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LOWER BOUNDS FOR MATRICES, II 

GRAHAME BENNETT 

ABSTRACT. Our main result is the following monotonicity property for moment 
sequences(X. Let/? be fixed, 1 < p < oo: then 

is an increasing function of r (r = 1,2,...). From this we derive a sharp lower bound for 
an arbitrary Hausdorff matrix acting on £p. The corresponding upper bound problem 
was solved by Hardy. 

1. Introduction. We shall be concerned with the spaces lp, 1 < p < oo, of se­
quences of real numbers satisfying 

(i) IMI,= (ÊM')1 /P<oo. 
xk=0 J 

We seek lower bounds of the form 

(2) | |Ax||p>L||x| |p, 

valid for every x G lp with xo > x\ > • • • > 0. Here A is a matrix with non-negative 
entries, assumed to map tp into itself, and L is a constant not depending on x. Results of 
this type may be found in [1], [6], [12], [13], [16], [17] and [20]. 

The general lower bound problem is solved in [1], where it is shown that the best 
possible value of L is given by 

(3) L = i n f { / 1 / " ( r ) : r = 0 , l , . . . } , 

with 

1 °° / r \p 

(4) / ( ' ) = — r E (£«**)• 

The problem comes to life again, however, when we attempt to evaluate (3) for spécifie 
examples; indeed, the infimum may be intractable even for "nice" matrices A. 

It turns out, in rather surprisingly many cases, that the function/(r) actually increases 
with r. These are the easiest cases to handle, for the infimum in (3) is attained at r = 0, 
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and the lower bound, L, is just the ^ - n o r m of the first column of A. Most of our results 

are of this type. 

The real challenge, then, is to study the monotonicity properties of the functions given 

by (4). We shall see that this leads to several intriguing elementary inequalities, quite 

unlike any that appear in the literature. The main tool used in providing such inequalities 

is the theory of majorization. 

Only two lower bounds were worked out in detail in [1 ]. We restate these results here 

in a form not involving the monotonicity of x. The first provides a natural complement 

to Hardy's inequality ([9], § 9.8), the second to Hilbert's ([9], Chapter IX). 

Let x be a sequence of non-negative numbers and suppose that/7 > 1. If x G lp, then 

oo , 1 n s/? oo 

(5) £ ( — r £ * * ) >C(p)Emm^, 

and 
OO , OO y \ P ° ° 

(6) E t e r r r r r ) >C(P)£mma£. 
n=o\=0n + k+ 1/ n=ok<n 

In both cases the constant £ (/?)(= E £ i k~p) is best possible, and there is equality only 

when JC! = *2 = • • • = 0. 

The special case, p = 2, of inequality (5) was conjectured by Axler and Shields, and 

proved by Lyons in [13]. The general case was discovered simultaneously by Bennett [1] 

and Renaud [17]. A related result, for 0 < p < 1, which provides a natural complement 

to the Cop son-Elliott inequalities ([9], Theorems 338, 344 and 345), is given in [3]. 

In [1], page 90, we raised the problem of evaluating (3) for other "classical" matri­

ces, A. This has been pursued by Rhoades [20], and by Lenard [12], whose results are 

described in more detail below. 

The main purpose of this paper is to solve the lower bound problem for Hausdorff 

matrices. These have entries, hn^, n, k = 0 , 1 , . . . , of the form 

©A»"*/** (k<n) 
0 ( * > / i ) ' 

where |JL = (/i*)£o is a sequence of real numbers, normalized so that /xo = 1, and where 

A is the forward difference operator, 

(8) A/x* = iik — /x*+i. 

The theory of Hausdorff matrices is described in [5], [8], [24], [25]. 

We are interested here only in matrices with non-negative entries and so we take ft 

to be a totally monotone sequence, namely 

(9) A > * > 0 (n,* = 0, l , . . . ) . 

Now (9) holds, according to a fundamental theorem of Hausdorff, [10], precisely when 
|X is a moment sequence 

(10) nk = J 9kdfi(6) (fc = 0,l,...) 

