Σ-closed, subadditive witness

to U(
+, 
+, �, 
). In particular, Reg(
) ⊆ Cspec(
+).

For a pair of infinite regular cardinals � < κ and a coloring c : [κ]2 → �, an
interesting facet of the study of the unboundedness properties of c is the set ∂(c)
of its levels of divergence (see Definition 3.21). Any coloring c for which ∂(c) is
stationary is automatically a somewhere-closed witness to U(κ, κ, �, �). We prove
that the existence of a (fully) closed witness c to U(κ, κ, �, �) for which ∂(c) is
stationary is equivalent to the existence of a nonreflecting stationary subset of Eκ� ,
and that the existence of a nonreflecting stationary subset of Eκ� does not suffice to
yield a subadditive witness to U(κ, 2, �, 2). We have three main consistency results
concerning the characteristic ∂(c):

Theorem C. (1) For any pair of infinite regular cardinals � < κ, there is a κ-
strategically closed, �+-directed closed forcing notion that adds a subadditive
witness c to U(κ, κ, �, �) for which ∂(c) is stationary.

(2) For any pair of infinite regular cardinals � < κ, there is a κ-strategically closed,
�-directed closed forcing notion that adds a closed subadditive witness c to
U(κ, κ, �, �) for which ∂(c) is stationary.

(3) For regular uncountable cardinals � < 
 < κ such that 
 is supercompact and κ
is weakly compact, there is a forcing extension in which �(κ, �) fails; yet, there
is a closed, subadditive witness c to U(κ, κ, �, �) for which ∂(c) is stationary.

1Section 1.1 contains information about precisely where in the paper to find the proof of each of these
theorems and definitions of the terms therein.
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1232 CHRIS LAMBIE-HANSON AND ASSAF RINOT

On the Ramsey-theoretic side, we prove that in the presence of large cardinals, for
many pairs of infinite regular cardinals � < κ, there are no subadditive witnesses to
U(κ, 2, �, 2), i.e., κ → [κ]2

�,<� holds restricted to the class of subadditive colorings.
We also show that similar results hold at small cardinals in forcing extensions or in
the presence of forcing axioms.

On the anti-Ramsey-theoretic side, we have a result reminiscent of the motivating
result of [20] concerning the infinite productivity of strong forms of the κ-chain
condition. When combined with Theorem A, the next theorem shows that �(κ)
yields a gallery of counterexamples to productivity of κ-stationarily layered posets,
answering a question of Cox [5].

Theorem D. Suppose that � ≤ � < κ are infinite, regular cardinals, κ is
<�-inaccessible, and there is a closed and subadditive witness c to U(κ, 2, �, 2).
Then there is a sequence of posets 〈Pi | i < �〉 such that:

(1) for all i < �, Pi is well-met and �-directed closed with greatest lower bounds;
(2) for all j < �,

∏
i<j Pi is κ-stationarily layered;

(3)
∏
i<� Pi is not κ-cc.

If, in addition, ∂(c) ∩ Eκ� is stationary, then the sequence 〈Pi | i < �〉 can be made
constant.

As a corollary, we get that Magidor’s forcing for changing the cofinality of a
measurable cardinal 
 to a regular cardinal � < 
 adds a poset P whose � th power is
not 
+-cc, but all of whose lower powers are 
+-stationarily layered.

1.1. Organization of this paper. In Section 2, we present some useful definitions
and facts about U(κ, �, �, �), largely derived from Part I of this series. We also
present a pseudo-inverse to the fact, observed in Part I, that Shelah’s principle
Pr1(κ, κ, �, �) implies U(κ, 2, �, �).

In Section 3, we review the notion of subadditivity and some of its variations and
prove that any subadditive witness to U(κ, 2, �, 2) is in fact a witness to U(κ, �, �, �)
for all � < κ and all � ≤ cf(�) (and, under certain closure assumptions, even
stronger principles). Section 3.1 contains results connecting subadditive strongly
unbounded colorings to narrow systems and trees with ascent paths. In Section 3.2,
we discuss locally small colorings of the form c : [
+]2 → cf(
), focusing in particular
on the case in which 
 is a singular cardinal. Locally small colorings are necessarily
witnesses to U(
+, 2, cf(
), cf(
)), and retain this property in any outer model with
the same cardinals. In Section 3.3, we introduce a subset ∂(c) ⊆ κ associated with
a coloring c : [κ]2 → � that is useful in the analysis of U(κ, �, �, �), particularly
in the context of subadditive colorings. We then introduce a forcing notion that
establishes Clause (1) of Theorem C. Section 3.4 contains a number of results
indicating the extent to which various compactness principles place limits on
the existence of certain subadditive witnesses to U(κ, �, �, �). In particular, it is
shown that simultaneous stationary reflection, the existence of highly complete or
indecomposable ultrafilters, and the P-ideal dichotomy all have such an effect.

In Section 4, we introduce an indexed square principle �ind(κ, �) and prove that it
is equivalent to the existence of a closed, subadditive witness to U(κ, 2, �, 2), thereby
establishing the first part of Theorem A. We also prove a consistency result indicating
that �ind(κ, �) is a proper weakening of �ind(κ, �) and does not even imply �(κ, �),
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in the process proving Clause (3) of Theorem C. Section 4 also contains the proof
of the second part of Theorem A and the proof of Clause (2) of Theorem C.

Section 5 is concerned with successors of singular cardinals. We begin by proving
Theorem B, showing that a certain square with built-in diamond sequence on a
singular cardinal 
 entails the existence of a subadditive witness to U(
+, 
+, �, 
)
for all � ∈ Reg(
) \ (cf(
) + 1). We then present an improvement upon a result from
Part I of this series proving the existence of closed witnesses to U(
+, 
+, �, cf(
))
for all singular 
 whose cofinality is not greatly Mahlo and all � ≤ cf(
).

Section 6 deals with the infinity productivity of κ-stationarily layered posets and
contains our proof of Theorem D.

1.2. Notation and conventions. Throughout the paper, κ denotes a regular
uncountable cardinal, and �, �, and � denote cardinals ≤ κ. 
 will always denote an
infinite cardinal. We say that κ is �-inaccessible iff, for all � < κ, �� < κ, and say that
κ is <�-inaccessible iff, for all � < κ and � < �, �� < κ. For a regular cardinal Υ,
we denote byHΥ the collection of all sets of hereditary cardinality less than Υ.

Reg denotes the class of infinite regular cardinals, and Reg(κ) denotes Reg∩κ.
Eκ� denotes the set {α < κ | cf(α) = �}, and Eκ≥� , E

κ
<� , E

κ
�=� , etc. are defined

analogously.
For a set of ordinals a, we write ssup(a) := sup{α + 1 | α ∈ a}, acc+(a) := {α <

ssup(a) | sup(a ∩ α) = α > 0}, acc(a) := a ∩ acc+(a), nacc(a) := a \ acc(a), and
cl(a) := a ∪ acc+(a). For sets of ordinals a and b, we write a < b if, for all α ∈ a
and all � ∈ b, we have α < � . For a set of ordinals a and an ordinal � , we write
a < � instead of a < {�} and � < a instead of {�} < a.

For any set A, we write [A]� := {B ⊆ A | |B| = �} and [A]<� := {B ⊆ A |
|B| < �}. In particular, [A]2 consists of all unordered pairs from A. In some
scenarios, we will also be interested in ordered pairs from A. In particular, if A
is either a set of ordinals or a collection of sets of ordinals, then we will abuse
notation and write (a, b) ∈ [A]2 to mean {a, b} ∈ [A]2 and a < b.

§2. Preliminaries. In this brief section, we recall a key definition and present a
few useful facts about U(...). We start by recalling the following definition from [20]
concerning closed colorings.

Definition 2.1. Suppose that c : [κ]2 → � is a coloring.

(1) For all � < κ and i ≤ �, we let Dc≤i(�) denote the set {α < � | c(α, �) ≤ i}.
(2) For all Σ ⊆ κ, c is Σ-closed if, for all � < κ and i ≤ �,

acc+(Dc≤i(�)) ∩ Σ ⊆ Dc≤i(�).

(3) c is somewhere-closed if it is Σ-closed for some stationary Σ ⊆ κ.
(4) c is closed if it is κ-closed.

The following fact is a useful tool for proving that certain colorings satisfy strong
instances of U(...).
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Fact 2.2 [20]. Suppose that c : [κ]2 → � is a coloring and  ≤ � < κ. Then
(1) =⇒ (2) =⇒ (3):

(1) For some stationary Σ ⊆ Eκ≥� , c is a Σ-closed witness to U(κ, 2, �, �).
(2) For every family A ⊆ [κ]<� consisting of κ-many pairwise disjoint sets, for

every club D ⊆ κ, and for every i < �, there exist 	 ∈ D, a ∈ A, and � < 	
such that:
• 	 < a;
• for all α ∈ (�, 	) and all � ∈ a, we have c(α, �) > i .

(3) c witnesses U(κ, κ, �, �).

It is sometimes useful to consider the following unbalanced form of U(··· ).

Definition 2.3. U(κ, �� �, �, �) asserts the existence of a coloring c : [κ]2 → �
such that for every � < �, every pairwise disjoint subfamily A ⊆ [κ]� of size κ, and
every i < �, there existA′ ∈ [A]� andB′ ∈ [A]� such that, for every (a, b) ∈ A′ × B′,
a < b and min(c[a × b]) > i .

Lemma 2.4. Suppose that c : [κ]2 → � witnesses U(κ, 2, �, 2), with � < κ.
(1) For every cofinal A ⊆ κ, there exists � < κ such that

sup{� ∈ A \ � | sup{c(α, �) | α ∈ A ∩ �} = �} = κ.

(2) For every cofinal A ⊆ κ, there exists � ∈ A such that {c(α, �) | α ∈ A ∩ �} is
unbounded in �. In particular, c witnesses U(κ, cf(�) � 1, �, 2).

(3) For every stationary S ⊆ κ, there exists � < κ such that, for every i < �, {� ∈
S | � < �, c(�, �) > i} is stationary.

(4) For every stationary S ⊆ κ and a family of functions H ∈ [S�]<κ, there exists
� ∈ S such that, for every h ∈ H, the following set is stationary:

{� ∈ S | � < �, c(�, �) > max{h(�), h(�)}}.
Proof. Clause (2) follows from Clause (1), and Clause (3) follows from

Clause (4).
(1) Towards a contradiction, suppose that A is a counterexample. Then, for every

� < κ, there exists a large enough �� ∈ [�, κ) such that, for every � ∈ A \ �� and for
some i < �, A ∩ � ⊆ Dc≤i(�). Fix a sparse enough cofinal subset A′ ⊆ A such that,
for every � ∈ A′, min(A′ \ (� + 1)) ≥ ��+1. It follows that, for every � ∈ A′ and for
some i� < �, A ∩ � ⊆ Dc≤i� (�). Fix i∗ < � and an unbounded A∗ ⊆ A′ such that

i� = i∗ for all � ∈ A∗. Since c witnesses U(κ, 2, �, 2), we can find (α, �) ∈ [A∗]2 such
that c(α, �) > i∗, contradicting the fact that α ∈ A ∩ � ⊆ Dc≤i∗(�).

(4) Towards a contradiction, suppose that S and H form a counterexample.
For every � ∈ S, fix a function h� ∈ H and a club D� ⊆ κ disjoint from {� ∈ S |
� < �, c(�, �) > max{h�(�), h�(�)}}. LetD := ��<κD� . As |H| < κ, find h ∈ H for
which A := {� ∈ D ∩ S | h� = h} is cofinal in κ. As � < κ, find i < � for which
B := {� ∈ A | h(�) = i} is cofinal in κ. Now, as c witnesses U(κ, 2, �, 2), we may
pick (�, �) ∈ [B]2 such that c(�, �) > i . But i = max{h�(�), h�(�)}, contradicting
the fact that � ∈ D� ∩ S. �

The following is a corollary to a result from [20] which we never took the time to
derive.
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Proposition 2.5. If κ is a Mahlo cardinal admitting a nonreflecting stationary
subset of Reg(κ), then U(κ, κ, �, κ) holds for every � ≤ κ.

Proof. By [20, Theorem 4.11]. �
Recall that Shelah’s principle Pr1(κ, κ, �, �) asserts the existence of a coloring

c : [κ]2 → � such that for every � < �, every pairwise disjoint subfamily A ⊆ [κ]�

of size κ, and every i < �, there exist (a, b) ∈ [A]2 such that c[a × b] = {i}. By [20,
Lemma 2.3], Pr1(κ, κ, �, �) implies U(κ, 2, �, �). Here we deal with a pseudo-inverse:

Proposition 2.6. Suppose that U(κ, 2, �, �) holds with � ≤ cf(�) = � ≤ �<� < κ.
Then V Add(�,1) |= Pr1(κ, κ, �, �).

Proof. In V, let c : [κ]2 → � be a witness to U(κ, 2, �, �). Let G be Add(�, 1)-
generic over V, and work for now in V Add(�,1). Let g : � → � be the Cohen-generic
function, and set d := g ◦ c. To see that d witnesses Pr1(κ, κ, �, �), let A be a κ-sized
pairwise disjoint subfamily of [κ]<� , and let � < �; we need to find (a, b) ∈ [A]2

such that d [a × b] = {�}. Since � ≤ �, every element of A is in V. Also, letting
Ȧ ∈ V be an Add(�, 1)-name for A, we can fix for each a ∈ A a condition pa ∈ G
such that pa � “a ∈ Ȧ.” As � ≤ �<� < κ, and hence |Add(�, 1)| < κ, by passing
to a subfamily if necessary, we may assume that there is a fixed p∗ ∈ G such that
pa = p∗ for all a ∈ A, and therefore A = {a ∈ [κ]<� | p � “a ∈ Ȧ”} is in V. We
therefore move back to V and run a density argument. Let p : i → � be an arbitrary
condition in Add(�, 1) below p∗. By the hypothesis on c, pick (a, b) ∈ [A]2 such
that x := c[a × b] is disjoint from i. Let j := ssup(x), and let q : j → � be some
condition extending p and satisfying q(�) = � for all � ∈ x. Clearly, q(c(α, �)) = �
for all (α, �) ∈ a × b, so q forces that d [a × b] = {�}, as sought. �

We conclude this short section with another simple fact worth recording.

Proposition 2.7. If κ is weakly compact, then, in V Add(,κ):
(1) U(κ, κ,, 2) holds;
(2) U(κ, 2, ,) holds;
(3) U(κ, 2, �, 2) fails for every regular uncountable � < κ.

Proof. (1) By [20, Lemma 2.7].
(2) It is not hard to see that, in V Add(,κ), Pr1(κ,1, ,) holds. In particular,

by [20, Lemma 2.3], U(κ, 2, ,) holds.
(3) Evidently, for every ccc forcing P and every infinite cardinal �, κ → [κ]2

�

implies V P |= κ → [κ]2
�, . In particular, in V Add(,κ), U(κ, 2, �, 2) fails for

every regular uncountable � < κ. �

§3. Subadditive colorings. We now turn to subadditive colorings, which form the
primary topic of this paper. We begin by recalling the definition of subadditivity,
splitting the definition into its two constituent parts.

Definition 3.1. A coloring c : [κ]2 → � is subadditive iff the following two
statements hold:

(1) c is subadditive of the first kind, that is, for all α < � < 	 < κ,

c(α, 	) ≤ max{c(α, �), c(�, 	)}.

https://doi.org/10.1017/jsl.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.50


1236 CHRIS LAMBIE-HANSON AND ASSAF RINOT

(2) c is subadditive of the second kind, that is, for all α < � < 	 < κ,

c(α, �) ≤ max{c(α, 	), c(�, 	)}.

We shall write Usubadditive(κ, �, �, �) to assert that U(κ, �, �, �) holds and that
it moreover admits a subadditive witness. Note that the function c : [κ]2 → κ
defined by letting c(α, �) := α for all (α, �) ∈ [κ]2 is a closed, subadditive witness
to U(κ, κ, κ, κ), so, in all situations of interest, we will have � < κ.

Subadditivity allows us to show that witnesses to certain instances of U(...) in
fact satisfy stronger instances, as in the following lemma.

Lemma 3.2. Suppose that c : [κ]2 → � is a witness to Usubadditive(κ, 2, �, 2), with
� < κ. Then the following statements all hold.

(1) For every � < κ, c witnesses U(κ, �, �, 2). If there exist no κ-Souslin trees, then
c moreover witnesses U(κ, κ, �, 2).

(2) For every � ≤ κ, if c witnesses U(κ, �, �, 2), then c moreover witnesses
U(κ, �, �, cf(�)).

(3) For every � ∈ Reg(κ), if c is Σ-closed for some stationary Σ ⊆ Eκ≥� , then c
witnesses U(κ, κ, �, �).

Proof. For each i < �, we define an ordering <i on κ by letting α <i � iff
α < � and c(α, �) ≤ i . The fact that <i is transitive follows from the fact that c is
subadditive of the first kind.

Claim 3.2.1. For every i < �, (κ,<i) is a tree with no branches of size κ.

Proof. Let i < � and 	 < κ. To see that set {α < κ | α <i 	} is well-ordered by
<i , fix α < � such that α, � <i 	. As c is subadditive of the second kind, c(α, �) ≤
max{c(α, 	), c(�, 	)} ≤ i , so α <i � .

In addition, by the hypothesis on c, for everyA ∈ [κ]κ, there is a pair (α, �) ∈ [A]2

such that c(α, �) > i , so ¬(α <i �). That is, (κ,<i) has no chains of size κ. �
(1) Fix � ≤ κ, and suppose that we are given someA ∈ [κ]κ and i < �. We would

like to findB ∈ [A]� such that c(α, �) > i for all (α, �) ∈ [B]2. In particular, if there
existsB ∈ [κ]� which is an antichain with respect to<i , then we are done. Hereafter,
suppose this is not the case.

� If � < κ, then (A,<i ) is a tree of size κ all of whose levels have size < �.
Since � < κ and κ is regular, a result of Kurepa [15] implies that (κ,<i ) has a
branch of size κ, contradicting the preceding claim.

� If � = κ, then (A,<i ) forms a κ-Souslin tree.

(2) Suppose that � ≤ κ and c witnesses U(κ, �, �, 2). Suppose also that A ⊆
[κ]<cf(�) consists of κ-many pairwise disjoint sets and i < � is a prescribed color. We
will find B ∈ [A]� such that min(c[a × b]) > i for all (a, b) ∈ [B]2. For each 	 < κ,
pick a	 ∈ A with 	 < a	 . Definef : κ → � and g : κ → κ by setting, for all 	 < κ,

• f(	) := sup{c(	, α) | α ∈ a	};
• g(	) := sup(a	).

Fix ε < � for which A := {	 < κ | f(	) = ε & g[	] ⊆ 	} is stationary. Since c
witnesses U(κ, �, �, 2), we can pick B ∈ [A]� such that c(	, �) > max{ε, i} for all
(	, �) ∈ [B]2. We claim that B := {a	 | 	 ∈ B} is a subfamily of A as sought. To see
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this, pick a pair (	, �) ∈ [B]2 along with (α, �) ∈ a	 × a� . Clearly, 	 < α < � < � .
By the subadditivity of c and the choice of ε, we have

c(	, �) ≤ max{c(	, α), c(α, �)} ≤ max{c(	, α), c(α, �), c(�, �)} ≤ max{ε, c(α, �)}.

Recalling that max{ε, i} < c(	, �), we infer that i < c(	, �) ≤ c(α, �), as sought.
(3) Suppose that � ∈ Reg(κ), Σ ⊆ Eκ≥� is stationary, and c is Σ-closed.

Claim 3.2.2. Suppose that A ⊆ [κ]<� is a family consisting of κ-many pairwise
disjoint sets, D is a club in κ, and i < � is a prescribed color. Then there exist
	 ∈ D ∩ Σ and a ∈ A such that:

(a) 	 < a;
(b) for all � ∈ a, we have c(	, �) > i .

Proof. Suppose not. Let T := D ∩ Σ, and note that, for all 	 ∈ T and all a ∈ A
with a > 	, and for some � ∈ a, we have c(	, �) ≤ i . Consider the tree (T,<i). We
claim that it has no antichains of size �. To see this, fix an arbitrary X ⊆ T of
order type �, and let � := sup(X ). Fix an arbitrary a ∈ A with a > �. For all 	 ∈ X ,
since a > 	, we may find some � ∈ a with c(	, �) ≤ i . Since |X | = � > |a|, we may
then pick (	, 	 ′) ∈ [X ]2 and � ∈ a such that c(	, �) ≤ i and c(	 ′, �) ≤ i . It follows
that c(	, 	 ′) ≤ max{c(	, �), c(	 ′, �)} ≤ i . In particular, X is not an antichain. Now,
since � < κ are regular cardinals, the aforementioned result of Kurepa [15] entails
the existence of B ∈ [T ]κ which is a chain with respect to <i . By the hypothesis
on c, we can pick (α, �) ∈ [B]2 such that c(α, �) > i . Then ¬(α <i �) which is a
contradiction to the fact that B is a chain in (T,<i). �

As c is Σ-closed and Σ ⊆ Eκ≥� , Clause (b) of the preceding is equivalent to:

(b’) there is � < 	 such that, for all α ∈ (�, 	) and all � ∈ a, we have c(α, �) > i .

Thus, by the implication (2) =⇒ (3) of Fact 2.2, we can conclude that c witnesses
U(κ, κ, �, �), as desired. �

3.1. Narrow systems and trees with ascent paths. Given a binary relation R on a
set X, for a, b ∈ X , we say that a and b are R-comparable iff a = b, a R b, or b R a. R
is tree-like iff, for all a, b, c ∈ X , if a R c and b R c, then a and b are R-comparable.

Definition 3.3 (Magidor–Shelah [25]). S = 〈
⋃
α∈I {α} × �α,R〉 is a κ-system if

all of the following hold:

(1) I ⊆ κ is unbounded and, for all α ∈ I , �α is a cardinal such that 0 < �α < κ.
(2) R is a set of binary, transitive, tree-like relations on

⋃
α∈I {α} × �α and

0 < |R| < κ.
(3) For allR ∈ R, α0, α1 ∈ I , �0 < �α0 , and �1 < �α1 , if (α0, �0) R (α1, �1), then
α0 < α1.

(4) For every (α0, α1) ∈ [I ]2, there are (�0, �1) ∈ �α0 × �α1 and R ∈ R such that
(α0, �0) R (α1, �1).

Define width(S) := sup{|R|, �α | α ∈ I }. A κ-system S is narrow if
width(S)+ < κ. For R ∈ R, a branch of S through R is a set B ⊆

⋃
α∈I {α} × �α

such that for all a, b ∈ B , a and b are R-comparable. A branch B is cofinal iff
sup{α ∈ I | ∃� < �α (α, �) ∈ B} = κ.
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Definition 3.4 [17]. The (�, κ)-narrow system property, which is abbreviated
NSP(�, κ), asserts that every narrow κ-system of width < � has a cofinal branch.

By [17, Section 10], PFA implies NSP(1, κ) for all regular κ ≥ 2.

Lemma 3.5. Suppose that � < �+ < κ and c : [κ]2 → � is a subadditive coloring.
If NSP(�+, κ) holds, then c fails to witness U(κ, 2, �, 2).

Proof. Define a binary relation R on κ × � by letting (α, i) R (�, j) iff α < � ,
i = j, and c(α, �) ≤ i .

Claim 3.5.1. Let α < � < 	 < κ. Then:
(1) there exists i < � such that (α, i) R (�, i);
(2) for all i < �, if (α, i) R (�, i) and (�, i) R (	, i), then (α, i) R (	, i);
(3) for all i < �, if (α, i) R (	, i) and (�, i) R (	, i), then (α, i) R (�, i).

Proof. (1) Just take i := c(α, �).
(2) By subadditivity of the first kind.
(3) By subadditivity of the second kind. �
It thus follows that S := 〈κ × �, {R}〉 is a narrow κ-system. So, assuming

that NSP(�+, κ) holds, we may fix B ⊆ κ × � that forms a cofinal branch of S
through R. Pick A ∈ [κ]κ and i < � such that B = A× {i}. Now, if c were to
witness U(κ, 2, �, 2), then we could fix (α, �) ∈ [A]2 such that c(α, �) > i . But then
(α, i) R (�, i) would fail to hold, contradicting the fact that {(α, i), (�, i)} ⊆ B . �

Next, we prove a pair of lemmas establishing an equivalency between instances of
Usubadditive(...) and the existence of trees with ascent paths but no cofinal branches.
We first recall the following definition.

Definition 3.6. Suppose that T = (T,<T ) is a tree of height κ.
(1) For all α < κ, Tα denotes level α of T .
(2) A �-ascent path through T is a sequence of functions 〈fα | α < κ〉 such that:

(a) for all α < κ, fα : � → Tα ;
(b) for all α < � < κ, there is i < � such that, for all j ∈ [i, �), we have
fα(j) <T f�(j).

Lemma 3.7. Suppose that � ∈ Reg(κ), and T is a tree of height κ admitting a
�-ascent path but no branch of size κ. Then Usubadditive(κ, 2, �, �) holds.

Proof. Write T as (T,<T ). Fix a �-ascent path 〈fα | α < κ〉 through T , and
derive a coloring c : [κ]2 → � via

c(α, �) := min{i < � | ∀j ∈ [i, �) fα(j) <T f�(j)}.

We shall show that c witnesses Usubadditive(κ, 2, �, �).

Claim 3.7.1. c is subadditive.

Proof. Suppose that α < � < 	 < κ.

� Let i := max{c(α, �), c(�, 	)}. Then, for all j ∈ [i, �), we have

fα(j) <T f�(j) <T f	(j),

and hence fα(j) <T f	(j). Consequently, c(α, 	) ≤ i .

https://doi.org/10.1017/jsl.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.50


KNASTER AND FRIENDS III: SUBADDITIVE COLORINGS 1239

� Let i := max{c(α, 	), c(�, 	)}. Then, for all j ∈ [i, �), we have fα(j) <T
f	(j) and f�(j) <T f	(j). But T is a tree, and hence fα(j) <T f�(j).
Consequently, c(α, �) ≤ i . �

By Lemma 3.2, it remains to verify that c witnesses U(κ, 2, �, 2). Suppose this
is not the case. Then for some A ∈ [κ]κ, i := sup(c“[A]2) is < �. But then the <T -
downward closure of {fα(i) | α ∈ A} is a branch of size κ through T , contradicting
our assumptions. �

We now prove the converse.

Lemma 3.8. Suppose that � ∈ Reg(κ) and Usubadditive(κ, 2, �, �) holds. Then there
exists a tree T of height κ admitting a �-ascent path but no branch of size κ.

Proof. Let c : [κ]2 → � be a witness for Usubadditive(κ, 2, �, �). First, put

T := {(i, α, �) | i < �, α ≤ � < κ, ssup(Dc≤i(�)) ≤ α ≤ �},

and then let (i, α, �) <T (i ′, α′, � ′) iff i = i ′, α < α′ and either � = � ′ or � < � ′,
and c(�, � ′) ≤ i . Finally, let T := (T,<T ).

Claim 3.8.1. T is a tree.

Proof. It is clear that<T is anti-symmetric. To see that<T is transitive, suppose
that (i0, α0, �0) <T (i1, α1, �1) and (i1, α1, �1) <T (i2, α2, �2). Then i0 = i1 = i2
and α0 < α1 < α2. Now, if �1 ∈ {�0, �2}, then clearly (i0, α0, �0) <T (i2, α2, �2).
Otherwise �0 < �1 < �2 and c(�0, �2) ≤ max{c(�0, �1), c(�1, �2)} ≤ i0, as sought.

It is clear that <T is well-founded, so to see that <T is a tree ordering, suppose
that (i0, α0, �0) <T (i2, α2, �2) and (i1, α1, �1) < (i2, α2, �2). Then i0 = i2 = i1 and
to avoid trivialities, we may also assume that |{�0, �1, �2}| = 3, say, �0 < �1 < �2.
But then c(�0, �1) ≤ max{c(�0, �2), c(�1, �2)} ≤ i , as sought. �

Claim 3.8.2. For every α < κ, Tα := {(i, �, �) ∈ T | � = α} is nonempty and
constitutes the αth-level of T .

Proof. By induction on α < κ.

� For any set of ordinals x, ssup(x) = 0 iff x is empty, and hence {(i, 0, 0) |
i < �} ⊆ T0. In addition, it is clear that any element of T of the form (i, 0, �)
is minimal in T .

� For every α < κ such that Tα constitutes the αth-level of T , given
(i, α + 1, �) ∈ Tα+1, we shall find an immediate predecessor of it, lying
in Tα . There are two cases to consider:
�� If (i, α, �) is in T, then it is clearly an immediate predecessor of (i, α + 1, �).
�� Otherwise, we have α < ssup(Dc≤i (�)) ≤ α + 1, i.e., ssup(Dc≤i (�)) = α +

1, so α = max(Dc≤i (�)). Therefore, (i, α, α) is an immediate predecessor
of (i, α + 1, �).

� For every α ∈ acc(κ) such that, for every ᾱ < α, Tᾱ constitutes the ᾱth-level
of T , given (i, α, �) ∈ Tα , we shall show that for every ᾱ < α, there is �̄ ≤ �
such that (i, ᾱ, �̄) belongs to T and is <T -below (i, α, �).
�� If (i, ᾱ, �) is in T, then (i, ᾱ, �) <T (i, α, �), and we are done.
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�� Otherwise, ssup(Dc≤i (�)) > ᾱ. Let �̄ := min(Dc≤i (�) \ ᾱ). Since c is

subadditive, we have Dc≤i (�̄) = Dc≤i (�) ∩ �̄ , and hence, by our choice

of �̄ , it follows that ssup(Dc≤i (�̄)) ≤ α. Therefore, (i, ᾱ, �̄) ∈ T and

(i, ᾱ, �̄) <T (i, α, �). �
The fact that T has no branch of size κ follows immediately from the fact that c

witnesses U(κ, 2, �, 2), as in the proof of Claim 3.2.1. Finally, to see that T admits
a �-ascent path, for every α, define fα : � → Tα by letting fα(i) := (i, α, α). �

Under an additional assumption, we may infer the existence of a tree with the
preceding features that is moreover κ-Aronszajn. Before stating the next result, we
recall the notion of a C-sequence, which will be used in its proof.

Definition 3.9. A C-sequence over κ is a sequence 〈C� | � < κ〉 such that, for
all � < κ, C� is a closed subset of � with sup(C�) = sup(�).

Lemma 3.10. Suppose that � ≤ � ≤ κ are infinite regular cardinals such
that κ is <�-inaccessible and � < κ. If there exists an Eκ≥�-closed witness to
Usubadditive(κ, 2, �, �), then there exists a κ-Aronszajn tree T admitting a �-ascent
path.

Proof. As there is an1-Aronszajn tree, and as any1-Aronszajn tree admits an
-ascent path, we may assume that κ ≥ ℵ2. Fix anEκ≥�-closed coloring c : [κ]2 → �
witnessing Usubadditive(κ, 2, �, �). For every � ∈ acc(κ), let i(�) denote the least i ≤ �
such that sup(Dc≤i(�)) = � . Note that if cf(�) �= �, then i(�) < �. Now, for every

i < �, define a C-sequence �C i := 〈C i� | � < κ〉 as follows.

� Let C i0 := ∅.
� For all � < κ, let C i�+1 := {�}.

� For all � ∈ acc(κ) such that i ≥ i(�), let C i� := cl(Dc≤i (�)).

� For all � ∈ acc(κ) such that i < i(�) < �, let C i� := cl(Dc≤i(�)(�)).

� For any other � , let C i� be a club in � of order-type �.

Claim 3.10.1. For every α < κ, |{C i� ∩ α | � < κ, i < �}| < κ.

Proof. Suppose not, and let α be the least counterexample. As κ is <�-
inaccessible, cf(α) ≥ �. By minimality of α,

|{C i� ∩ α | � < κ, i < �, sup(C i� ∩ α) = α}| = κ.

As κ is in particular <�-inaccessible, moreover

|{C i� ∩ α | � < κ, i < �, sup(C i� ∩ α) = α, otp(C i�) > �}| = κ.

It follows that we may fix B ∈ [κ \ (α + 1)]κ and i < � such that:

• for every � ∈ B , i(�) ≤ i ;
• � �→ C i� ∩ α is an injection from B to the family of cofinal subsets of α.

Consequently, � �→ Dc≤i(�) ∩ α is an injection from B to the family of cofinal subsets
of α. Now, as cf(α) ≥ � and c is Eκ≥�-closed, it follows that for every � ∈ B ,
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c(α, �) ≤ i . But, then, by subadditivity, for every � ∈ B , Dc≤i(�) ∩ α = Dc≤i(α).
This is a contradiction. �

For each i < �, let �i2 : [κ]2 →  be the corresponding number of steps function
derived from walking along �C i , as in [34, Section 6.3]. Then, for all i < � and � < κ,
define a function �i2� : � →  via �i2�(α) := �i2(α, �). Finally, let

T := {�i2� � α | i < �, α ≤ � < κ}.

By Claim 3.10.1, T := (T,⊆) is a κ-tree.

Claim 3.10.2. T has no branch of size κ.

Proof. Otherwise, by a standard argument (e.g., the proof of [28, Corollary
2.6]), there exists i < � for which �i2 admits a homogeneous set of size κ. Fix such
an i. By [34, Theorem 6.3.2], then, we may fix a club C ⊆ κ such that, for every
α < κ, there exists � < κ such that C ∩ α ⊆ C i� . By the definition of �C i , for every
α < κ with otp(C ∩ α) > �, it follows that there exist j < � and � < κ such that
C ∩ α ⊆ cl(Dc≤j(�)). By the pigeonhole principle, we may now fix j < κ such that
for every α < κ, there exists �α ≥ α such that C ∩ α ⊆ cl(Dc≤j(�α)).

As c in particular witnesses U(κ, 2, �, 3), we may find (	, α) ∈ [C ∩ Eκ≥�]2 such
that c(	, �α) > j. As 	 ∈ C ∩ α, we infer that 	 ∈ cl(Dc≤j(�α)). As 	 ∈ Eκ≥� and c
is Eκ≥�-closed, it follows that 	 ∈ Dc≤j(�α), contradicting the fact c(	, �α) > j. �

Claim 3.10.3. T admits a �-ascent path.

Proof. As κ ≥ ℵ2, S := acc(κ) \ Eκ� is stationary. For every α < κ, define
fα : � → Tα via fα(i) := �i2 min(S\α) � α. To see that 〈fα | α < κ〉 forms a �-

ascent path through our tree, fix arbitrary α < � < κ. Write 	 := min(S \ α) and
� := min(S \ �). To avoid trivialities, suppose that 	 �= �, so that α ≤ 	 < � ≤ �.
As (	, �) ∈ [S]2, i := max{i(	), i(�), c(	, �)} is < �, and, for all j ∈ [i, �), Cj	 :=
cl(Dc≤j(	)) and Cj� := cl(Dc≤j(�)). By subadditivity, for every � < 	, c(�, 	) ≤
max{c(�, �), c(	, �)} and c(�, �) ≤ max{c(�, 	), c(	, �)}. So, for every j ∈ [i, �),
from c(	, �) ≤ i ≤ j, we infer that Cj	 = Cj� ∩ 	, �j2	 = �j2� , and fα(j) ⊆ f�(j),
as sought. �

This completes the proof. �

3.2. Locally small colorings.

Definition 3.11. A coloring c : [
+]2 → cf(
) is locally small iff |Dc≤i(�)| < 

for all i < cf(
) and � < 
+.

By Corollary 3.27, if 
 is regular, then any locally small coloring is a witness to
U(
+, 
+, 
, 
). In the general case, a locally small coloring witnesses an unbalanced
strengthening of U(
+, 2, cf(
), cf(
)), as follows.

Lemma 3.12. Suppose that c : [
+]2 → cf(
) is a locally small coloring.

(1) For every � < cf(
), c witnesses U(
+, 
� �, cf(
), cf(
)).
(2) If c is subadditive, then c moreover witnesses U(
+, 
+, cf(
), cf(
)).
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Proof. (1) Suppose that we are given � < cf(
), a pairwise disjoint subfamily
A ⊆ [
+]� of size 
+, and some i < cf(
). Find a large enough � < 
+ such that
A ∩ P(�) has size 
. Now, given � < cf(
), fix any B′ ∈ [A]� with min(

⋃
B′) > �.

Since c is locally small and |
⋃

B′| < cf(
), X :=
⋃
b∈B′

⋃
�∈b D

c
≤i(�) has size < 
.

As A ∩ P(�) consists of 
-many pairwise disjoint sets, it follows that A′ := {a ∈
A ∩ P(�) | a ∩ X = ∅} has size 
. Evidently, for every (a, b) ∈ A′ × B′, we have
a < b and min(c[a × b]) > i .

(2) Suppose that c is subadditive. By Lemma 3.2(2), it suffices to prove that c
witnesses U(
+, 
+, cf(
), 2). So, let A ∈ [
+]


+
and i < cf(
) be given; we need to

find B ∈ [A]

+

such that c(α, �) > i for all (α, �) ∈ [B]

+

.
As in the proof of Lemma 3.2, we define a tree ordering<i on 
+ by lettingα <i �

iff α < � and c(α, �) ≤ i . By Clause (1), c in particular witnesses U(
+, 2, cf(
), 2),
and hence (
+, <i) admits no chains of size 
+. Assuming that the sought-after
B ∈ [A]


+
does not exist, it follows that (A,<i) has no antichains of size 
+, so

(A,<i) is a 
+-Souslin tree. Forcing with this tree, we arrive at a 
+-distributive
forcing extension V [G ] in which (A,<i) does admit a chain of size 
+. But V [G ] is
a 
+-distributive forcing extension of V, and hence c remains locally small in V [G ],
and in particular, it still witnesses U(
+, 2, cf(
), 2). This is a contradiction. �

Lemma 3.13. For every infinite cardinal 
, there exists a locally small witness to
U(
+, 
+, cf(
), 
) which is subadditive of the first kind.

Proof. We focus on the case in which 
 is singular, since, if 
 is regular, a better
result is given by Lemma 3.14(1). Let 〈
i | i < cf(
)〉be a strictly increasing sequence
of regular uncountable cardinals converging to 
. By [30, Lemma 4.1], there exists
a coloring c : [
+]2 → cf(
) which is subadditive of the first kind and locally small
in the following strong sense: for all i < cf(
) and � < 
+, |Dc≤i(�)| ≤ 
i .

Claim 3.13.1. For every pairwise disjoint subfamily A ⊆ [
+]<
 of size 
+, for
every clubD ⊆ 
+, and for every i < cf(
), there exist 	 ∈ D, a ∈ A, and � < 	 such
that:

• 	 < a;
• for all α ∈ (�, 	) and � ∈ a, we have c(α, �) > i .

Proof. Given A and i as above, fix a large enough j < cf(
) such that j ≥ i and
Aj := {a ∈ A | |a| ≤ 
j} has size 
+. Now, given a clubD ⊆ 
+, fix 	 ∈ D ∩ E
+>
j ,
and pick any a ∈ Aj with 	 < a.

For all � ∈ a, we have |Dc≤j(�)| ≤ 
j < cf(	), so � := sup(
⋃
{Dc≤j(�) ∩ 	 |

� ∈ a}) is < 	. Then for all α ∈ (�, 	) and � ∈ a, we have c(α, �) > j ≥ i . �
It now follows from Fact 2.2 that c witnesses U(
+, 
+, cf(
), 
). �
Lemma 3.14 (Todorcevic [34]). (1) If 
 is regular, then there exists a locally

small and subadditive witness to U(
+, 
+, 
, 
).
(2) If �
 holds, then there exists a locally small and subadditive witness to

U(
+, 
+, cf(
), 
) which is moreover closed.

Proof. (1) Consider the function � : [
+]2 → 
 defined in [34, Section 9.1]. By
[34, Lemma 9.1.1], � is locally small. By [34, Lemma 9.1.2], � is subadditive.
By [34, Theorem 6.2.7], � is a witness to U(
+, 
+, 
, 
).
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(2) This follows from Lemmas 7.3.7, 7.3.8, 7.3.11, and 7.3.12 of [34], together
with Lemma 3.2(3). For 
 singular, a slightly better result is proved in [16,
Theorem 5.8]. �

The following result, due independently to Shani and Lambie-Hanson, shows
that the hypothesis of �
 cannot be weakened to �
,2 in Lemma 3.14(2). (We note
that GCH is not explicitly mentioned in the quoted results, but it is evident from
their proofs that, if GCH holds in the relevant ground models, then it continues to
hold in the forcing extensions witnessing the conclusion of the result.)

Fact 3.15 (Shani [29, Theorem 1] and Lambie-Hanson [16, Corollaries 5.13
and 5.14]). Relative to the existence of large cardinals, it is consistent with GCH
that there is an uncountable cardinal 
 such that �
,2 holds, and, for every � < 
,
Usubadditive(
+, 2, �, 2) fails. 
 can be either regular or singular here, though attaining
the result for singular 
 requires significantly larger cardinals than attaining it for
regular 
.

The principle SAP∗

 was introduced in [27, Definition 2.12] as a weakening of

Jensen’s weak square principle �∗

 . By [27, Theorem 2.6], assuming 2
 = 
+, SAP∗




implies that ♦(S) holds for every stationary subset S ⊆ 
+ that reflects stationarily
often. By [27, Corollary 2.16], if 
 is a singular cardinal such that 2<
 < 2
 = 
+

and every stationary subset of E

+

cf(
) reflects, then SAP∗

 moreover implies ♦∗(
+).

Proposition 3.16. Suppose that 
 is a singular cardinal and there exists a locally
small and subadditive coloring c : [
+]2 → cf(
). Then SAP∗


 holds and E

+

>cf(
) ∈
I [
+; 
].