(7) hnJl 
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associated with some (Borel) probability measure, d\i($ ), on [0,1]. Thus we may rewrite 
(7) in the equivalent form 

(ii) hnk= \^s^k(\-er-kd^e) (k<n) 
1 0 (k> n) 

Taking dfi(6) to be Lebesgue measure, we obtain the Cesàro matrix (of order 1), so 
that our main result, Theorem 1, is an extension of (5). Other choices (see [8], Chapter 
11) lead to (C, a ) , the Cesàro matrix of order a (fi(6) = 1 — (1 — 6)a), to (//, a ) , the 
Holder matrix of order a (T(a )d[i (0 ) = | log 6 \ a ~l dd ), and to the Euler matrices (£, a ) 
(d[i(6) = point evaluation at 9 = a). Thus the lower bound problem is completely 
solved for these classes of matrices. 

There are connections—already apparent in [10]—between Hausdorff matrices and 
probability theory (Bernoulli trials, exchangeable events), and our inequalities have ap­
plications in this direction too (see section 7 and, especially, [4]). 

The main obstacle to computing lower bounds for Hausdorff matrices is the fact that 
no closed-form expression is known for the partial row-sum, E£=0

 nn,k, which appears in 
(4). This difficulty can be avoided, however, if/? is a positive integer, for we may rewrite 
f{r) as a/7-fold sum and then interchange the order of summation. Lenard [12] adopts this 
approach to evaluate (3) for Euler matrices acting on lpip = 1,2,...). His subsequent 
analysis is quite involved and requires skilful manipulations with generating functions. 
Our method has nothing in common with his, but we owe him a great deal just the same, 
for it was his result that led us to suspect the validity of the more powerful inequalities 
(Theorems 1 and 5) below. Lenard's analysis is given as an appendix to this paper. 

Our main result is proved in sections 3 and 4 after some preliminary remarks on the 
method of proof in section 2. Quasi-Hausdorff matrices are studied in section 5, and 
weighted means in section 6. Some additional inequalities concerning moment sequences 
are given in section 7. 

2. Background on majorization. We wish to show (see (4) and (11)) that the ex­
pression 

increases with r. The first step is to eliminate p. We do this by appealing to the theory 
of majorization, which is described briefly below. This step, incidentally, allows us also 
to eliminate d^iQ), and leaves us with a "no-frills" inequality, (20), involving just the 
binomial probabilities: (^)#*(1 — 0)n~k. The inequality is proved by first establishing 
a rather mysterious polynomial identity, Lemma 1, and by then ejecting certain of its 
terms. (There ought to be a simple probabilistic proof of the identity, but I have been 
unable to discover one such.) 

The theory of majorization is concerned with inequalities of the type 

(12) <t>ixx) + --- + (t>ixN) <4>iyi) + ••• + </>iyN). 
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Here x and y are fixed N-tuples with non-negative entries, and the inequality holds for 
all continuous, convex functions </> (whose domain of definition includes the JC'S and the 
y's). If (12) holds, we say that x is majorized by y, and we write x < y. An excellent 
account of these ideas is given in the monograph [14]. 

The importance of the theory is due, in large part, to the following result of Hardy, 
Littlewood and Polya ([9], Theorem 108). 

THEOREM HLP. Let x and y be N-tuples with non-negative entries. Then x < y if 
both the following conditions hold. 

(13) x[ + --- + 4 < y i + • • • + ?* ( 1 < * < A 0 

(14) x\ + --+xN =yi +••• +vyy, 

where the x* 's are the x's arranged in descending order. 

Majorization is used in sections 6 and 7 (Lemma 8 and Theorem 6), but a less stringent 
condition is required for our main result. Following Marshall and Olkin, [14], we say 
that x is weakly submajorized by y, and we write x <w y, if condition (13) is satisfied. It 
then follows by a theorem of Tomic [22] (see also [14], page 66) that (12) holds for all 
increasing, continuous, convex functions <f>. Polya, [15], has shown that Tomic's result 
is a consequence of Theorem HLP; in fact, the two results are equivalent. 

3. An identity. Let N and r be positive integers. Determine integers a and a by 

(15) N=a(r+\) + a (0<a<r+l) 

and integers b and (3 by 

(16) N=br + f3 ( 0 < / 3 < r ) . 

Then we have the following identity. 

LEMMA 1. 

a-\ r-\ r-\ b-\ Q 

( r + l ) E E Kk + oc Y, ha,k + r £ (r+l-N/ n)hnj + ~(b - r)hh,r 
n=0k=0 k=0 n=a+\ & 

b-\ r r 
= r YJ H Kk + PY1 h^k, 

n=0k=0 k=0 

where the entries hn^ are given by (11). 