Proof. Let c be as above. By [27, Definitions 2.4 and 2.12], as c is locally small
and subadditive of the first kind,2 to verify SAP∗


 , it suffices to verify that for every
stationary S ⊆ E
+cf(
) and every 	 ∈ Tr(S), there exists a stationary S	 ⊆ S ∩ 	 such

that sup(c“[S	 ]2) < cf(
).
To this end, fix arbitrary 	 ∈ E
+

>cf(
) and a stationary s ⊆ 	. As cf(	) > cf(
),
there exists a large enough i < cf(
) such that S	 := Dc≤i(	) ∩ s is stationary in 	.
Since c is subadditive of the second kind, for any pair (α, �) ∈ [S	 ]2, we have
that c(α, �) ≤ max{c(α, 	), c(�, 	)} ≤ i . Therefore, sup(c“[S	 ]2) ≤ i . Recalling
[27, Definition 2.3], the very same argument shows that E


+

>cf(
) ∈ I [

+; 
]. �

Corollary 3.17. If 
 is a singular strong limit and there exists a locally small and
subadditive coloring c : [
+]2 → cf(
), then AP
 holds.

Proof. By the preceding proposition, the hypothesis implies that E

+

>cf(
) ∈
I [
+; 
]. Now, given that 
 is a strong limit, we moreover get that 
+ ∈ I [
+; 
] =
I [
+], meaning that AP
 holds. �

3.3. Forms of coherence and levels of divergence. We will also be interested in
variants of subadditivity, as captured by the next definition and by Definition 3.24.

2The terminology in [27] is slightly different; there locally small is dubbed normal, and subadditive of
the first kind is dubbed subadditive.
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Definition 3.18. A coloring c : [κ]2 → � is weakly subadditive iff the following
two statements hold:

(1) c is weakly subadditive of the first kind, that is, for all � < 	 < κ and i < �,
there is j < � such that Dc≤i(�) ⊆ Dc≤j(	).

(2) c is weakly subadditive of the second kind, that is, for all � < 	 < κ and i < �,
there is j < � such that Dc≤i(	) ∩ � ⊆ Dc≤j(�).

Remark 3.19. The statement of [16, Lemma 5.11], together with Fact 3.15,
makes it clear that it is consistent with GCH + �
,2 (for either a regular or a singular
cardinal 
), that, for every � < 
, there exists no witness to U(
+, 2, �, 2) which is
weakly subadditive of the first kind. In particular, very good scales for ℵ , and hence
also the weaker combinatorial principle ADSℵ , both of which are consequences of
�ℵ,2, are not sufficient to get a weakly subadditive witness to U(ℵ+1, 2,ℵn, 2).

Proposition 3.20. Suppose that � ≤ � is a pair of infinite regular cardinals < κ,
and c : [κ]2 → � is a witness to U(κ, 2, �, 2) that is weakly subadditive of the second
kind. If c is Σ-closed for some stationary Σ ⊆ Eκ≥� , then c witnesses U(κ, κ, �, �).

Proof. Let Σ ⊆ Eκ≥� be stationary.

Claim 3.20.1. Suppose that A ⊆ [κ]<� is a family consisting of κ-many pairwise
disjoint sets, D is a club in κ, and i < � is a prescribed color. Then there exist
	 ∈ D ∩ Σ and a ∈ A such that:

(a) 	 < a;
(b) for all � ∈ a, we have c(	, �) > i .

Proof. For each � < κ, pick a� ∈ A with � < a� . As A ⊆ [κ]<cf(�), we may define
a function f : κ → � via

f(�) := min{j < � | ∀� ∈ a� [Dc≤i(�) ∩ � ⊆ Dc≤j(�)]}.

Fix j < � for which A := {� ∈ D ∩ Σ | f(�) = j} is cofinal. Since c witnesses
U(κ, 2, �, 2), we can now pick (	, �) ∈ [A]2 such that c(	, �) > j. Clearly, 	 < a� .
Now, if there exists � ∈ a� such that c(	, �) ≤ i , then 	 ∈ Dc≤i(�) ∩ � ⊆ Dc≤j(�)
which is not the case. Therefore, both clauses of the claim hold for a := a� . �

Evidently, if c is Σ-closed, then Clause (b) of the preceding is equivalent to:

(b’) there is � < 	 such that, for all α ∈ (�, 	) and all � ∈ a, we have c(α, �) > i .

Thus, the implication (2) =⇒ (3) of Fact 2.2 gives the desired conclusion. �

Motivated by the proof of Lemma 3.10, we introduce the following definition.

Definition 3.21 (Levels of divergence). For a coloring c : [κ]2 → �, let

∂(c) := {� ∈ acc(κ) | ∀	 < κ∀i < � sup(Dc≤i(	) ∩ �) < �}.

Note that ∂(c) ⊆ Eκcf(�) and that c is vacuously ∂(c)-closed.

Lemma 3.22. Suppose that c : [κ]2 → � is a coloring. If c is weakly subadditive of
the second kind, then

∂(c) = {� ∈ acc(κ) | ∀i < � sup(Dc≤i(�)) < �}.
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Proof. If c is weakly subadditive of the second kind, then for all � < 	 < κ and
i < � such that sup(Dc≤i(	) ∩ �) = � , there exists j < � such that Dc≤i(	) ∩ � ⊆
Dc≤j(�), and hence sup(Dc≤j(�)) = � . �

We will be particularly interested in situations in which ∂(c) is stationary in κ;
one reason for this is the following lemma, indicating that colorings c for which ∂(c)
is stationary automatically witness an instance of U(...).

Lemma 3.23. Suppose that c : [κ]2 → � is a coloring for which ∂(c) is stationary.
Then c witnesses U(κ, κ, �, cf(�)).

Proof. We prove that the coloring c satisfies Clause (2) of Fact 2.2 with � :=
cf(�), which will yield our desired conclusion. Fix a familyA ⊆ [κ]<cf(�) consisting of
κ-many pairwise disjoint sets, a club D ⊆ κ, and an i < �. Since ∂(c) is stationary,
we can fix 	 ∈ ∂(c) ∩D. Also fix an a ∈ A such that 	 < a. As 	 ∈ ∂(c), for all
� ∈ a, we have sup(Dc≤i(�) ∩ 	) < 	. Since |a| < cf(�) = cf(	), we can find � < 	
such that sup(Dc≤i(�) ∩ 	) < � for all � ∈ a. Now, for all α ∈ (�, 	) and all � ∈ a,
we have α /∈ Dc≤i(�), so c(α, �) > i , as desired. �

Definition 3.24 (Forms of coherence). Let c : [κ]2 → � be a coloring.

(1) c is �∞-coherent iff for all 	 < � < κ, there is j < � such that, for all i < �,
Dc≤i(	) ⊆ Dc≤i+j(�) and Dc≤i(�) ∩ 	 ⊆ Dc≤i+j(	).

(2) For a cardinal 
 < κ, c is 
-coherent iff for every (	, �) ∈ [κ]2,

|{α < 	 | c(α, 	) �= c(α, �)}| < 
.
(3) For S ⊆ acc(κ),3 c is S-coherent iff for all � ≤ 	 < � < κ with � ∈ S,

sup{α < � | c(α, 	) �= c(α, �)} < �.
Remark 3.25. For every 
 ∈ Reg(κ), c is 
-coherent iff it is Eκ
 -coherent iff it is

Eκ≥
-coherent.

Lemma 3.26. Let c : [κ]2 → � be a coloring, with � ∈ Reg(κ).

(1) If c is �-coherent, then it is �∞-coherent.
(2) If c is subadditive, then it is ∂(c)-coherent and �∞-coherent.
(3) If c is �∞-coherent, then it is weakly subadditive.

Proof. (1) If c is �-coherent, then for all 	 < � < κ,

j := sup{c(α, 	), c(α, �) | α < 	, c(α, 	) �= c(α, �)}
is < �, and, for every i ∈ [j, �), Dc≤i(	) = Dc≤i(�) ∩ 	.

(2) Suppose that c is subadditive. To see that c is �∞-coherent, let
	 < � < κ be arbitrary. Set j := c(	, �). For all i < � and α ∈ Dc≤i(	), c(α, �) ≤
max{c(α, 	), c(	, �)} ≤ max{i, j}, and, for all i < � and α ∈ Dc≤i(�) ∩ 	, c(α, 	) ≤
max{c(α, �), c(	, �)} ≤ max{i, j}. Altogether, Dc≤i(	) = Dc≤i(�) ∩ 	 for every
i ∈ [j, �).

3Strictly speaking, to avoid ambiguity with Clause (2), we need to assume that |S| ≥ 2, but in all
cases of interest S will in fact be stationary in κ.
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Next, we show that c is ∂(c)-coherent. To this end, fix � ≤ 	 < � < κ with � ∈
∂(S). Set i := c(	, �). By the subadditivity of c, it follows thatDc≤j(	) = Dc≤j(�) ∩ 	
for all j ∈ [i, �). In particular, {α < � | c(α, 	) �= c(α, �)} ⊆ Dc≤i(	) ∩ � . Since � ∈
∂(c), sup(Dc≤i(	) ∩ �) < � , so we are done.

(3) This is clear. �
Corollary 3.27. If 
 is regular and c : [
+]2 → 
 is locally small, then ∂(c) =

E

+


 , and hence:

(1) c is a witness to U(
+, 
+, 
, 
);
(2) if c is subadditive, then c is 
-coherent.

Proof. The fact that ∂(c) = E

+


 is immediate. Now, Clause (1) follows from
Lemma 3.23, and Clause (2) follows from Lemma 3.26(2). �

Lemma 3.28. Let � ∈ Reg(κ). Either of the following implies that Usubadditive

(κ, 2, �, 2) holds:

(1) There exists a �-coherent witness to U(κ, 2, �, 2).
(2) � is uncountable, and there exists an �∞-coherent witness to U(κ, 2, �, 2).

Proof. (1) By Clause (2) and Lemma 3.26(1), we may assume here that � = ;
however, the proof works uniformly. Suppose that c : [κ]2 → � is a �-coherent
witness to U(κ, 2, �, 2). Define a coloring d : [κ]2 → � by letting, for all 	 < � < κ,
d (	, �) be the least j < � such that Dc≤i(	) = Dc≤i(�) ∩ 	 for every i ∈ [j, �). It is
clear that d is subadditive. Now, if d fails to witness U(κ, 2, �, 2), then we may
fix A ∈ [κ]κ and j < � such that d (	, �) ≤ j for every pair (	, �) ∈ [A]2. For every
	 ∈ A, let 	 ′ := min(A \ (	 + 1)) and i	 := c(	, 	 ′). Fix A′ ∈ [A]κ and i < � such
that i = max{j, i	} for all 	 ∈ A′.

Then, for every (	, �) ∈ [A′]2, 	 < 	 ′ ≤ � and 	 ∈ Dc≤i	 (	
′) ⊆ Dc≤i(	 ′) =

Dc≤i(�) ∩ 	 ′, so c(	, �) ≤ i . It follows that c“[A′]2 is bounded in �, contradicting the
fact that c witnesses U(κ, 2, �, 2).

(2) Suppose that c : [κ]2 → � is an �∞-coherent witness to U(κ, 2, �, 2) and
� > ℵ0. For every j < �, let �j denote the least indecomposable ordinal greater
than j. For every (	, �) ∈ [κ]2, let j	,� denote the least j < � such that, for
all i < �, Dc≤i(	 + 1) ⊆ Dc≤i+j(� + 1) and Dc≤i(� + 1) ∩ (	 + 1) ⊆ Dc≤i+j(	 + 1).
Finally, define a coloring d : [κ]2 → � via d (	, �) := �j	,� .

Claim 3.28.1. Let � < 	 < � < κ. Then:

(i) d (�, �) ≤ max{d (�, 	), d (	, �)};
(ii) d (�, 	) ≤ max{d (�, �), d (	, �)}.

Proof. (i) For all i < �, Dc≤i(� + 1) ⊆ Dc≤i+j�,	 (	 + 1) ⊆ Dc≤i+j�,	+j	,� (� + 1)

and Dc≤i(� + 1) ∩ (� + 1) ⊆ Dc≤i+j	,� (	 + 1) ∩ (� + 1) ⊆ Dc≤i+j	,�+j�,	 (� + 1).

Therefore, j�,� is no more than j := max{j�,	 + j	,� , j	,� + j�,	}. As � :=
max{d (�, 	), d (	, �)} is an indecomposable ordinal greater than both j�,	 and
j	,� , it is moreover greater than j. Altogether, d (�, �) = �j�,� ≤ �j ≤ �.

(ii) For all i < �, Dc≤i(� + 1) ⊆ Dc≤i+j�,� (� + 1) ∩ (	 + 1) ⊆ Dc≤i+j�,�+j	,� (	 + 1)

and Dc≤i(	 + 1) ∩ (� + 1) ⊆ Dc≤i+j	,� (� + 1) ∩ (� + 1) ⊆ Dc≤i+j	,�+j�,� (� + 1).
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Therefore, j�,	 is no more than j := max{j�,� + j	,� , j	,� + j�,�}. As � :=
max{d (�, �), d (	, �)} is an indecomposable ordinal greater than both j�,� and
j	,� , it is moreover greater than j. Altogether, d (�, 	) = �j�,	 ≤ �j ≤ �. �

Now, if d fails to witness U(κ, 2, �, 2), then we may fixA ∈ [κ]κ and j < � such that
d (	, �) ≤ j for every pair (	, �) ∈ [A]2. By possibly increasing j and thinning out A,
we may moreover assume that for every 	 ∈ A, c(	, 	 + 1) ≤ j andDc≤i(	 + 1) ∩ 	 ⊆
Dc≤i+j(	) for all i < �. It follows that for every (	, �) ∈ [A]2, 	 ∈ Dc≤j(	 + 1) ∩ � ⊆
Dc≤j+j(� + 1) ∩ � ⊆ Dc≤j+j+j(�), so that c“[A]2 ≤ j · 3 < �, contradicting the fact
that c witnesses U(κ, 2, �, 2). �

Corollary 3.29. If there exists a uniformly coherent κ-Souslin tree, then, for every
� ∈ Reg(κ), Usubadditive(κ, 2, �, �) holds.

Proof. Suppose that there exists a uniformly coherentκ-Souslin tree. This means
that there exists a downward closed subfamily T ⊆ <κ2 such that:

(a) (T,⊆) is a κ-Souslin tree;
(b) for all s, t ∈ T , {� ∈ dom(s) ∩ dom(t) | s(�) �= t(�)} is finite;
(c) for all s, t ∈ T , if dom(s) < dom(t), then s ∗ t := s ∪ (t � (dom(t) \

dom(s))) is in T.

Claim 3.29.1. There exists a downward closed subfamily T̂ ⊆ <κκ satisfying
(a)–(c), in addition to the following:

(d) For all t ∈ T̂ ∩ ακ and i < α, t�〈i〉 ∈ T̂ .

Proof. The proof is similar to that of [14, Theorem 3.6]. Denote Tα := T ∩ ακ
for all α < κ. By a standard fact, we may fix a club E ⊆ κ such that, for every
(α, �) ∈ [E]2, every node in Tα admits at least |α|-many extensions in T� . We may
also assume that 0 ∈ E. Let � : κ ↔ E denote the order-preserving bijection, and
denote T ′ :=

⋃
α<κ T�(α). Our next goal is to define a map Π : T ′ → <κκ such that

all of the following hold:

(1) For all α < κ and t ∈ T�(α), Π(t) ∈ ακ.
(2) For all s � t from T ′, Π(s) � Π(t).
(3) For all s, t ∈ T ′, if dom(s) < dom(t), then Π(s ∗ t) = Π(s) ∗ Π(t).

We shall define Π � T�(α) by recursion on α < κ:

� For α = 0, we have T�(α) = T0 = {∅}, so we set Π(∅) := ∅.
� For α = ᾱ + 1 such that Π � T�(ᾱ) has been successfully defined, we first fix
t̄ ∈ T�(ᾱ). Find a cardinal � ≥ |ᾱ| and an injective enumeration 〈ti | i < �〉
of all the extensions of t̄ in T�(α). Finally, for every t ∈ T�(α), find the unique
i < � such that t̄ ∗ t = ti , and then let Π(t) := Π(t � ᾱ)�〈i〉. It is clear that
Properties (1)–(3) are preserved.

� Forα ∈ acc(κ) such that Π � T�(ᾱ) has been successfully defined for all ᾱ < α,
we just let Π(t) :=

⋃
{Π(t � �(ᾱ)) | ᾱ < α} for every t ∈ T�(α). It is clear that

Properties (1)–(3) are preserved.

Set T̂ := Im(Π). By Property (2), (T̂ ,⊆) is order-isomorphic to (T ′,⊆) which is
a κ-sized subtree of (T,⊆), so (T̂ ,⊆) is indeed a κ-Souslin tree. By Properties (3)
and (b), for all s, t ∈ T̂ , {� ∈ dom(s) ∩ dom(t) | s(�) �= t(�)} is finite. By Properties
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(3) and (c), for all s, t ∈ T̂ , if dom(s) < dom(t), then s ∗ t := s ∪ (t � (dom(t) \
dom(s))) is in T̂ . Finally, by the definition of Π � T�(α) for successor ordinals
α < κ, and by Property (c), it is indeed the case that, for all t ∈ T̂ ∩ ακ and i < α,
t�〈i〉 ∈ T̂ . �

Let � ∈ Reg(κ). By Lemmas 3.28 and 3.2(2), in order to show that
Usubadditive(κ, 2, �, �) holds, it suffices to find a �-coherent witness to U(κ, 2, �, 2).
To this end, fix T̂ as in the preceding claim, and then fix some sequence 〈t� | � < κ〉
such that t� ∈ T̂ ∩ �κ for all � < κ. Define a coloring c : [κ]2 → � via

c(α, �) :=

{
t�(α), if t�(α) < �,
0, otherwise.

Evidently, c is -coherent. Now, givenA ∈ [κ]κ, we claim that c“[A]2 = �. To see
this, let i < �, and note that S := {tα�〈i〉 | α ∈ A \ �} forms a subset of T̂ of size κ,
and hence it cannot be an antichain. Pick s, t ∈ S such that s � t. Let (α, �) ∈ [A]2

be such that s = tα�〈i〉 and t = t��〈i〉. As tα�〈i〉 and t� are both initial segments
of t, we infer that t�(α) = i , and hence c(α, �) = i , as sought. �

Remark 3.30. By [3, Theorem C], for every singular cardinal 
, �(
+) + GCH
entails the existence of a uniformly coherent 
+-Souslin tree. By Fact 3.15 and the
preceding corollary, the same conclusion does not follow from �(
+, 2) + GCH.

We now show that the existence of a coloring c for which ∂(c) is stationary is in
fact equivalent to the existence of a nonreflecting stationary subset of Eκ� .

Lemma 3.31. For a subset S ⊆ Eκ� , the following are equivalent:

(1) For every 	 ∈ Eκ> , S ∩ 	 is nonstationary in 	.
(2) There exists a coloring c : [κ]2 → � for which ∂(c) ⊇ S.
(3) There exists an S-coherent, closed coloring c : [κ]2 → � for which ∂(c) ⊇ S.

Proof. (3) =⇒ (2): This is trivial.
(2) =⇒ (1): Suppose that c : [κ]2 → � is a coloring for which ∂(c) ⊇ S. Towards

a contradiction, suppose that we are given 	 ∈ Eκ> such that S ∩ 	 is stationary
in 	. As S ⊆ Eκ� , it follows that cf(	) > �, and hence 	 /∈ ∂(c). As cf(	) �= �, we may
pick i < � such that sup(Dc≤i(	)) = 	. Now, pick � ∈ acc+(Dc≤i(	)) ∩ S. It follows
that sup(Dc≤i(	) ∩ �) = � , contradicting the fact that � ∈ S ⊆ ∂(c).

(1) =⇒ (3): Pick a C-sequence �C = 〈Cα | α < κ〉 such that, for all α < κ,
otp(Cα) = cf(α) and acc(Cα) ∩ S = ∅. Let tr be the function derived from �C as
in [20, Definition 4.4]. Define a coloring c : [κ]2 → � via

c(α, 	) := sup({otp(C� ∩ α) | � ∈ Im(tr(α, 	))} ∩ �).

By [20, Lemma 4.7], c is closed.

Claim 3.31.1. Let � < 	 < κ with � ∈ S. Then there exists � < � such that, for
every α ∈ (�, �), c(α, 	) = c(α, �) ≥ otp(C� ∩ α).
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Proof. For every α < � , since � ∈ Im(tr(α, �)) and otp(C� ∩ α) <
otp(C�) = �, it is immediate that c(α, �) ≥ otp(C� ∩ α). Set j := c(�, 	), and
then fix a large enough � < � such that j ≤ otp(C� ∩ �) and 
(�, 	) ≤ �.4

Let α ∈ (�, �). Then tr(α, 	) = tr(�, 	)� tr(α, �), and hence

c(α, 	) = sup({otp(C� ∩ α) | � ∈ Im(tr(�, 	)) ∪ Im(tr(α, �))} ∩ �).