It will be convenient to adopt the following notation 

(17) L = (r + 1) £ £ hnJc + a £ hajc9 
n=0k=0 k=0 

(18) R = rY,Ehn,k + pJ2hb,k, 
n=0k=0 k=0 

(19) D = r Ê (r+l-N/n)hntr+£-(b-r)hbs. 
n=a+\ b 
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(L stands for "left", R for "right", and D for "difference", the last term being justified by 
Lemma 1). Our ultimate goal is to prove the inequality 

(20) L<R. 

This follows from Lemma 1 since D > 0 (by (15), (16) and (11)). 
Lemma 1 is proved by manipulating an easier identity, Lemma 3 below. The argument 

proceeds most efficiently if we agree to work with Euler matrices first, and then switch 
to Hausdorff matrices by averaging over 0 < 9 < 1 with respect to dfj,(9). We recall 
that the entries of an Euler matrix, E = E(9 ), are given by 

(21) enk=l(D9k(l-e^k (° < * < " ) . 
' 1 0 (k > n) 

Three of our identités, Lemmas 3-5, involve the parameter 9 explicitly, and this must be 
eliminated before the averaging can be effected. For this step we need the following 

LEMMA 2. (k + l)en+\£+\ — 9(n+ X)enk whenever n,k > 0. 

PROOF. The result follows immediately from (21). 

LEMMA 3. EjZo enÀ + 0 EpJ ejs-\ = 1 whenever n,r> 1. 

PROOF. The rows of E are "binomial probability vectors" so that the first term above, 
££=o en,k> m a v t>e interpreted as the probability of "less than r successes in n trials". The 
columns of £, all with sums 1 / 9, admit a similar interpretation if we first multiply each 
by 9. Indeed, the kth column of E (times 9) represents "the waiting time for (k + 1) 
successes" (k = 0,1,...). Thus the second term above, 9 E^rJ ^>-i, is the probability 
that the waiting time for r successes does not exceed n, or, equivalently, that at least r 
successes occur in n trials. The two italicized events are complementary, and hence their 
probabilities add to one. 

It would be most satisfying to have a similar probabilistic interpretation of Lemmas 1 
and 6. 

LEMMA 4. £ £ o en,k = T,rkZo em,k + 9 E ^ 1 e^x whenever n, r > 0, and m > n. 

PROOF. Apply Lemma 3 twice; once as it stands, and once with n replaced by m. 

LEMMA 5. E p J ejir-\ E p J e^r + enyrj 9 whenever n,r> 1. 

PROOF. Apply Lemma 3 twice; once as it stands, and once with r replaced by r + 1. 
(We remark that enj is divisible by 9, so that Lemma 5 holds even when 9 — 0.) 

LEMMA 6. ££=o Er
kZ

l
0 Kk = s Er

kZ
l
0 hs,k + r J?n=0 hnj whenever r,s>l. 

PROOF. We prove this just for the Euler matrices, (21); the general result follows by 
integrating over 0 < 9 < 1 with respect to d\x(9 ). 
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Applying Lemma 4 with m replaced by s, we have 
s— 1 r— I 5—1 /f—\ s—\ N 

E E en,k = E E ^ + s E^>-i 
n = 0 * = 0 n=O v Jb=0 ; '=n y 

r - 1 5 - 1 

= sY,es,k + 0 E0"+lHr- i , 

and the result follows from Lemma 2. 
Lemma 2 enables us to eliminate 0 from Lemmas 3-5 as well, and thus to obtain 

versions of these results for Hausdorff matrices. The details are left to the reader. 

PROOF OF LEMMA 1. Again, it suffices to consider Euler matrices. By applying 
Lemma 6 to both R and to L, and by recalling (15) and (16), we see that 

r b r—\ a 

R-L = NJ2 eb,k + Kr + 1) E <V+i ~ N E eajk - Kr + 1) E «V-

Applying Lemma 4, then Lemma 5, then Lemma 2 (twice), gives 
b—\ / b a x 

R-L = Nebj -NO Y, en,r-\ + r(r + 1 ) ( E «V+i ~ E <V) 
n=a v

n = 0 n=0 J 

b-\ b r ( r + l ) 
= Neb,r - NO J2 en,r-\ + K > * + 1 ) E enjr 7j <?*+!,r+1 

fc ft 

= Nebj-Nr E en%r I n + r\r + \) E e„,r - (fc + l)ré^r. 