In particular, c(α, 	) ≥ c(α, �) ≥ otp(C� ∩ α) ≥ j. Now, as

j = c(�, 	) = sup({otp(C� ∩ �) | � ∈ Im(tr(�, 	))} ∩ �)

≥ sup({otp(C� ∩ α) | � ∈ Im(tr(�, 	))} ∩ �),

it follows that

c(α, 	) = sup({otp(C� ∩ α) | � ∈ Im(tr(α, �))} ∩ �) = c(α, �),

as sought. �
It now immediately follows that ∂(c) ⊇ S and that c is S-coherent. �
Remark 3.32. By Fact 3.15, the preceding lemma cannot be strengthened to

assert that the existence of a nonreflecting stationary subset of Eκ� gives rise to a
subadditive coloring c : [κ]2 → � for which ∂(c) is stationary. In fact, a nonreflecting
stationary subset of Eκ� is not even enough to imply the existence of a coloring
c : [κ]2 → � such that ∂(c) is stationary and c is weakly subadditive of the first
kind. This is because, by Theorem 3.45, PFA implies that, for example, any witness
to U(3, 2, , 2) is not weakly subadditive of the first kind, whereas, by a result of
Beaudoin (see the remark at the end of [1, Section 2]), PFA is consistent with the
existence of a nonreflecting stationary subset of E3

 .

By Lemmas 3.14(1) and 3.27(2), for every infinite regular cardinal 
, there exists
a locally small coloring c : [
+]2 → 
 that is 
-coherent. We shall now prove that for
every singular cardinal 
, a locally small coloring c : [
+]2 → cf(
) is never cf(
)-
coherent. Assuming that c is subadditive of the first kind (which is indeed possible,
by Lemma 3.13), even weaker forms of coherence are not feasible.

Lemma 3.33. Suppose that c : [
+]2 → cf(
) is a locally small coloring.
(1) If 
 is regular or if c is subadditive of the first kind, then for every cardinal � < 
,

c is not �-coherent.
(2) If 
 is singular, then c is not cf(
)-coherent.

Proof. The proof is similar to that of [14, Theorem 3.7]. Suppose for the sake of
contradiction that c is �-coherent for some fixed cardinal � < 
 and that either c is
subadditive of the first kind or � ≤ cf(
).

Claim 3.33.1. For every 	 < 
+, there exists i < cf(
) such that

otp(Dc≤i(	)) + � < otp(Dc≤i(	 + 
)).

Proof. Let 	 < 
+. Denote � := 	 + 
. First, since otp([	, �)) = 
 > �, we may
let

i0 := min{i < cf(
) | otp(Dc≤i(�) \ 	) > �}.

4The function 
(·, ·) is defined on [34, p. 258].
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Second, if � ≤ cf(
), then, since c is �-coherent,

i1 := ssup{c(α, 	), c(α, �) | α < 	, c(α, 	) �= c(α, �)}

is an ordinal < cf(
). If � > cf(
), then we instead let i1 := c(	, �).
We claim that i := max{i0, i1} is as sought.

� If � ≤ cf(
), then for every α ∈ Dc≤i (	), either c(α, �) ≤ i1 ≤ i or c(α, �) =
c(α, 	) ≤ i . Therefore, Dc≤i (	) ⊆ Dc≤i (�).

� Otherwise, c is subadditive of the first kind and ii = c(	, �). Then, for every
α ∈ Dc≤i (	), we have c(α, �) ≤ max{c(α, 	), c(	, �)} ≤ max{c(α, 	), i1} ≤ i ,
so that α ∈ Dc≤i (�). Thus, again, Dc≤i (	) ⊆ Dc≤i (�).

Now, set x := Dc≤i(�) \ 	, and notice that otp(x) ≥ otp(Dc≤i0 (�) \ 	) ≥ � + 1.
AltogetherDc≤i(	) � x ⊆ Dc≤i(�) withDc≤i(	) ⊆ min(x), and hence otp(Dc≤i(	)) +
� + 1 ≤ otp(Dc≤i(�)). �

By the claim, for each 	 < 
+, we may fix i	 < cf(
) such that otp(Dc≤i	 (	)) + � <
otp(Dc≤i	 (	 + 
)). Fix a sparse enough stationary subsetS ⊆ 
+ along with i < cf(
)

such that i	 = i for all 	 ∈ S, and such that � + 
 < 	 for all (�, 	) ∈ [S]2. Define a
map f : S → 
 via

f(�) := otp(Dc≤i(� + 
)).

Let (�, 	) ∈ [S]2. As � + 
 < 	 and c is �-coherent,

otp(Dc≤i(� + 
)) < otp(Dc≤i(	)) + �.

Altogether,

f(�) = otp(Dc≤i(� + 
)) < otp(Dc≤i(	)) + � < otp(Dc≤i(	 + 
)) = f(	).

Therefore, f is an injection from a set of size 
+ to 
, which is a contradiction. �

We conclude this subsection by introducing a notion of forcing that adds a
subadditive coloring c : [κ]2 → � whose ∂(c) is stationary. This will prove Clause
(1) of Theorem C.

Theorem 3.34. Suppose that � ∈ Reg(κ). Then:

(1) There exists a �+-directed closed, κ-strategically closed forcing notion P
that adds an Eκ≥� -closed, subadditive coloring c : [κ]2 → � for which ∂(c) is
stationary. In particular, �P “ Usubadditive(κ, κ, �, �).”

(2) If κ = 
+ and cf(
) = � < 
, then there is also a �+-directed closed, (
+ 1)-
strategically closed (hence (<κ)-distributive) forcing notion P that adds a
coloring as above which is moreover locally small.

Proof. In Case (2), let 〈
i | i < �〉 be an increasing sequence of regular cardinals
converging to 
, with 
i > �. In Case (1), simply let 
i := κ for all i < �.
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We will define a forcing notion P whose generic object will generate a coloring c as
above. Our posetP consists of all subadditive colorings of the formp : [	p + 1]2 → �
such that:

• 	p < κ;

• p is E	p+1
≥� -closed;

• for all � ≤ 	p and all i < �, we have |Dp≤i (�)| < 
i .

P is ordered by reverse inclusion. We also include the empty set as the unique
maximal condition in P.

Claim 3.34.1. P is �+-directed closed.

Proof. Note that P is tree-like, i.e., if p, q, r ∈ P and r extends both p and q,
then p and q are ≤P-comparable. It therefore suffices to prove that P is �+-closed.
To this end, suppose that � < �+ and �p = 〈p� | � < �〉 is a decreasing sequence of
conditions inP. We may assume without loss of generality that � is an infinite regular
cardinal and �p is strictly decreasing, i.e., 〈	� | � < �〉 is strictly increasing, where 	�
denotes 	p� . For all � < �, by possibly extending p� to copy some information from
p�+1, we may also assume that 	� is a successor ordinal. Let 	∗ := sup{	� | � < �},
and let q∗ :=

⋃
�<� p�. Note that q∗ is not a condition in P, since its domain is not

the square of a successor ordinal. We will extend it to a condition q : [	∗ + 1]2 → �,
which will then be a lower bound for �p. To do so, it suffices to specify q(α, 	∗) for
all α < 	∗. There are two cases to consider:

� Assume that � < �. We can then fix an i∗ < � such that q∗(	�, 	�′) ≤ i∗ for all
� < �′ < �. Now, given α < 	∗, let �α < � be the least � for which α < 	� and then
set q(α, 	∗) := max{i∗, q∗(α, 	�α )}. It is straightforward to prove, using our choice
of i∗ and the fact that each p� is subadditive, that the coloring q thus defined is also
subadditive.

Since each p� is E	�+1
≥� -closed, in order to show that q is E	

∗+1
≥� -closed, it suffices

to prove that for allA ⊆ 	∗ and all i < � such thatA ⊆ Dq≤i(	∗) and sup(A) ∈ E	
∗

≥� ,
we have sup(A) ∈ Dq≤i(	∗). To this end, fix such an A and i. Let � := sup(A). By
our choice of i∗, we know that i ≥ i∗ and q(α, 	∗) = max{i∗, p�� (α, 	�� )} for all

α ∈ A ∪ {�}. By the fact that p�� is E
	��+1

≥� -closed, we know that p�� (�) ≤ i , so
� ∈ Dq≤i(	∗).

To show that q is a condition, it remains only to verify that |Dq≤i(	∗)| < 
i for all
i < �. To this end, fix i < �. By our construction, we haveDq≤i(	

∗) ⊆
⋃
�<� D

p�
≤i(	�).

Since � < 
i and 
i is regular, the fact that each p� is a condition in P then implies
that |Dq≤i(	∗)| < 
i .

� Assume that � = �. Fix a strictly increasing sequence 〈i� | � < �〉 of ordinals
below � such that, for all � < �′ < �, we have q∗(	�, 	�′) ≤ i�′ . Now, givenα < 	∗, let
�α < � be the least � for which α < 	� and then set q(α, 	∗) := max{i�α , q∗(α, 	�α )}.
It is again straightforward to prove that the coloring q thus defined is subadditive.
The verification involves a case analysis; to illustrate the type of argument involved,
we go through the proof of one of the required inequalities in one of the cases,
leaving the other similar arguments to the reader.
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Suppose that α < � < 	∗ and we have 	�α < � . We will prove that q(α, 	∗) ≤
max{q(α, �), q(�, 	∗)}. If q(α, 	∗) = i�α , then this is trivial, so assume that
q(α, 	∗) = q∗(α, 	�α ). Now, since each p� is subadditive (and hence q∗ is subad-
ditive), we have

q∗(α, 	�α ) ≤ max{q∗(α, �), q∗(	�α , �)}
≤ max{q∗(α, �), q∗(	�α , 	�� ), q∗(�, 	�� )}
≤ max{q∗(α, �), i�� , q

∗(�, 	�� )}
= max{q(α, �), q(�, 	∗)}.

Note that the final equality above holds because q(α, �) = q∗(α, �) and q(�, 	∗) =
max{i�� , q∗(�, 	�� )}.

We now verify that q is E	
∗+1

≥� -closed. As in the previous case, we fix an A ⊆ 	∗

and an i < � such that A ⊆ Dq≤i(	∗) and � := sup(A) is in E	
∗

≥� . It will suffice to
show that � ∈ Dq≤i(	∗). To avoid triviality, assume that � /∈ A. Since � is a limit
ordinal we know that � is not equal to 	� for any � < �. It follows that, by passing
to a tail of A if necessary, we may assume that �α = �� for all α ∈ A. Then, for all
α ∈ A ∪ {�}, we have q(α, 	∗) = max{i�� , p	� (α, 	�� ). It follows that i ≥ i�� and,

since p	� is E
	�+1
≥� -closed, that p�� (�) ≤ i , so � ∈ Dq≤i(	∗).

The fact that |Dq≤i(	∗)| < 
i for all i < � follows by exactly the same reasoning
as in the previous case. �

Let ċ be the canonical P-name for the union of the generic filter. Then ċ is forced
to be a subadditive function from an initial segment of [κ]2 to � (we will see shortly
that its domain is forced to be all of [κ]2).

Note that in the � = � case of the above claim, we actually proved something
stronger that will be useful later: if �p = 〈p� | � < �〉 is a strictly decreasing sequence
of conditions in P and 	 := sup{	p� | � < �}, then there is a lower bound q for �p
such that q �P “	 ∈ ∂(ċ).”

The next claim will show that P is (<κ)-distributive.

Claim 3.34.2. In Case (1), P is κ-strategically closed. In Case (2), P is (
+ 1)-
strategically closed.

Proof. In Case (1), denote � := κ. In Case (2), denote � := 
. We describe a
winning strategy for Player II in ��(P). (Note that, if � = 
, then it appears that
we are just showing that P is 
-strategically closed, but the fact that P is �+-closed
will then show that P is in fact (
+ 1)-strategically closed.) We will arrange so that,
if 〈p� | � < �〉 is a play of the game in which Player II plays according to their
prescribed strategy, then, letting 	� := 	p� for all � < �,

(a) 〈	� | � < � is a nonzero even ordinal〉 is a continuous, strictly increasing
sequence;

(b) for all even ordinals � < � < �, we have p�(	�, 	�) = min{i < � | � < 
i}.

Now suppose that � < � is an even ordinal and 〈p� | � < �〉 is a partial run of ��(P)
that thus far satisfies requirements (a) and (b) above. We will describe a strategy for
Player II to choose the next play, p� , while maintaining (a) and (b).
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� If � = 0, then we are required to set p� = 1P = ∅.
� If � = �′ + 1 is a successor ordinal, then, since � is even, there is

another even ordinal �′′ such that � = �′′ + 2. Let 	∗ := 	�′ + 1. We will
define p� so that 	� = 	∗. To do so, we must define p�(α, 	∗) for all α < 	∗.
We assume that 	�′′ < 	�′ (if they are equal, the construction is similar
but easier). Let i∗ := min{i < � | � < 
i}. First, to satisfy (b), we must let
p�(	�′′ , 	∗) := i∗. Next, for all α < 	�′′ , let p�(α, 	∗) := max{p�′′(α, 	�′′), i∗}. Let
i∗∗ := max{i∗, p�′(	�′′ , 	�′)}, and set p(	�′ , 	∗) := i∗∗. Finally, for all α ∈ (	�′′ , 	�′),
let p�(α, 	∗) := max{i∗∗, p�′(α, 	�′)}. It is easily verified that p� thus defined is a
condition in P and that we have continued to satisfy requirements (a) and (b).

� If � is a nonzero limit ordinal, then let p∗ :=
⋃
�<� p�, and let 	∗ := sup{	� |

� < �}. We will define a lower bound p� for the run of the game so far with 	� = 	∗.
To do so, it suffices to define p�(α, 	∗) for all α < 	∗. Let i∗ := min{i < � | � < 
i}.
For all α < 	∗, let �α < � be the least even ordinal � such that α < 	�, and then
set p�(α, 	∗) := max{i∗, p∗(α, 	�α )}. By the fact that the play of the game thus
far satisfied (b), we know that p∗(	�, 	�′) ≤ i∗ for all even ordinals � < �′ < �, so
this definition does in fact ensure that p�(	�, 	�) = i∗, so we have satisfied (b). The
fact that the play of the game thus far satisfied (a) and (b) also implies that p� is

subadditive andE
	�+1
≥� -closed and that we have continued to satisfy requirement (a).

Finally, to show that |Dp�≤i(	�)| < 
i for all i < �, note firstly that D
p�
≤i(	�) = ∅ for

all i < i∗ and, secondly, that for all i ∈ [i∗, �), we have D
p�
≤i(	�) ⊆

⋃
�<� D

p�
≤i(	�).

For each i ∈ [i∗, �), we know that � < 
i and 
i is regular, so the fact that p� is a
condition for all � < � implies that |Dp�≤i(	�)| < 
i .

This completes the description of Player II’s winning strategy and hence the proof
of the claim. �

By the argument of the proof of the above claim, it follows that, for every α < κ,
the set Eα of p ∈ P for which 	p ≥ α is dense in P. Therefore, the domain of ċ
is forced to be [κ]2. The definition of P also immediately implies that ċ is forced
to be Eκ≥� -closed and, in Case (2), ċ is also forced to be locally small. We now
finish the proof of the theorem by showing that ∂(ċ) is forced to be stationary. (By
Lemma 3.23, this will imply that ċ witnesses Usubadditive(κ, κ, �, �).) To this end, fix a
condition p and a P-name Ḋ forced to be a club in κ. We will find q ≤ p and 	 < κ
such that q �P “	 ∈ Ḋ ∩ ∂(ċ).”

Using the fact that P is �+-closed and the fact that each Eα as defined above is
dense, fix a decreasing sequence 〈p� | � < �〉 of conditions in P together with an
increasing sequence 〈α� | � < �〉 of ordinals below κ such that:

(1) p0 = p;
(2) for all � < �, p�+1 �P “α� ∈ Ḋ”;
(3) for all � < �, 	� < α� < 	�+1.

Now let 	 := sup{	� | � < �}, so that 	 = sup{α� | � < �}. By the proof of
Claim 3.34.1, we can find a lower bound q for 〈p� | � < �〉 such that q �P “	 ∈ ∂(ċ).”
For all � < �, since q extends p�+1, q also forces α� to be in Ḋ. Since 	 = sup{α� |
� < �} and Ḋ is forced to be a club, it follows that q forces 	 to be in Ḋ. We then
have q �P “	 ∈ Ḋ ∩ ∂(ċ), ” as desired. �
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3.4. Large cardinals and consistency results. In this subsection, we investigate
the effect on Usubadditive(...) of certain compactness principles, including stationary
reflection, the existence of highly complete or indecomposable ultrafilters, and the
P-ideal dichotomy

Recall that, for stationary subsets S,T of κ, Refl(�, S, T ) asserts that, for every
�-sized collection S of stationary subsets of S, there exists � ∈ T ∩ Eκ> such that
S ∩ � is stationary in � for every S ∈ S. We write Refl(�, S) for Refl(�, S, κ).

Theorem 3.35. Suppose that Σ is some stationary subset of κ, c : [κ]2 → � is a
Σ-closed witness to U(κ, 2, �, 2), and Refl(�,Σ, κ \ ∂(c)) holds. Then:

(1) If κ is �-inaccessible, then c is not subadditive of the first kind.
(2) If ∂(c) is stationary, then c is not subadditive.
(3) If c is locally small, then c is not subadditive.

Proof. Suppose that c is subadditive of the first kind. For each α < κ, pick
iα < �, for which the following set is stationary:

Siαα := {� ∈ Σ | α < � & c(α, �) ≤ iα}.

Next, using the pigeonhole principle, fixH ∈ [κ]κ and i < � such that iα = i for all
α ∈ H .

Claim 3.35.1. For every A ∈ [H ]� , there is �A < κ above sup(A) such that
supα∈A c(α, �A) < �.

Proof. Given A ∈ [H ]� , as Refl(�,Σ, κ \ ∂(c)) holds, we may pick � ∈ κ \
∂(c) such that Siα ∩ � is stationary in � for all α ∈ A. Now, as � /∈ ∂(c), we
may find some j < � and 	 ∈ [�, κ) such that sup(Dc≤j(	)) ∩ � = � . As c is
Σ-closed, it follows that there exists a club E in � such that E ∩ Σ ⊆ Dc≤j(	).
For every α ∈ A, fix �α ∈ Siα ∩ E. Since c is subadditive of the first kind, we
have c(α, 	) ≤ max{c(α, �α), c(�α, 	)} ≤ max{i, j}. So, setting �A = 	, we have
supα∈A c(α, �A) < �. �

(1) Using Lemma 2.4(1), fix � < κ such that, for cofinally many � < κ,
{c(α, �) | α ∈ H ∩ �} is unbounded in �. Assuming that κ is �-inaccessible, we
may find some A ∈ [H ∩ �]� such that, for cofinally many � < κ, {c(α, �) | α ∈ A}
is unbounded in �. In particular, we may find such a � < κ above �A. Set
j := max{supα∈A c(α, �A), c(�A, �)}. Pick α ∈ A such that c(α, �) > j. As c is
subadditive of the first kind, c(α, �) ≤ max{c(α, �A), c(�A, �)} ≤ j. This is a
contradiction.

(2) Suppose that ∂(c) is stationary, and pick � ∈ acc+(H ) ∩ ∂(c). Fix a cofinal
subset A of H ∩ � of size �. As � ∈ ∂(c), {c(α, �) | α ∈ A} is unbounded in �.
Note that �A > sup(A) = � . Set i := supα∈A c(α, �A). If c were weakly subadditive
of the second kind, then we could find j < � such that Dc≤i(�A) ∩ � ⊆ Dc≤j(�),
contradicting the fact that for every j < �, there exists α ∈ A ⊆ Dc≤i(�A) ∩ � with
c(α, �) > j.

(3) Suppose that κ = 
+, � = cf(
), and c is locally small. Fix the least � < κ such
that otp(H ∩ �) = 
. For all � < � and i < cf(
), |H ∩ [�, �)| = 
 > |Dc≤i(�)|, and
hence there exists a cofinal subset A ofH ∩ � of size � such that {c(α, �) | α ∈ A} is
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unbounded in �. Now, as in the proof of Clause (3), c cannot be weakly subadditive
of the second kind. �

Corollary 3.36. For every � ∈ Reg(κ) and stationary Σ ⊆ Eκ≥� , if Refl(�,Σ)

holds, then there exists no Σ-closed witness to Usubadditive(κ, 2, �, 2).

We next show that the existence of subadditive witnesses to U(...) is ruled out by
the existence of certain ultrafilters.

Definition 3.37. An ultrafilter U over κ is �-indecomposable if it is uniform and,
for every sequence of sets 〈Ai | i < �〉 satisfying

⋃
i<� Ai ∈ U , there is B ∈ [�]<�

such that
⋃
i∈B Ai ∈ U .

Lemma 3.38. Suppose that c : [κ]2 → � is a witness to U(κ, 2, �, 2).