Recalling (16) and (19), we see that R-L = D. 

4. Hausdorff matrices. In this section we solve the lower bound problem for Haus­
dorff matrices. We recall that the entries, hn^ are given by (11). 

It may be worthwhile to point out here that the corresponding upper bound problem 
is easily solved by means of a result of Hardy (see Theorem H, below). The problem is 
to determine the smallest constant, £/, such that 

(22) \\Hx\\p < U\\x\\p 

for every x G F satisfying JCO > x\ > • • • > 0. It turns out—and this is a consequence 
of Hardy's proof—that U — \H\P^ the (operator) norm of H. Thus the upper bound 
problem is solved by equation (23) below. 

THEOREM H. Let p be fixed, 1 < p < oo, and let H be the Hausdorff matrix given 
by (11). Then H is bounded on tp if and only ifSo 0~]jlp d^(0) < oo, and we have 

(23) \\H\\p,p = ^9-]/"dfi(9). 

Theorem H is proved in [7] (see also Theorem 216 of [8]). The proof is based on the 
special version of (23) for Euler matrices, due to Bochner and Knopp (see [11], Satz II, 
and the footnote to page 19). 

We now come to our main result. 
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THEOREM 1. Let p be fixed, 1 <p< oo, and suppose that the Hausdorff matrix, H, 
is bounded on £p. Then 

(24) \\Hx\\p>L\\x\\p 

for every x G tp satisfying xo > x\ > • • • > 0, where 

(25) L'=f;([\i-eydti(9))p. 

There is equality in (24) only if x\ = x^ — • • • = 0 or ifp = 1 or ifdfj,(6) is the point 
mass at 1. 

PROOF. The value of L determined by (25) is the ^-norm of the first column of H. 
Thus (24) follows form (3) and (4) once we show that the function/(r) increases with r. 
To do this, we consider the more general inequality 

oo ,r— 1 x oo , r x 

(26) (r + 1) £ <t>[Y.Kk) < r £ <t> £ Kk ), 

for r = 1,2,..., where (/> is any increasing convex function defined on [0, oo). 
Fixing r, we denote by x the sequence, (EJCQ hn^ , with each term repeated (r+ 1) 

times, and by y the sequence, (EJJ=0
 nn,k)n=^ e a c n t e r m repeated r times. Then (26) is 

equivalent, via Tomic's theorem (see section 2), to the assertion that x be weakly subma-
jorized by y; in other words, to 

(27) E<<Eyn (w= 1,2,...). 
n=l n=\ 

Given Â , we determine integers a, a , by (3, as in (15) and (16), and note that (27) is 
then equivalent to (20). We have used here the fact that the expression E£=o nnk w^ tn r 

fixed, is a decreasing function of n. This may be deduced from Lemma 4 by dropping 
the "0 -term", and by integrating over 0 < 6 < 1. 

The value of the constant given by (25) is obviously the best possible, for we may take 
x in (24) to be the sequence x = (1,0,0,...). The last clause of the theorem, concerning 
cases of equality, is a consequence of the results of [1]. We do not give the details here. 

It is natural to assume, in Theorem 1, that H maps £p into itself, for then all the terms 
(24) are finite whenever x G ip. This assumption however, is not necessary, provided 
that we agree to interpret (24) as follows: if the left side is finite, for some x, so is the 
right, and inequality (24) holds. (Of course, we must assume that L < oo in order to get 
a meaningful result for any non-zero x.) 

We have already observed that inequality (5) is a special case of Theorem 1—obtained 
by taking H to be the (C, 1) matrix. Rhoades ([20], Theorem 2) studies the (C, 2) matrix, 
showing that its lower bound is also "attained in the first column". His analysis, however, 
is very complicated, and applies only to the case p = 2. He conjectures that the same 
result should hold true for all p > 1, and, indeed, for all the matrices (C, a), a > 0. 
Theorem 1 confirms this conjecture. 
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5. Quasi-Hausdorff matrices. In this section we study the lower bound problem 
for quasi-Hausdorff matrices. These are just the transposes, H\ of the Hausdorff matri­
ces, (11). The terminology is that of Hardy ([8], section 11.19). 

The I ̂ -mapping properties of quasi-Hausdorff matrices may be determined from 
Hardy's result (Section 4), by using the familiar relationship 

(28) 11^11^=11^11^. 

where p* = pj' (p— 1 ) denotes the conjugate exponent to p. 
There is no similar relationship between the lower bound of a matrix and that of its 

transpose. This can be seen readily by considering the Cesàro matrix, C. Inequality (5) 
shows that the lower bound is £ (p)xlp, while Renaud ([17], Theorem 2) has shown that 
the lower bound for C is 1. 

Renaud's proof depends in an essential way on the special structure of the Cesàro 
matrix. We give here a simple alternative proof—one that leads to a much more general 
result. For the statement of our theorem it will be convenient to call a matrix, A, a quasi-
summahility matrix if A is upper triangular and has column sums 1. This class includes 
the transposes of the Hausdorff matrices, of the weighted means (Section 6), and of the 
Norlund means (see [8], [25] for definitions). 

THEOREM 2. Let p be fixed, 1 < p < oo, and let A be a quasi-summability matrix. 
Ifx G tp satisfies xo > x\ > • • • > 0, then 

(29) \\AX\\P > \\*\\P-

There is equality in (29) when and only when (at least) one of the following conditions is 
satisfied: p = 1; A = /, the identity matrix; the first n columns of A coincide with those 
of I, andxn = xn+\ = ••• = (). 

PROOF. According to (4) and (5), we must show that 

oo) r+i<é(è^y 

for every natural number r. We have 

r k 

k=0n=0 
r r 

= YJ X) an,k 
n=0k=n 

<(r+l),/p*(±(±an,k)
P)lP 

\n=0Xk=n J ) 

by Holder's inequality, and this is equivalent to (30). 
The last sentence of the theorem follows from Proposition 1 and Theorem 2 of [1]. 

https://doi.org/10.4153/CJM-1992-003-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-003-9


62 G. BENNETT 

Theorem 2 shows that the infimum in (3) occurs at r — 0, but the proof says nothing 
of the monotonicity properties of the function (4). It can be shown, for quasi-Hausdorff 
matrices, that the function/(r) does indeed increase with r. The proof is similar to that of 
Theorem 1—using majorization rather than submajorization—and will be omitted. (See 
also Theorem 6 in section 7.) 

6. Weighted means. In this section we study the lower bound problem for weighted 
means. These are matrices with entries of the form 

(0 (k> n) 

where the a^'s are non-negative numbers, and An — a\+- • -+an. (We take a\ to be positive 
so that none of the An's vanishes. Note, also, that we now index the matrix entries from 
1 instead of from 0.) 

Weighted means arise naturally in summability theory, [8], [25], and have been studied 
extensively from this point of view. Moreover, their ip-mapping properties are described 
completely in [2]. 

Their simple structure makes them natural objects of study in the present context 
too. In particular, the partial sums appearing in (4), which proved so troublesome for 
Hausdorff matrices, are readily computable, and (3) takes on the following very simple 
form 

(32) L"=l+MA^A -P 
k 

Unfortunately, the infimum need not be attained when n = 1, and its evaluation, for 
general an's, appears to be intractable. Indeed, to make any progress at all, we find it 
necessary to impose a rather stringent monotonicity condition on the an's. Our proof 
involves the following elementary result, which may be of some interest in its own right. 

LEMMA 7. Let Y%L\ xn be a convergent series of positive terms. If 

(33) n — — decreases with n, 
V *n+\ J 

then 

(34) ^T Xk increases with n. 
nxn k>n 

PROOF. We first show that, if (33) holds, then 

(35) nxn —> 0 as n —> oo. 

To see this, we observe that 

nxn -(n+ \)xn+\ 
xn+1 ^ xn+1 

( xn xn+l \ -, 
- 1 

X„+\ J 
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decreases with n. Consequently, if nxn < (n+ l)xn+\ for some integern, the same inequal­
ity persists for all larger values of n. But then Xj > nxn/j for ally > n, and this entails 
the divergence of £*/• We conclude that nxn decreases with n, and hence converges. The 
limit must be 0, else £*/ diverges. 