(1) If there exists a �+-complete uniform ultrafilter over κ, then c is not weakly
subadditive.

(2) If there exists a �+-complete uniform ultrafilter over κ and κ is �-inaccessible,
then c is not weakly subadditive of the first kind.

(3) If there exists a �-indecomposable ultrafilter over κ, then c is not subadditive of
the second kind.

Proof. (1) Suppose that U is a �+-complete ultrafilter over κ. For all α < κ and
i < �, let

Aiα := {� < κ | α < � & c(α, �) ≤ i},

so that 〈Aiα | i < �〉 is a ⊆-increasing sequence, converging to κ \ (α + 1). Since U
is, in particular, a �-indecomposable ultrafilter over κ, we may find some iα < �
such that Aiαα ∈ U .

Next, using the pigeonhole principle, let us fixH ∈ [κ]κ and i < � such that iα = i
for all α ∈ H . As U is closed under intersections of length �, for every A ∈ [H ]� ,
we may let �A := min(

⋂
α∈A A

i
α), so that supα∈A c(α, �A) ≤ i .

By Lemma 2.4(2), fix � ∈ H such that {c(α, �) | α ∈ H ∩ �} is unbounded in �.
Now, pick A ∈ [H ∩ �]� such that {c(α, �) | α ∈ A} is unbounded in �. If c were
weakly subadditive, then we could pick j < � such that Dc≤i+1(�A) ∩ � ⊆ Dc≤j(�).
Then A ⊆ Dc≤j(�), contradicting the choice of A.

(2) Let H, i, and the notation �A be as in the proof of Clause (1). Assuming
that κ is �-inaccessible, and using Lemma 2.4(1), we may find some A ∈ [H ]� such
that, for cofinally many � < κ, {c(α, �) | α ∈ A} is unbounded in �. In particular,
we may find such a � < κ above �A. If c were weakly subadditive of the first kind,
then we could find j < � such that Dc≤i(�A) ⊆ Dc≤j(�). However, for every j < �,
there exists α ∈ A such that c(α, �) > j, so that α ∈ Dc≤i(�A) \Dc≤j(�). This is a
contradiction.

(3) Suppose that U is a �-indecomposable ultrafilter over κ. As in the proof of
Clause (1), we may fixH ∈ [κ]κ and i < � such that, for all α ∈ H , Aiα := {� < κ |
α < � & c(α, �) ≤ i} is in U. Towards a contradiction, suppose that c is subadditive
of the second kind. Then, for all (α, �) ∈ [H ]2, we may pick some 	 ∈ Aiα ∩ Ai� , and
infer that c(α, �) ≤ max{c(α, 	), c(�, 	)} ≤ i . So, sup(c“[H ]2) ≤ i , contradicting
the fact that c witnesses U(κ, 2, �, 2). �
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Corollary 3.39. Under a suitable large cardinal hypothesis, each of the following
statements is consistent:

(1) For every n < , there is no weakly subadditive witness to U(ℵ+1, 2,ℵn, 2).
(2) For every positive n < , there is no witness to U(ℵ+1, 2,ℵn, 2) that is

subadditive of the second kind.

Proof. (1) By [16, Corollary 5.13], relative to the consistency of the existence
of infinitely many supercompact cardinals, it is consistent that, for every
n < , any witness to U(ℵ+1, 2,ℵn, 2) is not subadditive. An inspection of
[16, Lemma 5.11], on which [16, Corollary 5.13] relies, makes it clear that
one obtains a model in which, furthermore, for every n < , any witness to
U(ℵ+1, 2,ℵn, 2) is not weakly subadditive.

(3) Starting from the consistency of the existence of a cardinal κ that is κ+-
supercompact, Ben-David and Magidor produced in [2] a model of ZFC in
which there exists an ultrafilter over ℵ+1 that is ℵn-indecomposable for all
positive n < . Now appeal to Lemma 3.38. �

Lemma 3.40. Suppose that � ≤ � < κ, and c : [κ]2 → � witnesses U(κ, ��
1, �, 2). If there exists a �+-complete uniform ultrafilter over κ, then c is not �-
coherent.

Proof. As in the proof of Lemma 3.38(1), a�+-complete uniform ultrafilter over
κ gives rise toH ∈ [κ]κ and i < � such that, for everyA ∈ [H ]�, there exists �A < κ
above sup(A) such that supα∈A c(α, �A) ≤ i . Now, as c witnesses U(κ, �� 1, �, 2),
we may find A ∈ [H ]� and � ∈ H above sup(A) such that c(α, �) > i for all α ∈ A.
So

{α < min{�, �A} | c(α, �) �= c(α, �A)}

covers A, which is a set of size �. Thereby, c is not �-coherent. �

Corollary 3.41 (Todorcevic [34, Remark 6.2.3]). Suppose that 
 is a singular
limit of strongly compact cardinals. Then there exists no locally small coloring c :
[
+]2 → cf(
) that is 
-coherent.

Proof. Fix a strictly increasing sequence of strongly compact cardinals 〈
i | i <
cf(
)〉 converging to 
. Let c : [
+]2 → cf(
) be a locally small coloring. Towards a
contradiction, suppose that c is 
-coherent, and then define d : [
+]2 → cf(
) via

d (	, �) := min{i < cf(
) | |{α < 	 | c(α, 	) �= c(α, �)}| ≤ 
i}.

It is not hard to see that d is subadditive, and so, by Lemma 3.38(3), d fails to witness
U(
+, 2, cf(
), 2). This means that there exist H ∈ [
+]


+
and i < cf(
) such that

d“[H ]2 ⊆ i . Define e : [
+]2 → cf(
) via e(α, �) := c(α,min(H \ �)). Then e is
a locally small coloring which is moreover 
i -coherent. By Lemma 3.12(1), e in
particular witnesses U(
+, 
i � 1, cf(
), 2), and then Lemma 3.40 implies that there
exists no (
i)+-complete uniform ultrafilter over 
+, contradicting the facts that

i < 
i+1 < 


+ and 
i+1 is strongly compact. �

Complementary to Lemma 3.13, we obtain the following.
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Corollary 3.42. Suppose that c : [κ]2 → � is a witness to U(κ, 2, �, 2) and there
exists a strongly compact cardinal in the interval (�, κ].

(1) c is not weakly subadditive.
(2) If κ is not the successor of a singular cardinal of cofinality �, then c is not weakly

subadditive of the first kind.
(3) c is not subadditive of the second kind.

Proof. The hypothesis entails the existence of a �+-complete uniform ultrafilter
over κ, and in particular, the existence of a �-indecomposable uniform ultrafilter
over κ. In addition, if κ is not the successor of a singular cardinal of cofinality �,
then by Solovay’s theorem stating that SCH holds above a strongly compact cardinal
[31], κ is �-inaccessible. Now appeal to Lemma 3.38. �

Remark 3.43. A similar statement can consistently hold at small cardinals. By
[24, Lemma 3.2(v)] and Lemma 3.5, if κ is weakly compact and 
 < κ is any regular
uncountable cardinal, then in the forcing extension by Coll(
,<κ), for every � < 
,
Usubadditive(
+, 2, �, 2) fails.

Lemma 3.14(1) implies that the restriction “� < 
” in the preceding remark cannot
be waived.

Corollary 3.44. It is consistent that all of the following hold simultaneously:
• GCH;
• Usubadditive(2, 2, 1, 1) holds;
• Usubadditive(2, 2, , 2) fails.

Proof. By Lemma 3.14(1) and Fact 3.15. �
In [35, Definition 8], Viale defined the covering property CP(κ, �). In [16, Lemma

5.11], the first author proved that for infinite regular cardinals � < κ, CP(κ, �)
implies that Usubadditive(κ, 2, �, 2) fails. By [35, Section 6], the P-ideal dichotomy
(PID), which is a consequence of the proper forcing axiom (PFA), implies that
CP(κ,) holds for every regular κ ≥ ℵ2 (the relevant result in [35] is only stated
for κ > c, but its proof works without any modifications for any regular κ ≥ ℵ2).
Putting this all together, we see that the failure of Usubadditive(κ, 2, , 2) for all regular
κ ≥ ℵ2 already follows from PID.

Here, by combining the arguments of [34, Section 7], [35, Section 6], and [16,
Section 5], we provide a self-contained proof of a slightly more informative result:

Theorem 3.45 (Todorcevic and Viale). Suppose that PID holds and c : [κ]2 → 
witnesses U(κ, 2, , 2).

(1) If κ ≥ ℵ2, then c is not weakly subadditive.
(2) If κ > 2ℵ0 is not the successor of a singular cardinal of countable cofinality,

then c is not weakly subadditive of the first kind.

Proof. Suppose not. For all X ∈ [κ]≤ℵ0 and � < κ, define a function f�X : X ∩
� →  by lettingf�X (α) := c(α, �). Note that if κ > 2ℵ0 , then for everyX ∈ [κ]≤ℵ0 ,
there exists some Γ ∈ [κ]κ such that f	X = f�X for all (	, �) ∈ [Γ]2. In this case, we
shall denote such a set Γ by ΓX and min(ΓX ) by 	X .

Now, let I be the collection of all X ∈ [κ]≤ℵ0 such that, for every � < κ, f�X is
finite-to-one. It is clear that I is an ideal.
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Claim 3.45.1. LetZ ∈ [κ]<κ. Then there exists an ordinal �Z ∈ [ssup(Z), κ) such
that, for every X ∈ [Z]≤ℵ0 , X ∈ I iff there exists 	 ∈ [�Z, κ) for which f	X is finite-
to-one.

Proof. � If c is weakly subadditive, then set �Z := ssup(Z). Towards a
contradiction, suppose that there exist X ∈ [Z]≤ℵ0 and 	 ∈ [�Z, κ) such that f	X
is finite-to-one, yet X �∈ I. Fix � < κ such that f�X is not finite-to-one, and then fix
i <  for which Y := X ∩Dc≤i(�) is infinite. Find j < � such that Dc≤i(�) ∩ 	 ⊆
Dc≤j(	). Then X ∩Dc≤j(	) covers the infinite set Y, contradicting the fact that f	X
is finite-to-one.

� If κ > 2ℵ0 is not the successor of a singular cardinal of countable cofinality, then
by Viale’s theorem [35] stating that PID implies SCH, the fact that |Z| < κ implies
that |Z|ℵ0 < κ. It follows that �Z := sup{	X | X ∈ [Z]≤ℵ0} + 1 is < κ. Suppose
that c is weakly subadditive of the first kind; yet, there existX ∈ [Z]≤ℵ0 \ I and 	 ∈
[�Z, κ) such thatf	X is finite-to-one. Fix� < κ and i <  such thatY := X ∩Dc≤i(�)
is infinite. Pick � ∈ ΓX above � , and use weak subadditivity of the first kind to find
j < � such thatDc≤i(�) ⊆ Dc≤j(�). As � ∈ ΓX ,X ∩Dc≤j(�) = X ∩Dc≤j(	X ), so that
Y ⊆ Dc≤j(	X ). As 	X < �Z ≤ 	, we use weak subadditivity of the first kind to find
k < � such that Dc≤j(	X ) ⊆ Dc≤k(	). Altogether, Y ⊆ Dc≤k(	), so that f	X [Y ] ⊆
k + 1, contradicting the fact that f	X is finite-to-one. �

To see that I is a P-ideal, suppose that �X = 〈Xn | n < 〉 is a sequence of sets in I.
Set 	 := �Z , for Z :=

⋃
n< Xn. Evidently Y :=

⋃
n<(Xn \Dc≤n(	)) is a pseudo-

union for �X . In addition, for every i < , Y ∩Dc≤i(	) is covered by the finite set⋃
n<i(Xn ∩Dc≤i(	)), so, by the preceding claim, Y ∈ I.
Finally, by PID, one of the following alternatives must hold:
(1) There exists A ∈ [κ]κ such that [A]ℵ0 ∩ I = ∅.
(2) There exists B ∈ [κ]ℵ1 such that [B]ℵ0 ⊆ I.
In Case (1), given A ∈ [κ]κ, pick some strictly increasing function g : κ → A

such that g(α) > �A∩ssup(g[α]) for all α < κ. It follows that A′ := Im(g) is a cofinal
subset of A such that �A′∩	 < 	 for every 	 ∈ A′. Next, by Lemma 2.4(2), we may fix
	 ∈ A′ such that {c(α, 	) | α ∈ A′ ∩ 	} is infinite. So, we may find X ∈ [A′ ∩ 	]ℵ0

such that f	X is one-to-one. As �A′∩	 < 	, the preceding claim implies that X ∈ I.
In particular, [A]ℵ0 ∩ I �= ∅.

In Case (2), given B ∈ [κ]ℵ1 , let � := ssup(B). As B ∩
⋃
i< D

c
≤i(�) is uncount-

able, we may find some i <  such that B ∩Dc≤i(�) is uncountable. In particular,
there exist X ∈ [B]ℵ0 such that X ∩Dc≤i(�) is infinite. So, [B]ℵ0 � I. �

On the other hand, since MM is preserved by 2-directed closed set forcings,
Theorem 3.34 implies that MM does not refute Usubadditive(κ, κ, �, �) for regular
uncountable cardinals � < κ.

Corollary 3.46. In the model of [33], for every regular uncountable cardinal κ,
the following are equivalent:

• There is a witness to U(κ, κ,,) that is subadditive of the first kind.
• There is a witness to U(κ, 2, , 2) that is weakly subadditive of the first kind.
• κ is the successor of a cardinal of countable cofinality.
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Proof. By Lemma 3.13, if κ = 
+ for an infinite cardinal 
 of countable
cofinality, then there exists a witness to U(κ, κ,,) that is subadditive of the
first kind. For any other κ, since in the model of [33], CH and PID both hold,
Theorem 3.45(2) implies that no witness to U(κ, 2, , 2) is weakly subadditive of
the first kind. �

We conclude this section by pointing out a corollary to Theorem 3.45 and the
arguments from the proofs of Lemma 3.33 and Corollary 3.41.

Corollary 3.47. Assuming PID, for every singular cardinal 
 of countable
cofinality, every locally small coloring c : [
+]2 → cf(
) that is subadditive of the
first kind is not 
-coherent.

§4. Indexed square sequences. Recall that the principle �(κ, �,��) asserts the
existence of a sequence 〈Cα | α < κ〉 satisfying all of the following:

• For every limit ordinalα < κ, Cα is a collection of clubs inα, and 1 ≤ |Cα | ≤ �.
• For all α < κ, C ∈ Cα and ᾱ ∈ acc(C ), if otp(C ) ≥ �, then C ∩ ᾱ ∈ Cᾱ .
• For every club D in κ, there exists some α ∈ acc(D) such that D ∩ α /∈ Cα .

Convention 4.1. If we omit �, then we mean that � = 1. If we omit �� , then we
mean that � = .

A strengthening of �(κ, �), denoted by �ind(κ, �), was introduced in [17]. In this
section, we identify a weakening of �ind(κ, �), denoted by �ind(κ, �), that is tightly
related to the existence of closed, subadditive witnesses to U(κ, ...).

Definition 4.2. �ind(κ, �) asserts the existence of a matrix

〈Cα,i | α ∈ Γ, i(α) ≤ i < �〉,
satisfying the following statements.

(1) (Eκ�=� ∩ acc(κ)) ⊆ Γ ⊆ acc(κ).
(2) For all α ∈ Γ, we have i(α) < �, and 〈Cα,i | i(α) ≤ i < �〉 is a ⊆-increasing

sequence of clubs in α, with Γ ∩ α =
⋃
i(α)≤i<� acc(Cα,i).

(3) For all α ∈ Γ, i(α) ≤ i < �, and ᾱ ∈ acc(Cα,i), we have i(ᾱ) ≤ i and Cᾱ,i =
Cα,i ∩ ᾱ.

(4) For every club D in κ, there exists α ∈ acc(D) ∩ Γ such that, for all i < �,
D ∩ α �= Cα,i .

Remark 4.3. The principle �ind(κ, �) is the strengthening of �ind(κ, �) obtained
by requiring that Γ = acc(κ).

We now turn to prove Theorem A.

Theorem 4.4. Suppose that � ∈ Reg(κ). Then the following are equivalent.
(1) �ind(κ, �) holds.
(2) There exists a closed, subadditive witness to U(κ, 2, �, 2).
(3) There exists a closed, subadditive witness to U(κ, κ, �, sup(Reg(κ)).
(4) For every stationary S ⊆ κ, there exists a �ind(κ, �)-sequence 〈Cα,i | α ∈

Γ, i(α) ≤ i < �〉 such that either S ∩ Γ is nonstationary or, for all i < �,
{α ∈ S ∩ Γ | i(α) > i} is stationary.
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Proof. (2) ⇐⇒ (3) By Lemma 3.2(3).
(4) =⇒ (1) This is trivial.
(1) =⇒ (2): Fix a �ind(κ, �)-sequence, �C = 〈Cα,i | α ∈ Γ, i(α) ≤ i < �〉. For

each α ∈ κ, let α̃ := min(Γ \ α). Define c : [κ]2 → � by setting, for all (α, �) ∈ [κ]2,

c(α, �) :=

{
min{i ∈ [i(�̃), �) | α̃ ∈ acc(C�̃,i)}, if α̃ < �̃,

0, otherwise.

Claim 4.4.1. c is closed.

Proof. Fix � < κ, i < �, and A ⊆ Dc≤i(�) with 	 := sup(A) in � \ A. To show
that 	 ∈ Dc≤i(�), there are two cases to consider.

� If α̃ < 	 for allα ∈ A, then, by our definition of c, it follows that 	 ∈ acc(C
�̃,i

),

and hence 	 ∈ Γ, 	 = 	̃, and c(	, �) ≤ i .
� Otherwise, there isα ∈ A such that α̃ ≥ 	. But then 	̃ = α̃, and hence c(	, �) =
c(α, �) ≤ i . �

Claim 4.4.2. c is subadditive.

Proof. Suppose thatα < � < 	 < κ. To prove subadditivity, there are three cases
to consider.

� If α̃ = �̃ , then c(α, �) = 0 and c(α, 	) = c(�, 	).
� If �̃ = 	̃, then c(α, �) = c(α, 	).
� Otherwise, we have |{α̃, �̃ , 	̃}| = 3 in which case it is easy to verify that
c(α, �) ≤ max{c(α, 	), c(�, 	)} and c(α, 	) ≤ max{c(α, �), c(�, 	)}. �

To finish the proof, suppose towards a contradiction that c fails to witness
U(κ, 2, �, 2). Then there exist A ∈ [κ]κ and i < � such that sup(c“[A]2) ≤ i . Set
S := acc+(A) ∩ Γ, note that S is stationary, and letD :=

⋃
{Cα,i | α ∈ S}. Then D

is a club and D ∩ α = Cα,i for all α ∈ acc(D), contradicting the hypothesis that �C
is a �ind(κ, �)-sequence.

(2) =⇒ (4): Fix a closed, subadditive coloring c witnessing U(κ, 2, �, 2). Set
Γ := acc(κ) \ ∂(c), so that acc(κ) ∩ Eκ�=� ⊆ Γ ⊆ acc(κ). By Lemma 3.22,

Γ = {α ∈ acc(κ) | for some i < �, sup(Dc≤i(α)) = α}.
Now, let S be a given stationary subset of κ. If S ∩ Γ is stationary, then set

S ′ := S ∩ Γ; otherwise, set S ′ := κ. Using Lemma 2.4(3), let us fix � < κ such that,
for every i < �, {� ∈ S ′ | � < �, c(�, �) > i} is stationary.

Let α ∈ Γ be arbitrary. Let i ′(α) be the least i < � for which sup(Dc≤i(α)) = α.
Next, ifα ≤ �, then let i(α) := i ′(α), and otherwise, let i(α) := max{i ′(α), c(�, α)}.
For all i ∈ [i(α), �), let Cα,i := Dc≤i(α). Clearly, 〈Cα,i | i(α) ≤ i < �〉 is a
⊆-increasing sequence of clubs in α.

We claim that 〈Cα,i | α ∈ Γ, i(α) ≤ i < �〉 is a �ind(κ, �)-sequence.

Claim 4.4.3. Let � ∈ Γ. Then Γ ∩ � =
⋃
i(�)≤i<� acc(C�,i), and, for all

i ∈ [i(�), �) and α ∈ acc(C�,i), we have i(α) ≤ i and Cα,i = C�,i ∩ α.

Proof. To show the forward inclusion, let α ∈ Γ ∩ � be arbitrary. Put
i := max{i(α), i(�), c(α, �)}. For all 	 ∈ Cα,i , we have c(	, α) ≤ i and c(α, �) ≤ i ,
so, by subadditivity, c(	, �) ≤ i . It follows that α ∈ acc(C�,i).
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To show the reverse inclusion and the second statement, let i ∈ [i(�), �) and α ∈
acc(C�,i) be arbitrary. For all 	 ∈ C�,i ∩ α, we have c(	, �) ≤ i and c(α, �) ≤ i , so, by
subadditivity, c(	, α) ≤ i . It follows that C�,i ∩ α ⊆ Dc≤i(α), so sup(Dc≤i(α)) = α,
and hence α ∈ Γ, i ′(α) ≤ i , and Cα,i ⊇ C�,i ∩ α. To see that i(α) ≤ i , suppose that
α > �, and we shall show that c(�, α) ≤ i . We have already observed that c(α, �) ≤ i .
From i ≥ i(�), we infer c(�, �) ≤ i . So, by subadditivity, c(�, α) ≤ i .

It remains to show that Cα,i ⊆ C�,i ∩ α. But, if 	 ∈ Cα,i , then c(	, α) ≤ i and
c(α, �) ≤ i , so, again by subadditivity, we have c(	, �) ≤ i , and we are done. �

Claim 4.4.4. Suppose that D is a club in κ. Then there is α ∈ acc(D) ∩ Γ such
that, for all i ∈ [i(α), �), D ∩ α �= Cα,i .

Proof. Suppose not. For all α ∈ acc(D), fix jα ∈ [i(α), �) such that D ∩ α =
Cα,jα , and find j < � and A ∈ [acc(D)]κ such that jα = j for all α ∈ A. As c
witnesses U(κ, 2, �, 2), we can find (α, �) ∈ [A]2 such that c(α, �) > j. But this
contradicts the fact that α ∈ D ∩ � = C�,j , and hence c(α, �) ≤ j. �

Finally, by the choice of �, it is clear that if S ∩ Γ is stationary, then for all i < �,
{α ∈ S ∩ Γ | i(α) > i} is stationary. �

The proof of the preceding theorem together with Remark 4.3 makes it clear that
the following holds as well.

Theorem 4.5. For every � ∈ Reg(κ), the following are equivalent:

(1) �ind(κ, �) holds.
(2) There exists a closed witness c to Usubadditive(κ, 2, �, 2) for which ∂(c) is

nonstationary.

Theorem 4.6. If �ind(κ,) holds, then so does �ind(κ,).

Proof. Suppose that �ind(κ,) holds. By Theorem 4.4, we may fix a closed,
subadditive coloring c : [κ]2 →  witnessing U(κ, 2, , 2). Let Γ := {α ∈ acc(κ) |
∃i < [sup(Dc≤i(α)) = α]}, so that Γ ⊇ acc(κ) ∩ Eκ�= . For all � ∈ Eκ \ Γ, let a� :=
{max(Dc≤i(�)) | i <  & Dc≤i(�) �= ∅}. Clearly, a� is a cofinal subset of � of order-
type .

For all α ∈ Eκ \ Γ, let i(α) := 0. For all α ∈ Γ, let i(α) be the least i <  for
which sup(Dc≤i(α)) = α. Then, for all α ∈ acc(κ) and i ∈ [i(α), ), let

Cα,i := Dc≤i(α) ∪
⋃

{a� | � ∈ (Dc≤i(α) ∪ {α}) \ Γ}.

Note that Cα,i ⊆ Cα,j for all j ≥ i .
Claim 4.6.1. Let � ∈ acc(κ). Then:

(1) acc(�) =
⋃
i(�)≤i< acc(C�,i);

(2) for all i ∈ [i(�), ), C�,i is a club in � , and acc(C�,i) ⊆ Dc≤i(�);
(3) for all i ∈ [i(�), ) and α ∈ acc(C�,i), we have i(α) ≤ i and Cα,i = C�,i ∩ α.

Proof. (1) Let α ∈ acc(�) be arbitrary. Fix a large enough i ≥ max{i(α), i(�)}
such that c(α, �) ≤ i . If α �∈ Γ, then aα ⊆ C�,i . If α ∈ Γ, then for all 	 ∈ Cα,i , we
have c(	, α) ≤ i and c(α, �) ≤ i , so, by subadditivity, c(	, �) ≤ i . Thus, in both
cases, α ∈ acc(C�,i).
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(2) Let i ∈ [i(�), ) be arbitrary. Suppose first that � ∈ Γ. SinceDc≤i(�) is a club
in � , to show that C�,i is a club and acc(C�,i) ⊆ Dc≤i(�), it suffices to show that for
any pair 	 < � of successive elements of Dc≤i(�), if (	, �) ∩ C�,i �= ∅, then � /∈ Γ and
(	, �) ∩ C�,i ⊆ a� .

Fix 	, � as above along with α ∈ (	, �) ∩ C�,i . Using the definition of C�,i , let us
fix some �′ ∈ Dc≤i(�) \ Γ such that α ∈ a�′ . We have c(�′, �) ≤ i and c(α, �) > i .
So, by subadditivity, j := c(α, �′) is greater than i. As α ∈ a�′ , it follows that
α = max(Dc≤j(�

′)).
Notice that if � < �′, then from �, �′ ∈ Dc≤i and subadditivity, we have c(�, �′) ≤ i ,

and so � ≤ max(Dc≤i(�
′)) ≤ max(Dc≤j(�

′)) = α, which is a contradiction. So � = �′

and α ∈ a� , as desired.
Next, suppose that � ∈ acc(κ) \ Γ. Then the very same argument as before shows

that for any pair 	 < � of successive elements of Dc≤i(�), if the interval (	, �) ∩ C�,i
is nonempty, then it is covered by a� . Moreover, by the definition of C�,i , we have
C�,i \ max(Dc≤i) ⊆ a� . It follows that C�,i is a club in � and acc(C�,i) ⊆ Dc≤i(�).

(3) Fix i ∈ [i(�), ) and α ∈ acc(C�,i). In particular, α ∈ Dc≤i(�), so, by
subadditivity, Dc≤i(α) = Dc≤i(�) ∩ α.

� If α ∈ Γ, then α ∈ acc(Dc≤i (�)), so that i(α) ≤ i , and it is clear from the
definition that Cα,i = C�,i ∩ α.

� If α /∈ Γ, then i(α) = 0 ≤ i , and it is clear from the definition that Cα,i =
C�,i ∩ α. �

The following claim will now finish our proof.

Claim 4.6.2. Suppose that D is a club in κ. Then there is α ∈ acc(D) such that,
for all i ∈ [i(α), ), D ∩ α �= Cα,i .

Proof. Suppose not. Then, for all α ∈ acc(D), and for some jα ∈ [i(α), ),
D ∩ α = Cα,jα . Find j <  and A ∈ [acc(D)]κ such that jα = j for all α ∈ A.
As c witnesses U(κ, 2, , 2), we may pick (α, �) ∈ [A]2 such that c(α, �) > j.
However α ∈ acc(D ∩ �) = acc(C�,j) ⊆ Dc≤j(�), meaning that c(α, �) ≤ j. This
is a contradiction. �

�

An analogue of the preceding result holds for uncountable � under the additional
assumption of stationary reflection.

Corollary 4.7. Suppose that � ∈ Reg(κ). If every stationary subset ofEκ� reflects,
then �ind(κ, �) is equivalent to �ind(κ, �).

Proof. Suppose that �ind(κ, �) holds. By Theorem 4.4, we may then fix a closed,
subadditive witness c to U(κ, 2, �, 2). As ∂(c) is a subset of Eκ� and every stationary
subset of Eκ� reflects, it follows from Lemma 3.31 that ∂(c) is nonstationary. So, by
Theorem 4.5, �ind(κ, �) holds. �

We shall now turn to prove Clause (3) of Theorem C, in particular, establishing
that, in general, for uncountable �, �ind(κ, �) is not equivalent to �ind(κ, �).
This will follow from the following two theorems; these are fairly straightforward
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modifications of results of Cummings and Schimmerling [9] and Levine and
Sinapova [23], respectively, but we provide some details for completeness.

Theorem 4.8. Suppose that V ⊆W are models of ZFC and � < 
 are regular
cardinals in V such that:

(1) 
 is inaccessible in V;
(2) 
 is singular and cf(
) = � in W;
(3) (
+)V = (
+)W .

Then �ind(
+, �) holds in W. Moreover, in W there is a closed, locally small witness c
to Usubadditive(
+, 2, �, 2) such that ∂(c) ⊇ (E


+


 )V .

Proof. Work first in V, and let Γ := E

+

<
 . Recall that a subsetX ⊆ 
 is (>)-club
if there is a club C ⊆ 
 such that C ∩ E
> ⊆ X . By [9, Lemma 4.4], we can fix a
matrix �D = 〈Dα,� | α ∈ Γ, � ∈ Xα〉 such that, for all α ∈ Γ,

(1) Xα is a (>)-club subset of 
;
(2) for all � ∈ Xα , Dα,� is a club in α and |Dα,�| < 
;
(3) 〈Dα,� | � ∈ Xα〉 is ⊆-increasing and Γ ∩ α =

⋃
�∈Xα acc(Dα,�);

(4) for all � ∈ Xα and all ᾱ ∈ acc(Dα,�), we have � ∈ Xᾱ and Dᾱ,� = Dα,� ∩ ᾱ.

Now move to W and note that, since cf(
) = �, we have (E

+

�=� ∩ acc(
+)) ⊆ Γ ⊆
acc(
+). By assumptions (1)–(3) in the statement of the theorem, [18, Corollary 4.2]
implies that we can find an increasing sequence of ordinals 〈�i | i < �〉 that is cofinal
in 
 and such that, for all α ∈ Γ, for all sufficiently large i < �, we have �i ∈ Xα .
(This fact is also implicit in the earlier [11, Theorem 2.0].)

For each α ∈ Γ, let i(α) be the least j < � such that �i ∈ Xα for all i ∈ [j, �).
Now define a matrix �C = 〈Cα,i | α ∈ Γ, i(α) ≤ i < �〉 by setting Cα,i := Dα,�i for
all α ∈ Γ and all i ∈ [i(α), �). Notice that, for all α ∈ Γ, i ∈ [i(α), �), and ᾱ ∈
acc(Cα,i), the properties of �D imply that Xα \ i ⊆ Xᾱ , and therefore, since i ≥ i(α)
we also have i ≥ i(ᾱ) and Cᾱ,i = Cα,i ∩ ᾱ. It is then straightforward to verify that
�C satisfies Clauses (1)–(3) of Definition 4.2. To verify that �C satisfies Clause (4) of

Definition 4.2, fix a clubD ⊆ 
+, and let α ∈ acc(D) ∩ Γ be such that |D ∩ α| = 
.
Then, for all i ∈ [i(α), �), the fact that |Cα,i | < 
 implies that D ∩ α �= Cα,i . It
follows that �C is an �ind(
+, �)-sequence in W.

To prove the “moreover” statement, let c : [
+]2 → � be the closed witness to
Usubadditive(
+, 2, �, 2) derived from �C as in the proof of (1) =⇒ (2) of Theorem 4.4.
The fact that ∂(c) ⊇ (E


+


 )V follows immediately from our definition of Γ, and the
fact that c is locally small follows immediately from the fact that |Cα,i | < 
 for all
α ∈ Γ and i ∈ [i(α), �). �

Theorem 4.9. Suppose that � < 
 < κ are regular uncountable cardinals such that

 is supercompact and κ is weakly compact. Then there is a forcing extension in which

 is a singular strong limit of cofinality �, κ = 
+, �ind(κ, �) holds, and �(κ, �) fails
for all � < 
.

Proof. By forcing with the Laver preparation forcing if necessary, we may assume
that the supercompactness of 
 is indestructible under 
-directed closed forcing.
Following [23, Section 4], let C := Coll(
,<κ), and let Ṁ be a C-name for the
Magidor forcing that turns 
 into a singular cardinal of cofinality �.
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For every inaccessible � < κ above 
, let C� := Coll(
,<�). By [23, Proposition
4.3], there is a club C ⊆ κ such that, for every inaccessible � ∈ C , Ṁ� := Ṁ ∩ V� is
a C�-name for a Magidor forcing to turn 
 into a singular cardinal of cofinality �
such that there is a complete embedding of C� ∗ Ṁ� into C ∗ Ṁ.

In V C, M has the 
+-cc and thus preserves 
+. Therefore, applying Theorem 4.8
to the models V C and V C∗Ṁ shows that �ind(κ, �) holds in V C∗Ṁ. It remains to
show that �(κ, �) fails for every � < 
.

Suppose for the sake of contradiction that � < 
 and Ḋ = 〈Ḋα | α ∈ acc(κ)〉 is
a C ∗ Ṁ-name for a �(κ, �)-sequence. This is a Π1

1 statement about the structure
(Vκ,∈,C ∗ Ṁ, Ḋ) (the sole universal quantification over subsets ofVκ is the assertion
that there exists no C ∗ Ṁ-name for a thread through Ḋ). Therefore, by the weak
compactness of κ, we can find an inaccessible � ∈ C such that Ḋ∗ := Ḋ ∩ V� is a
C� ∗ Ṁ�-name for a �(�, �)-sequence.

Note that � = 
+ in V C�∗Ṁ� . In V C∗Ṁ, we have cf(�) = � > . Therefore, in
V C∗Ṁ, any element of D� is a thread through D∗. However, the proof of [23, Lemma
4.7] shows that forcing over V C�∗Ṁ� with (C ∗ Ṁ)/(C� ∗ Ṁ�) cannot add a thread
to a �(�, �)-sequence. ([23, Lemma 4.7] is about �
,�-sequences, but the exact same
proof still works for �(�, �)-sequences.) This is a contradiction, thus completing the
proof. �

Remark 4.10. Suppose that � ∈ Reg(κ) is such that there exists a closed
subadditive witness to U(κ, 2, �, 2). By Lemma 3.10, if κ is <�-inaccessible, then
there exists a κ-Aronszajn tree with a �-ascent path. In particular, such a tree exists
in the model of Theorem 4.9. We note that by a combination of Theorem 4.4,
[4, Theorem 6.11] and a minor variation of [4, Theorem 4.44], if κ = κ<κ is a
successor cardinal which is �-inaccessible, then there moreover exists a κ-Souslin
tree with a �-ascent path.

The Mapping Reflection Principle (MRP), introduced by Moore in [26], is a useful
consequence of PFA.

Corollary 4.11. MRP implies that for every regular cardinal κ ≥ ℵ2, there exists
no closed, subadditive witness to U(κ, 2, , 2).

Proof. By Theorems 4.4 and 4.6, if there exists a closed subadditive witness to
U(κ, 2, , 2), then �ind(κ,) holds. In particular, �(κ,) holds. However, by [32,
Theorem 1.8], for every regular cardinal κ ≥ ℵ2, �(κ,) is refuted by MRP. This is
also implicit in [35, Section 7]. �

Remark 4.12. In [32], Strullu proves that MRP + MA1 refutes �(κ,1) for all
regular κ ≥ ℵ2. In light of this fact and Theorem 3.45, it is natural to ask whether
MRP + MA1 moreover refutes �ind(κ,1). In an upcoming paper, it will be shown
that MM is compatible with �ind(κ,1) for any choice of a regular cardinal κ ≥ ℵ2.
It follows that �ind(2, 1) does not imply the existence of an 2-Aronszajn tree.
Thus, the arithmetic hypothesis in Lemma 3.10 cannot be waived.

By [19, Theorem 3.4], for every � ∈ Reg(κ), �(κ) implies �ind(κ, �). Essentially
the same proof of that theorem establishes that for every � ∈ Reg(κ), �(κ,��)
implies �ind(κ, �). Here, we shall prove a generalization that also yields the second
part of Theorem A.
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Theorem 4.13. Suppose that κ ≥ ℵ2, � ∈ Reg(κ), T ⊆ Eκ� , and there is a
�(κ,��)-sequence that avoids T. Then:

(1) There is a �ind(κ, �)-sequence 〈Cα,i | α ∈ Γ, i(α) ≤ i < �〉 such that
Γ ∩ T = ∅.

(2) There is a closed witness c to Usubadditive(κ, 2, �, 2) such that T ⊆ ∂(c).

Proof. The proof of Theorem 4.4 makes it clear that (1) =⇒ (2), so we focus
on proving Clause (1). Fix a�(κ,��)-sequence �C = 〈C� | � < κ〉 that avoids T, i.e.,
for all � < κ, we have acc(C�) ∩ T = ∅. Set Δ := {� ∈ acc(κ) | ∀�̄ ∈ acc(C�)[C�̄ =
C� ∩ �̄]}. By the �� -coherence of �C , we haveEκ≥� ⊆ Δ. Set Ω := Eκ>� ∪

⋃
{acc(C�) |

� ∈ Δ}, and note that Ω ⊆ Δ \ T . As κ ≥ ℵ2, Ω is stationary. So, by [3, Lemmas
1.23 and 1.7], we may fix � < κ such that {� ∈ Ω | otp(C�) > � and C�(�) ≥ �} is
stationary for all � < κ. By successive applications of Fodor’s Lemma, we may then
recursively construct a strictly increasing sequence of ordinals 〈�i | i < �〉 such that
�0 > min(Ω) and such that, for every i < �, {� ∈ Ω | otp(C�) > � and C�(�) = �i}
is stationary.

Next, define �D = 〈D� | � < κ〉, as follows:

• Let D0 := ∅.
• For every � < κ, let D�+1 := {�}.
• For every � ∈ Δ such that otp(C�) ≤ �, let D� := C� .
• For every � ∈ Δ such that otp(C�) > �, let D� := C� \ C�(�).
• For every � ∈ acc(κ) \ Δ, pick a club D� in � of order-type cf(�) such that
D� ∩ T = ∅.

For every ordinal � < κ, let

j(�) :=

{
i, if min(D�) = �i ,
0, otherwise.

For every i < �, set Γi := {� ∈ Ω | j(�) = i}. Then set Γ := Ω ∪ (acc(κ) ∩ Eκ<�).

Claim 4.13.1. (1) (Eκ�=� ∩ acc(κ)) ⊆ Γ ⊆ acc(κ) and Γ ∩ T = ∅.
(2) For all � ∈ Δ and α ∈ acc(D�), we have:

• α ∈ Ω,
• Dα = D� ∩ α, and
• j(α) = j(�).

(3) For every � ∈ Γ \ acc+(Γ), we have otp(D� \ sup(Γ ∩ �)) = .
(4) For every i < �, Γi is stationary.
(5) min(Ω) ∈ Γ0.

Proof. (1) This follows directly from the definition of Γ.
(2) Let � ∈ Δ and α ∈ acc(D�) be arbitrary. There two cases to consider:

� If otp(C�) ≤ �, then α ∈ acc(D�) = acc(C�), so Cα = C� ∩ α and
otp(Cα) < �. Since � ∈ Δ and α ∈ acc(C�), the definition of Ω implies
that α ∈ Ω ⊆ Δ. We therefore have Dα = Cα = C� ∩ α = D� ∩ α. In
particular, min(Dα) = min(D�), so j(α) = j(�).

� If otp(C�) > �, then α ∈ acc(D�) = acc(C� \ C�(�)), so Cα = C� ∩ α
and otp(Cα) > �. As in the previous case, we have α ∈ Ω ⊆ Δ, and

https://doi.org/10.1017/jsl.2022.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.50


1266 CHRIS LAMBIE-HANSON AND ASSAF RINOT

therefore Dα = Cα \ Cα(�) = (C� \ C�(�)) ∩ α = D� ∩ α. In particular,
j(α) = j(�).

(3) Let � ∈ Γ. Note the following:
� If  < cf(�) ≤ �, then E� ⊆ acc(κ) ∩ Eκ<� ⊆ Γ, and hence � ∈ acc+(Γ).
� If cf(�) > �, then acc(C�) ⊆ Ω ⊆ Γ, so again � ∈ acc+(Γ).

Therefore, if � ∈ Γ \ acc+(Γ), then cf(�) = . So, if otp(D�) > , then
� ∈ Δ, and then acc(C�) ⊆ Ω ⊆ Γ. As we assume that � /∈ acc+(Γ), it in
particular follows that sup(acc(C�)) < � , and otp(C� \ sup(Γ ∩ �)) = . As
D� is a final segment of C� , it also follows that otp(D� \ sup(Γ ∩ �)) = .

(4) This follows directly from the choice of 〈�i | i < �〉.
(5) For every i < �, we have �i ≥ �0 > min(Ω), so it is impossible for j(min(Ω))

to be greater than 0. �

We now construct a �ind(κ, �)-sequence 〈Cα,i | α ∈ Γ, i(α) ≤ i < �〉. We will
maintain the requirement that, for all α ∈ Ω, we have i(α) = j(α) and acc(Dα) ⊆
acc(Cα,i(α)).

As a base case, if � = min(Γ), then by Claim 4.13.1(3), we have otp(D�) = .
Set i(�) := 0, and let C�,i := D� for all i < �. Note that if � ∈ Ω, then by
Claim 4.13.1(5), indeed i(�) = j(�).

Suppose now that � ∈ Γ \ {min(Γ)} and we have defined 〈Cα,i | α ∈
Γ ∩ �, i(α) ≤ i < �〉 satisfying all relevant instances of Clauses (2) and (3) of
Definition 4.2 as well as our recursive requirement. The construction breaks into a
number of different cases based on the identity of � . In all cases, the verification
that our sequence satisfies our recursive requirement and Clauses (2) and (3) of
Definition 4.2 at � is routine and therefore largely left to the reader.

Case 1: � ∈ Γ \ Ω. In particular, we have cf(�) < �. We now split into subcases
depending on the behavior of Γ ∩ � .

Case 1a: sup(Γ ∩ �) < � and max(Γ ∩ �) exists. Letα := max(Γ ∩ �). By Claim
4.13.1(3), we know thatD–

� := D� \ α has order type. Let i(�) := i(α) and,
for all i ∈ [i(�), �), let C�,i = Cα,i ∪ {α} ∪D–

� .

Case 1b: sup(Γ ∩ �) < � but max(Γ ∩ �) does not exist. Let α := sup(Γ ∩ �).
As in Case (1a), we know thatD–

� := D� \ α has order type . Since α /∈ Γ, it
follows that α ∈ Eκ� . Since cf(�) < �, we know that � > , and hence acc(Dα)
is unbounded inα. Let 〈αi | i < �〉 be a strictly increasing sequence of elements
of acc(Dα) converging to α. As α ∈ Eκ� ⊆ Δ, it follows from Claim 4.13.1(2)
that, for all i < �, αi ∈ Ω ⊆ Γ and j(αi ) = j(α). So, by the fact that our
construction thus far satisfies all of our requirements, we know that, for all
i < �, we have i(αi ) = j(α) and acc(Dα) ∩ αi = acc(Dαi ) ⊆ acc(Cαi ,j(α)). Set
i(�) := j(α) and C�,i := Cαi ,i ∪ {αi} ∪D–

� for all i ∈ [i(�), �).

Case 1c: sup(Γ ∩ �) = � . In this case, let 〈α� | � < cf(�)〉 be an increasing
sequence of elements of Γ converging to � . Let i(�) be the least ordinal i < �
such that, for all � < � < cf(�), we have i(α�), i(α�) ≤ i and α� ∈ acc(Cα�,i ).
Such an ordinal exists because cf(�) < � and our sequence so far satisfies
Clauses (2) and (3) of Definition 4.2. Then, for all i ∈ [i(�), �), let C�,i =⋃
�<cf(�)Cα�,i .
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Case 2: � ∈ Ω. In this case, we are required to set i(�) := j(�). We again split
into subcases depending on the behavior of Γ ∩ � and acc(D�).

Case 2a: sup(Γ ∩ �) < � and max(Γ ∩ �) exists. Let α := max(Γ ∩ �). As in
Case (1a), we know that D–

� := D� \ α has order type .� If α ∈ acc(D�),
then i(α) = j(α) = j(�) = i(�), so we let C�,i := Cα,i ∪ {α} ∪D–

� for all
i ∈ [i(�), �). Note that

acc(D�) = acc(Dα) ∪ {α} ⊆ acc(Cα,i(α)) ∪ {α} ⊆ acc(C�,i(�)),

so we have satisfied our recursive hypothesis.
� If acc(D�) �= ∅ but α > max(acc(D�)), then let α∗ := max(acc(D�)) and

let i∗ ∈ [i(α), �) be least such that α∗ ∈ acc(Cα,i∗). Note that i(�) = i(α∗) ≤
i∗. Let C�,i := Cα∗,i ∪ {α∗} ∪D–

� for all i ∈ [i(�), i∗), and let C�,i := Cα,i ∪
{α} ∪D–

� for all i ∈ [i∗, �).
Note that we have satisfied our recursive hypothesis.
� If acc(D�) = ∅, then let C�,i := D–

� for all i ∈ [i(�), i(α)), and let C�,i :=
Cα,i ∪ {α} ∪D–

� for all i ∈ [max{i(�), i(α)}, �).

Case 2b: sup(Γ ∩ �) < � but max(Γ ∩ �) does not exist. Let α := sup(Γ ∩ �).
Once again, it follows thatD–

� := D� \ α has order type. As in Case (1b), we
have α ∈ Eκ� , and, for all ᾱ ∈ acc(Dα), we have ᾱ ∈ Ω and j(ᾱ) = j(α). Let
α∗ := max(acc(D�)) if acc(D�) �= ∅, and α∗ := min(Γ) otherwise. In either
case, note that α∗ < α and i(α∗) ≤ i(�).

Our construction now depends on whether or not � = .
� If � = , then let 〈αn | n < 〉be a strictly increasing sequence of elements

of Γ ∩ α converging to α such that α0 = α∗. Let 〈in | n < 〉 be a strictly
increasing sequence of natural numbers such that, for all n < , max{i(αm) |
m ≤ n} ≤ in and {αm | m < n} ⊆ acc(Cαn,in ).

Finally, for all i ∈ [i(�), ), let n <  be such that in ≤ i < in+1, and set
C�,i := Cαn,i ∪ {αn} ∪D–

� .
� If � > , then let 〈αi | i < �〉 be a strictly increasing sequence of

elements of acc(Dα) converging to α such that α0 > α
∗. As noted earlier,

we have i(αi ) = j(α). Let i∗ ∈ [j(α), �) be least such that α∗ ∈ acc(Cα0,i∗).
In particular, for all i ∈ [i∗, �), we have α∗ ∈ acc(Cαi ,i ), so that acc(D�) ⊆
acc(Cαi ,i ).

Now, let C�,i := Cα∗,i ∪ {α∗} ∪D–
� for all i ∈ [i(�), i∗), and let C�,i :=

Cαi ,i ∪ {αi} ∪D–
� for all i ∈ [i∗, �).

Case 2c: sup(Γ ∩ �) = � but sup(acc(D�)) < � . In this case, otp(D� \
sup(acc(D�))) = . Let α∗ := max(acc(D�)) if acc(D�) �= ∅, and α∗ :=
min(Γ) otherwise. In either case, α∗ < α and i(α∗) ≤ i(�). Let 〈αn | n < 〉
be an increasing sequence of elements of Γ converging to � with α0 := α∗.
Fix an increasing sequence 〈in | n < 〉 of ordinals below � such that for all
n < , max{i(αm) | m ≤ n} ≤ in and {αm | m < n} ⊆ acc(Cαn,in ).

Finally, fix i ∈ [i(�), �). If there is k <  such that ik ≤ i < ik+1, then
set C�,i := Cαk,i ∪ {αn | k ≤ n < } for this unique k. Otherwise, set C�,i :=⋃
n< Cαn,i .
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Case 2d: sup(acc(D�)) = � . Note that, for all α ∈ acc(D�), we have α ∈ Ω,
i(α) = i(�), and acc(D�) ∩ α = acc(Dα) ⊆ Cα,i(α). Therefore, for all i ∈
[i(�), �), we can simply set C�,i :=

⋃
α∈acc(D� )Cα,i .

Our construction has yielded a matrix satisfying Clauses (1)–(3) of Definition 4.2
and such that Γ ∩ T = ∅. It remains to verify Clause (4) of Definition 4.2. Towards a
contradiction, suppose that D is a club inκ satisfying that, for everyα ∈ acc(D) ∩ Γ,
there exists i < � such thatD ∩ α �= Cα,i . Fix i < � for whichG := {	 ∈ Γ | D ∩ 	 =
C	,i} is stationary. Recalling Claim 4.13.1(4), let us now fix � ∈ Γi+1 ∩ acc(D). Pick
	 ∈ G above � . Then � ∈ acc(D ∩ 	) = acc(C	,i), so i(�) ≤ i , contradicting the fact
that i(�) = j(�) = i + 1. �

Corollary 4.14. (ℵ+1,ℵ) � (ℵ1,ℵ0) is compatible with Usubadditive

(ℵ+1,ℵ+1, �,ℵ) holding for every infinite cardinal � < ℵ .

Proof. Starting with a ground model in which (ℵ+1,ℵ) � (ℵ1,ℵ0) holds,
one can add a �(ℵ+1)-sequence via an ℵ+1-strategically closed forcing, hence
preserving the principle (ℵ+1,ℵ) � (ℵ1,ℵ0). By Theorems 4.4 and 4.13, in the
extension, Usubadditive(ℵ+1,ℵ+1, �,ℵ) holds for every infinite cardinal � < ℵ . �

By Theorem 3.34, for any � ∈ Reg(κ), there exists a �+-directed closed,
κ-strategically closed forcing notion that introduces a somewhere-closed witness
to Usubadditive(κ, κ, �, �). In order to force a fully closed witness, it seems that we
must decrease the degree of closure of the poset by one cardinal. The next theorem
forms Clause (2) of Theorem C.

Theorem 4.15. Suppose that � ∈ Reg(κ). Then there exists a �-directed closed,
κ-strategically closed forcing notion that introduces a closed witness c : [κ]2 → � to
Usubadditive(κ, κ, �, �) for which ∂(c) is stationary.

Proof. By [17, Section 7], there is a �-directed closed, κ-strategically closed
forcing notion that adds an �ind(κ, �)-sequence and therefore, by Theorem 4.4,
it adds a closed witness c to Usubadditive(κ, κ, �, �). However, unless � = , it is
unclear whether ∂(c) can be made to be stationary in this case. Thus, instead, we
appeal to the forcing P(κ, �) from [21, Section 3.3]. This is a �-directed closed,
κ-strategically closed forcing notion that introduces a witness �C = 〈Cα | α < κ〉
to P–(κ, 2,�� , 1, {κ}, 2, �) for every � < κ. Now, utilizing the instance � := �,
the proof of [16, Theorem 4.1] makes it clear that the set {α ∈ Eκ� | ∃� <
α[otp(Cα \ �) = �]} is stationary. Fix some � < κ for which T := {α ∈ Eκ� |
otp(Cα \ �) = �} is stationary. Note that, by the �� -coherence of �C , the set
Γ := {α ∈ acc(κ) | ∀ᾱ ∈ acc(Cα)[Cᾱ � Cα]} coversEκ≥� . Now, define a C-sequence
�D = 〈Dα | α < κ〉 as follows:

• Let D0 := ∅.
• For every α < κ, let Dα+1 := {α}.
• For every α ∈ acc(κ) \ Γ, let Dα be some club in α of order-type cf(α) such

that nacc(Dα) ⊆ nacc(α).
• For every α ∈ Γ such that otp(Cα \ �) ≤ �, let Dα := Cα .
• For any other α, let Dα := {� ∈ Cα | otp((Cα \ �) ∩ �) > �}.

Note that, for every α ∈ κ \ Γ, otp(Dα) = cf(α) < �, so acc(Dα) ∩ T = ∅.
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Claim 4.15.1. �D is a �(κ,��)-sequence that avoids T.

Proof. As any�� -coherent C-sequence that avoids a stationary set is a�(κ,��)-
sequence, we shall focus on verifying that �D is �� -coherent and avoids T. By the
definition of �D, it suffices to verify that for all α ∈ Γ and ᾱ ∈ acc(Dα), Dᾱ � Dα
and ᾱ /∈ T . Now, given such a pair ᾱ < α, since α ∈ Γ, we infer that Cᾱ � Cα and
ᾱ ∈ Γ. We shall verify that Dᾱ � Dα and that ᾱ /∈ T .

� If otp(Cα \ �) ≤ �, then otp(Cᾱ \ �) < �, so Dᾱ = Cᾱ � Cα = Dα and
ᾱ /∈ T .

� If otp(Cα \ �) > �, then Dα = {� ∈ Cα | otp((Cα \ �) ∩ �) > �}, and so,
from ᾱ ∈ acc(Dα) andCᾱ = Cα ∩ ᾱ, it follows that otp(Cᾱ \ �) > �, so again
Dᾱ � Dα and ᾱ /∈ T . �

Now, by Theorem 4.13(2) and Lemma 3.2(3), there is a closed witness c to
Usubadditive(κ, κ, �, �) such that T ⊆ ∂(c). �

It follows that there can be dramatic failures of monotonicity in the third
coordinate of Usubadditive(...).

Corollary 4.16. Suppose that � is an indestructible supercompact cardinal below
κ. Then there is a forcing extension in which all cofinalities ≤ κ are preserved and all
of the following hold:

• Usubadditive(κ, κ, �, �) holds and is witnessed by a closed coloring.
• For all � ′ < �, no witness to U(κ, 2, � ′, 2) is subadditive of the second kind.
• For all � ′ < � such that κ is not the successor of a singular cardinal of cofinality
�’, no witness to U(κ, 2, � ′, 2) is weakly subadditive of the first kind.

Proof. By Theorem 4.15, there is a �-directed closed, κ-strategically closed
forcing notion P that adds a closed witness to Usubadditive(κ, κ, �, �). Since P is �-
directed closed, � remains supercompact, so, we may appeal to Corollary 3.42. �

§5. Successors of singular cardinals.

Definition 5.1. Suppose that �
 = 〈
j | j < �〉 is a sequence of infinite cardinals,
each greater than �. The principle ♦(�
) asserts the existence of a sequence 〈Xα |
α < sup(�
)〉, and, for all j < �, a sequence �Cj = 〈Cjα | α < 
+

j 〉 such that:

• for all j < � and α ∈ acc(
+
j ), Cjα is a club in α, and for all ᾱ ∈ acc(Cjα ),

– Cjᾱ = Cjα ∩ ᾱ;
– Xᾱ = Xα ∩ ᾱ, provided that α > 
j ;

• for arbitrary large regular cardinals Υ, for all p ∈ HΥ and X ⊆ sup(�
), there
exists N ≺ HΥ such that

– p ∈ N ;
– |N | < sup(�
);
– N is internally approachable of length �+;
– for all sufficiently large j < �, we have X ∩ sup(N ∩ 
+

j ) = Xsup(N∩
+
j ).
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Remark 5.2. Note that, if ♦(�
) holds for a sequence �
 = 〈
j | j < �〉, then
2� ≤ 
 for all � < 
. Moreover, as we will see in Claim 5.4.1, �(
+

j ) holds for all

sufficiently large j < �, as witnessed by the sequence �Cj from the above definition.

We will soon show that ♦(�
) entails certain instances of Usubadditive(
+, ...). We
first need the following lemma.

Lemma 5.3. Suppose that 〈Cα | α < κ〉 is a �(κ)-sequence, � ∈ Reg(κ), and
h : κ → � is any function such that:

(1) for unboundedly many i < �, h–1{i} is stationary;
(2) for all α < κ and all ᾱ ∈ acc(Cα), we have h(ᾱ) = h(α).

Then there is a closed, subadditive witness c to U(κ, κ, �, sup(Reg(κ))) such that, for
all (α, �) ∈ [κ]2 with α ∈ acc(κ), we have c(α, �) ≥ h(α).

Proof. By the proof of [19, Theorem 3.4], the hypotheses of the lemma entail
the existence of a �ind(κ, �)-sequence 〈Cα,i | α ∈ acc(κ), i(α) ≤ i < �〉 such that
i(α) = h(α) for all α ∈ acc(κ). The construction in the proof of the implication
(1) =⇒ (2) of Theorem 4.4 then yields a closed subadditive function c : [κ]2 → �
witnessing U(κ, 2, �, 2) such that, for all (α, �) ∈ [κ]2, if α ∈ acc(κ), then c(α, �) ≥
i(α) = h(α). By Fact 3.2, c is moreover a witness to U(κ, κ, �, sup(Reg(κ))). �

Our next result is Theorem B. It is very much in the spirit of [8, Corollary 3.10];
both results take instances of incompactness below a singular cardinal 
 and use
them together with a scale of length 
+ to produce an instance of incompactness
at 
+.

Theorem 5.4. Suppose that 
 is a singular cardinal, � ∈ Reg(
) \ (cf(
) + 1), and
�
 = 〈
j | j < cf(
)〉 is an increasing sequence of cardinals, converging to 
, such that:

• ♦(�
) holds;
•

∏
j<cf(
) 


+
j carries a scale �f of length 
+.

Then there is a Σ-closed, subadditive witness to U(
+, 
+, �, 
), where Σ ⊆ E
+�=cf(
)

denotes the set of good points for �f.

Proof. Without loss of generality, assume that 
0 > �. Fix sequences
〈Xα | α < 
〉 and �Cj = 〈Cjα | α < 
+

j 〉 for j < cf(
) witnessing ♦(�
).

Let j < cf(
) be arbitrary. It is clear from the definition of ♦(�
) that we
may assume that min(Cjα ) ≥ 
j whenever α ∈ (
j, 
+

j ). Now, define a function
hj : 
+

j → � by letting, for all α < 
+
j ,

hj(α) :=

{
Xα, if α > 
j & Xα ∈ �,
0, otherwise.

Claim 5.4.1. For all sufficiently large j < cf(
), �Cj and hj satisfy the hypotheses
of Lemma 5.3.

Proof. We first show that �Cj is a �(
+
j )-sequence for all sufficiently large

j < cf(
). Suppose for the sake of contradiction that there is an unbounded set
J ⊆ cf(
) such that, for all j ∈ J , �Cj is not a �(
+

j )-sequence. Each �Cj is evidently
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a coherent C-sequence; therefore, for every j ∈ J , we can fix a clubDj ⊆ 
+
j such that

Dj ∩ α = Cjα for all α ∈ acc(Dj). By our assumption from the previous paragraph,
this implies that Dj ⊆ [
j, 
+

j ). Fix a regular cardinal Υ sufficiently large to ensure
that all objects of interest are in HΥ. Let p := 〈Dj | j ∈ J 〉, X 0 := 0 and X 1 := 1.
Apply ♦(�
) twice to find N0, N1 ≺ HΥ such that, for i < 2:

• p ∈ Ni ;
• |Ni | < 
;
• Ni is internally approachable of length cf(
)+;
• for all sufficiently large j < cf(
), we have X i = Xsup(Ni∩
+

j ).

Now fix j∗ ∈ J sufficiently large so that, for i < 2, we have
• |Ni | < 
j∗ ;
• X i = Xsup(Ni∩
+

j∗ ).

For each i < 2, the ordinal �i := sup(Ni ∩ 
+
j ) is less than 
+

j . Since Dj∗ ∈ Ni and
Dj∗ is club in 
+

j , we have �i ∈ acc(Dj∗). In particular, �i > 
j∗ . By our choice of

Dj∗ , it follows thatDj∗ ∩ �i = Cj
∗

�i
. If�0 < �1, then�0 ∈ acc(Dj∗) ∩ �1 = acc(Cj

∗

�1
)

and �1 > 
j∗ , so X�0 = X�1 ∩ �0. Likewise, if �1 < �0, then X�1 = X�0 ∩ �1.
However, by our choice of j∗, X�0 = X 0 = 0 and X�1 = X 1 = 1, which is a
contradiction.

By the definition of hj and the fact that 
0 > �, it is immediate that �Cj and hj
satisfy Clause (2) in the statement of Lemma 5.3. It remains to show that, for all
sufficiently large j < cf(
), for unboundedly many i < �, h–1

j {i} is stationary in 
+
j .

Suppose for the sake of contradiction that there is an unbounded J ⊆ cf(
) and,
for each j ∈ J , an ij < � such that h–1

j {i} is nonstationary for all i ∈ [ij , �). Since
� > cf(
) is regular, i∗ := sup{ij | j < cf(
)} is less than �. It follows that for all
j ∈ J , h–1

j [i∗, �) is nonstationary in 
+
j ; fix a club Dj ⊆ 
+

j disjoint from it. Fix a
regular cardinal Υ sufficiently large to ensure that all objects of interest are in HΥ.
Let p := {�, �
, 〈Dj | j ∈ J 〉} and X := i∗, and apply ♦(�
) to find N ≺ HΥ such
that:

• p ∈ N ;
• |N | < 
;
• N is internally approachable of length cf(
)+;
• for all sufficiently large j < cf(
), we have X = Xsup(N∩
+

j ).

Fix a sufficiently large j∗ ∈ J so that |N | < 
j∗ and X = i∗ = Xsup(N∩
+
j∗ ). Let

� := sup(N ∩ 
+
j∗). Since �
 ∈ N , we have � > 
j∗ , and hence hj∗(�) = i∗. However,

since Dj∗ is a club in 
+
j∗ lying in N, we have � ∈ Dj∗ , and hence hj∗(�) < i∗. This

is a contradiction, completing the proof of the claim. �
By the claim, by discarding an initial segment of �
 if necessary, we may assume

that, for all j < cf(
), �Cj and hj satisfy the hypotheses of Lemma 5.3. We may
therefore fix a closed, subadditive witness cj : [
+

j ]2 → � to U(
+
j , 


+
j , �, 
j) such

that cj(α, �) ≥ hj(α) for all (α, �) ∈ [
+
j ]2 with α ∈ acc(
+

j ).

Next, let �f = 〈f� | � < 
+〉 be a continuous scale in
∏
j<cf(
) 


+
j , and let Σ ⊆

E

+

�=cf(
) denote the set of good points for �f. Define a coloring c : [
+]2 → � by
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setting, for all � < 	 < 
+,

c(�, 	) := lim sup
j→cf(
)

cj(f�(j), f	(j)).

Note that, for all (�, 	) ∈ [
+]2 and all sufficiently large j < cf(
), we have
f�(j) < f	(j), so the above expression is well-defined. We claim that c is a Σ-closed,
subadditive witness to U(
+, 
+, �, 
). Let us verify each of these requirements in
turn.

Claim 5.4.2. c is Σ-closed.

Proof. Suppose that 	 < 
+, i < �, and B ⊆ Dc≤i(	), with � := sup(B) in
(	 ∩ Σ) \ B . We will show that � ∈ Dc≤i(	).

Since � ∈ Σ, we can assume, by thinning out B if necessary, that there is j0 < cf(
)
such that, for all (α, α′) ∈ [B]2, we have fα <j0 fα′ . Since �f is continuous, there
is j1 ∈ [j0, cf(
)) such that, for all j ∈ [j1, cf(
)), we have f�(j) = sup{fα(j) |
α ∈ B}. Finally, since B ⊆ Dc≤i(	), we can assume, by thinning out B again if
necessary, that there is j2 with j1 ≤ j2 < cf(
) such that, for all j ∈ [j2, cf(
)),

• f�(j) < f	(j);
• for all α ∈ B , cj(fα(j), f	(j)) ≤ i .

Since each cj is closed, it follows that, for all j ∈ [j2, cf(
)), we have sup{fα(j) |
α ∈ B} = f�(j) and cj(f�(j), f	(j)) ≤ i , and hence c(�, 	) ≤ i . �

Claim 5.4.3. c is subadditive.

Proof. Let α < � < 	 < 
+ be arbitrary. For all sufficiently large j < cf(
), we
have fα(j) < f�(j) < f	(j) and hence, since each cj is subadditive, we have

• cj(fα(j), f	(j)) ≤ max{cj(fα(j), f�(j)), cj(f�(j), f	(j))}; and
• cj(fα(j), f�(j)) ≤ max{cj(fα(j), f	(j)), cj(f�(j), f	(j))}.

It follows immediately from the definition of c that c(α, 	) ≤ max{c(α, �), c(�, 	)}
and c(α, �) ≤ max{c(α, 	), c(�, 	)}. �

Claim 5.4.4. c witnesses U(
+, 
+, �, 
).

Proof. By a theorem of Shelah, Σ ∩ E
+≥� is stationary for all � < 
. So, since c
is Σ-closed and subadditive, Lemma 3.2(3) implies that it suffices to verify that c
witnesses U(
+, 2, �, 2). To this end, fix A ∈ [
+]


+
and a color i < �. We will find

(α, 	) ∈ [A]2 such that c(α, 	) > i .
Fix a regular cardinal Υ sufficiently large to ensure that all objects of interest are

inHΥ. Apply ♦(�
) with p := {�
, �f,A} andX := i + 1 to findN ≺ HΥ such that:
• p ∈ N ;
• |N | < 
;
• N is internally approachable of length cf(
)+;
• for all sufficiently large j < cf(
), we have Xsup(N∩
+

j ) = i + 1.

As |N | < 
 and �
 ∈ N , there exists a function �N ∈
∏
j<cf(
) acc(
+

j ) such that
�N (j) = sup(N ∩ 
+

j ) for all sufficiently large j < cf(
). Let � := sup(N ∩ 
+).

As N is internally approachable of length cf(
)+, we know that � ∈ Σ ∩ E
+cf(
)+ .

Since �f ∈ N , �f is continuous, and N is internally approachable, we know that
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f�(j) = �N (j) for all sufficiently large j < cf(
). Thus, for all sufficiently large
j < cf(
) and all � ∈ (f�(j), 
+

j ),

cj(f�(j), �) ≥ hj(f�(j)) = hj(�N (j)) = Xsup(N∩
+j ) = i + 1.

Consequently, c(�, 	) > i for all 	 > � .
Fix 	 ∈ A \ (� + 1). Since � ∈ Σ and c is Σ-closed, there is � < � such that

c(α, 	) > i for all α ∈ (�, �). As A ∈ N , the elementarity of N entails that
sup(A ∩ �) = � , so we may fix α ∈ A ∩ (�, �). Then c(α, 	) > i , as desired. �

�

We now connect the above finding with the notion of the C-sequence spectrum,
introduced in Part II of this series.

Definition 5.5 [22]. (1) For every C-sequence �C = 〈C� | � < κ〉, �( �C ) is the
least cardinal � ≤ κ such that there exist Δ ∈ [κ]κ and b : κ → [κ]� with
Δ ∩ α ⊆

⋃
�∈b(α)C� for every α < κ.

(2) Cspec(κ) := {�( �C ) | �C is a C-sequence over κ} \ .

The next result yields the “In particular” part of Theorem B.

Corollary 5.6. Suppose that 
 is a singular cardinal, �
 is an increasing cf(
)-
sequence of cardinals, converging to 
, such that ♦(�
) holds, and tcf(

∏ �
,<∗) = 
+.
Then Reg(
) ⊆ Cspec(
+).

Proof. � By Remark 5.2, 2cf(
) < 
. So, by [22, Theorem 5.29(1)],
Reg(cf(
)) ⊆ Cspec(
+).

� By [22, Lemma 4.11], cf(
) ∈ Cspec(
+).
� By Theorem 5.4 and [22, Corollary 5.21], Reg(
) \ (cf(
) + 1) ⊆ Cspec(
+).

�

Our next goal is to improve the following fact from Part II, and present a weaker
sufficient condition for Cspec(
+) to cover Reg(cf(
)).

Fact 5.7 [22, Theorem 5.29(2)]. Suppose that 
 is a singular cardinal of successor
cofinality �+. Then:

• Reg(�) ⊆ Cspec(
+).
• If 2� ≤ 
, then Reg(cf(
)) ⊆ Cspec(
+).

Theorem 5.8. Suppose that 
 is a singular cardinal. If 
 is of uncountable cofinality,
suppose also that �(cf(
)) > 1. Then, for every infinite regular � ≤ cf(
), there exists
a closed witness to U(
+, 
+, �, cf(
)).

Proof. By [20, Corollary 4.17], there exists a closed witness to U(
+, 
+, cf(
),
cf(
)), so assume that 
 has uncountable cofinality. Denote � := cf(
), so that
�(�) > 1. Recalling Claim 4.21.3 from the proof of [20, Theorem 4.21], it suffices
to prove that the ideal I defined there in “Case 1: Uncountable cofinality” is not
weakly �-saturated.
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Let us first remind the reader that the definition of the ideal I goes through first
fixing a stationary subset Δ ⊆ E
+cf(
) and a sequence �e = 〈e� | � ∈ Δ〉 such that:

• for every � ∈ Δ, e� is a club in � of order type cf(
);
• for every � ∈ Δ, 〈cf(	) | 	 ∈ nacc(e�)〉 is strictly increasing and converging to 
;
• for every club D in 
+, there exists � ∈ Δ such that e� ⊆ D.

Then, the ideal I consists of all subsets Γ ⊆ 
+ for which there exists a clubD ⊆ 
+

such that sup(nacc(e�) ∩D ∩ Γ) < � for every � ∈ Δ ∩D.
Now, since �(�) > 1, by [12, Theorem A], unbounded+(J bd[�], �) holds. That is,

we may fix a coloring c : [�]2 → � satisfying that, for every cofinal B ⊆ �, there exist
(�, T ) ∈ (�, [�]�) such that, for all � ∈ T , sup{� ∈ B | c(�, �) = �} = �.

Fix a club Λ in 
 of order-type �. For every � < � and � < �, let

Γ�� := {	 < 
+ | c(�, otp(Λ ∩ cf(	)) = �}.

Claim 5.8.1. There exists � < � such that |{� < � | Γ�� ∈ I+}| = �.

Proof. Suppose not. Then, for every � < �, the set T� := {� < � | Γ�� ∈ I+}
is bounded in �. For each � < � and � ∈ � \ T�, fix a club D�� ⊆ 
+ such that
sup(nacc(e�) ∩D�� ∩ Γ��) < � for every � ∈ Δ ∩D�� . Let D :=

⋂
{D�� | � < �, � ∈

� \ T�}. Now, using the choice of �e, let us fix � ∈ Δ such that e� ⊆ D. In
particular, � ∈ D. As 〈cf(	) | 	 ∈ nacc(e�)〉 is strictly increasing and converging
to 
, it follows that B := {otp(Λ ∩ cf(	)) | 	 ∈ nacc(e�)} is cofinal in �. Thus,
by the choice of c, we may now find (�, T ) ∈ (�, [�]�) such that, for all � ∈
T , sup{� ∈ B | c(�, �) = �} = �. Pick � ∈ T \ T�. As � ∈ Δ ∩D ⊆ Δ ∩D�� , we
infer that sup(nacc(e�) ∩D�� ∩ Γ��) < �. In particular, A := {otp(Λ ∩ cf(	)) | 	 ∈
nacc(e�) ∩D�� ∩ Γ��} is bounded in �. Pick � ∈ B above sup(A ∪ (� + 1)) such that
c(�, �) = �. Then, find 	 ∈ nacc(e�) such that � = otp(Λ ∩ cf(	)). Altogether:

• 	 ∈ nacc(e�);
• 	 ∈ e� , so that 	 ∈ D ⊆ D�� ;
• c(�,otp(Λ ∩ cf(	)) = c(�, �) = �, so that 	 ∈ Γ��;
• otp(Λ ∩ cf(	)) = � > sup(A), so that 	 /∈ nacc(e�) ∩D�� ∩ Γ��.

This is a contradiction. �

It follows that I is indeed not weakly �-saturated, so we are done. �

As successor cardinals are non-Mahlo, the following indeed improves Fact 5.7.

Corollary 5.9. Suppose that 
 is a singular cardinal of cofinality �. If � is not
greatly Mahlo, then Reg(cf(
)) ⊆ Cspec(
+).

Proof. By [22, Corollary 5.21], to show that an infinite regular cardinal � is in
Cspec(
+), it suffices to prove that there exists a closed witness to U(
+, 
+, �, �).
By the preceding theorem, if Reg(cf(
)) is not a subset of Cspec(
+), then cf(
)
is an uncountable cardinal and �(cf(
)) ≤ 1. In this case, by [22, Theorem A(2)],
cf(
) is greatly Mahlo. �
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§6. Stationarily layered posets. In Part I of this project [20], we motivated the
study of U(κ, �, �, �) by showing that it places limits on the infinite productivity
of the κ-Knaster condition. Here, we present an analogous result, indicating that
closed witnesses to Usubadditive(κ, 2, �, 2) place limits on the infinite productivity of the
property of being κ-stationarily layered, which is a strengthening of the κ-Knaster
condition.

Definition 6.1 [6]. A partial order P is κ-stationarily layered if the collection of
regular suborders of P of size less than κ is stationary in Pκ(P).

By [7, Lemma 1.5], any κ-stationarily layered poset is also κ-Knaster. We now
recall a useful equivalence.

Fact 6.2 [7, Lemma 2.3]. Given a poset P, the following are equivalent.

(1) P is κ-stationarily layered.
(2) There is a regular cardinal Υ with Pκ(P) ∈ HΥ and an elementary substruc-

tureM ≺ HΥ such that:
(a) κ,P ∈M ;
(b) κ ∩M ∈ κ;
(c) P ∩M is a regular suborder of P.

The following is Theorem D:

Theorem 6.3. Suppose that � ≤ � < κ are infinite, regular cardinals, κ is <�-
inaccessible, and c : [κ]2 → � is a closed witness to U(κ, 2, �, 2) that is subadditive of
the second kind. Then:

• There is a sequence of posets 〈Pi | i < �〉 such that:
(1) for all i < �, Pi is well-met and �-directed closed with greatest lower

bounds;
(2) for all j < �,

∏
i<j Pi is κ-stationarily layered;

(3)
∏
i<� Pi is not κ-cc.

• There is a poset P such that, if ∂(c) ∩ Eκ� is stationary, then:
(1) P is well-met and �-directed closed with greatest lower bounds;
(2) for all j < �, Pj is κ-stationarily layered;
(3) P� is not κ-cc.

Proof. Using Lemma 2.4(3) (with S := Eκ� ), let us fix � < κ such that, for every
j < �, {� ∈ Eκ� | c(�, �) > j} is stationary. For every i < �, let:

• Γi := {	 < κ | � < 	 and c(�, 	) ≤ i},
• Pi denote the collection of all pairs (i, f) where f : κ → 2 is a partial function

of size less than �.

Set P := {∅} ∪
⊎
i<� Pi . Define an ordering ≤ of P as follows:

(1) ∅ is the top element of (P,≤).
(2) For all (i, f), (j, g) ∈ P \ {∅}, we let (j, g) ≤ (i, f) iff:

• i = j,
• g ⊇ f, and
• for all 	 ∈ dom(f) ∩ Γi andα ∈ 	 ∩ dom(g) \ dom(f), if c(α, 	) ≤ i , then
g(α) = 0.
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We then let P := (P,≤) and Pi := ({∅} ∪ Pi ,≤) for all i < �.

Claim 6.3.1. ≤ is transitive.

Proof. Suppose (i, h) ≤ (i, g) and (i, g) ≤ (i, f). It is clear that h ⊇ f. Let
	 ∈ dom(f) ∩ Γi and α ∈ 	 ∩ dom(h) \ dom(f) with c(α, 	) ≤ i . Clearly, 	 ∈
dom(g) ∩ Γi .

� If α /∈ dom(g), then from (i, h) ≤ (i, g), it follows that h(α) = 0, as sought.
� If α ∈ dom(g), then from (i, g) ≤ (i, f), it follows that h(α) = g(α) = 0, as

sought. �
Clearly, P and each of the Pi ’s are a well-met poset which is �-directed closed with

greatest lower bounds.

Claim 6.3.2. (1)
∏
i<� Pi does not satisfy the κ-cc.

(2) P� does not satisfy the κ-cc.

Proof. (1) For every α < κ, define pα ∈
∏
i<� Pi by setting pα(i) := (i, {(α, 1)})

for all i < �. To see that {pα | α < κ} is an antichain (of size κ) in
∏
i<� Pi , fix

arbitrary (α, 	) ∈ [κ]2. Let i := max{c(�, 	), c(α, 	)}. Then pα(i) and p	(i) are
incompatible in Pi , so pα and p	 are incompatible in

∏
i<� Pi .

(2) This follows from Clause (1). �
Claim 6.3.3. Let j < �.

(1)
∏
i<j Pi is κ-stationarily layered.

(2) If ∂(c) ∩ Eκ� is stationary, then Pj is κ-stationarily layered.

Proof. Let Q denote
∏
i<j Pi (resp. Pj). Let Υ be a regular cardinal with

Pκ(Q) ∈ HΥ. Using the fact that κ is <�-inaccessible, construct an ∈-increasing,
continuous sequence �M = 〈M� | � < κ〉 such that, for all � < κ:

• M� ≺ HΥ;
• |M� | < κ;
• κ,Q ∈M� ;
• <�M� ⊆M�+1.

� If Q =
∏
i<j Pi , then, using our choice of �, we fix � ∈ Eκ� with κ ∩M� = � >

� such that c(�, �) > j.
� If ∂(c) ∩ Eκ� is stationary, then we fix � ∈ ∂(c) ∩ Eκ� with κ ∩M� = � > �.

Note that by the continuity of the sequence �M , <�M� ⊆M� . Now, by Fact 6.2, it
suffices to prove that Q ∩M� is a regular suborder of Q. To this end, we will define,
for each p ∈ Q, a reduction of p toM� , i.e., a condition p|M� ∈ Q ∩M� such that,
for all q ≤Q p|M� with q ∈M� , q is compatible with p.

Fix p ∈ Q. For every � < j, write p(�) as (i�, f�), and set x� := dom(f�) ∩
Γi� \ � .

Subclaim 6.3.3.1. Let � < j and 	 ∈ x�. Then Dc≤i� (	) ∩ � is a closed bounded
subset of � .

Proof. As c is closed, it suffices to prove that sup(Dc≤i� (	) ∩ �) < � . To avoid
trivialities, suppose that � /∈ ∂(c). So, Q =

∏
i<j Pi and i� = �. Now, as c is
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subadditive of the second kind,

j < c(�, �) ≤ max{c(�, 	), c(�, 	)}.
So, since c(�, 	) ≤ i� = � < j, it follows that c(�, 	) ≥ j > i�. As c is closed, it thus
follows that {α < � | c(α, 	) ≤ i�} is bounded below � . �

For every � < j, by the subclaim and since |x�| < �,

y� := {max(Dc≤i� (	) ∩ �) | 	 ∈ x� & Dc≤i� (	) ∩ � �= ∅}

is a well-defined element of [�]<� .
For each � < j, define a partial function g� : � → 2 by letting

g� := (f� � �) ∪ ((y� \ dom(f�)) × {0}).

Clearly, g� has size less than �, so as <�M� ⊆M� , we have (i�, g�) ∈M� ∩ Pi� .
Define a condition p|M� in Q by letting (p|M�)(�) := (i�, g�) for all � < j.

As <�M� ⊆M� , we have p|M� ∈M� ∩Q. To see that p|M� is a reduction of
p to M� , fix q ≤Q p|M� in M� . The only way that q can fail to be compatible
with p is if, for some � < j, there are 	 ∈ x� and α ∈ dom(q(�)) \ dom(f�) such
that c(α, 	) ≤ i�, but q(�)(α) = 1. So suppose �, α, and 	 are as described. In
particular, α is smaller than 	� := max(Dc≤i� (	) ∩ �). As 	� ∈ dom(g�), it thus
follows that either 	� /∈ Γi� or c(α, 	�) > i�. But c is subadditive of the second kind,
so c(�, 	�) ≤ max{c(�, 	), c(	�, 	)} ≤ i� and c(α, 	�) ≤ max{c(α, 	), c(	�, 	)} ≤ i�.
This is a contradiction. �

�
Remark 6.4. For infinite regular cardinals � ≤ � < κ such that κ is <�-

inaccessible, for any coloring c : [κ]2 → �, the posetPderived from c in the preceding
proof has the following features:

(1) P is well-met and �-directed closed with greatest lower bounds.
(2) If c witnesses U(κ, 2, �, 2), then for all j < �, Pj is κ-cc.
(3) If c witnesses U(κ, κ, �, 2), then for all j < �, Pj has precaliber κ.
(4) If c is closed, subadditive of the second kind, and ∂(c) ∩ Eκ� is stationary,

then for all j < �, Pj is κ-stationarily layered.
(5) P� is not κ-cc.

Corollary 6.5. Suppose that κ is<�-inaccessible and any one of the following six
statements holds.

(1) κ = 
+ and �
 holds.
(2) V = L and κ is not weakly compact.
(3) �(κ) holds after being added generically.5

(4) There exists a �(κ)-sequence that avoids a stationary subset of Eκ� .
(5) κ = 
+ where 
 is a former inaccessible that changed its cofinality to � via

Prikry/Magidor forcing.
(6) � =  and �ind(κ,) holds after being added generically.

5More precisely, V is a generic extension of some ground model by S(κ), the standard poset for
adding a �(κ)-sequence; see [16, Definition 2.4] for the definition of S(κ).
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Then there is a poset P such that:

• P is well-met and �-directed closed with greatest lower bounds;
• for all j < �, Pj is κ-stationarily layered;
• P� is not κ-cc.

Proof. We will show that any one of the assumptions entails the existence of a
closed witness c to Usubadditive(κ, 2, �, 2) such that ∂(c) is stationary. Then the second
bullet point of Theorem 6.3 will furnish the desired poset P.

Note first that (1) =⇒ (4) and (2) =⇒ (4) (cf. [13, Theorem 6.1] or [10,
Theorem VII.1.2’]). In addition, as established in the proof of Theorem 4.15,
(3) =⇒ (4). Next, by Theorem 4.13(2), if (4) holds, then there is a closed witness
c to Usubadditive(κ, 2, �, 2) for which ∂(c) is stationary.

The fact that Clause (5) implies the desired conclusion is a consequence of
Theorem 4.8 and the fact that Prikry forcing and Magidor forcing do not kill
the stationarity of the ground model’s E


+


 .
It remains to deal with (6). To this end, suppose that �C = 〈Cα,i | α ∈

acc(κ), i(α) ≤ i < 〉 is a generically added �ind(κ,)-sequence, i.e., V is an
extension of some ground model by the forcing from [17, Section 7] to add a
�ind(κ,)-sequence, and �C is the sequence generated by the generic filter. Let

S := {α ∈ Eκ | ∀i ∈ [i(α), )[sup(acc(Cα, i)) < α]}.

By [22, Claim 3.4.1], S is stationary. Let Γ := acc(κ) \ S. We now define an
�ind(κ,)-sequence �D := 〈Dα,i | α ∈ Γ, j(α) ≤ i < 〉 as follows. For each α ∈ S,
let j(α) be the least j ∈ [i(α), ) such that sup(acc(Cα, i)) = α and, for all
j ∈ [j(α), ), let Dα,j := acc(Cα,j). Using our choice of S and the fact that �C
is an �ind(κ,) sequence, it is straightforward to verify that �D is an �ind(κ,)-
sequence. By the proof of Theorem 4.4 (cf. also Theorem 4.13) and the fact that
Γ ∩ S = ∅, it follows that there is a closed witness c to Usubadditive(κ, 2, , 2) such
that S ⊆ ∂(c). �
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