Consider now three positive integers, n,j, m, with n < j < m. We may rewrite (33) 
in the form 

nxnXj+i > xn+x (jxj - (j + l)*/+i) + (n + l)xn+\xj+\. 

Summing from j — n + 1 to m gives 
m m 

nxn Y, ((n + lfe+i - (m + l)xm+l) + (n + l)xn+l J2 xJ+\• 
j=n+\ j—n+\ 

Letting m —• oo, and using (35), we see that 

nxn Y, XJ >(n + i ^+ i + (n + l)xn+\ Y XJ' 
j>n+\ j>n+\ 

and this is equivalent to (34). 

REMARK. There is a companion result to Lemma 7 which we shall need later: "If 
the sequence (33) increases with n, then the sequence (34) decreases with «." The proof 
is similar to that of Lemma 7, but slightly easier, since we do not have to check that (35) 
holds. 

There is another companion result, in which the summation "k > n" in (34) is replaced 
by "k > n". We leave the details to the reader. 

THEOREM 3. Fix p, 1 < p < oo, and let A be a weighted mean matrix with entries 
given by (31). Suppose that 

oo 

(36) EV<w. 
n=\ 

and that 

(37) nl n+\p—- ) decreases with n. 

Then 

(38) | |Ax||p>L||x||p 

for every x E ip satisfying x\ > xi > • • • > 0, where 
oo 

There is equality in (38) only when xi = x$ = • • • = 0. 

PROOF. We apply Lemma 7 with xn = A^p to see that 

Ap 

n k>n 
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increases with n. Inequality (38) then follows from (32). 
The statement about cases of equality in (38) is a consequence of Theorem 2 of [1]. 
Theorem 3 is a slight improvement of a result of Rhoades ([20], Theorem 1), but the 

proof given here is much simpler than his. Rhoades' version, based on the proof of (5) 
given in the original draft of [1], requires the additional assumptions "/? > 1" and "<2„ 
increasing in AZ". 

The hypothesis (37), first formulated by Rhoades, is a rather curious one, and it de­
serves to be studied in some detail. Accordingly, we shall say that a sequence x = (xn)%L \, 
of positive terms, satisfies the Rhoades condition, R(p), and we shall write x G R(p), if 

(39) ny n „ n+l ) decreases with n. 

Now (39) may be written in a more suggestive form 

(40) {-^{XnXn+lY + -^-T(xn+XXn+2y\ ' " > 4 
i n + 1 n + i ) 

We recognize the left-hand side as an //-norm on a two-point probability space, and 
it follows at once that R(p) Ç R(q) if p < q. Thus the R(p) conditions become less 
restrictive as p increases. The least stringent of all, say R(oo), is defined by taking the 
limiting condition, as p —• oo, in (40). If x is increasing, this condition is automatically 
satisfied, while if x is decreasing, the /?(oo)-condition is 

(41) xnxn+2 >*Li , 

alias logarithmic convexity. In a similar fashion, we define the condition /?(—oo), the 
strictest of all the R(pYs, by taking the limit, as p —» —oo, in (40). If x is increasing, the 
R(—oo)-condition is (41), while if x is decreasing, the condition is that xn be constant for 
n> 1. 

Thus we have a continuum of conditions, which, for increasing sequences, are all 
weaker than logarithmic convexity, and, for decreasing sequences, all stronger. 

Rhoades applies his result to the power means, namely to the matrices (31) with 

(42) an = na 

He notes that the sequence (42) belongs to R(p), for/7 > 1, when a = 1,2 or 3 (though, 
of course, he does not use this terminology). Thus, for these values of a , he concludes 
that the lower bound is attained in the first column of A. He conjectures ([20], page 
351) that the same result persists for all positive a. (The case a = 0, of course, is just 
inequality (5)). 

We show that the conjectured result is false for 0 < a < 1, true for or > 1, and true 
even for —l/p* < oc < 0 (Theorem 4). The restriction, a > —1//?*, is needed here, in 
order to get meaningful results, for it is equivalent to the first column of A having finite 
^-norm (compare (36)). The same restriction, incidentally, guarantees that A maps £p 

into itself. 
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LEMMA 8. Let a be a fixed real number. Then the sequence 

( « ) ^ ^ <n =1 .2 . . . . ) 
la + • • - + na 

increases with n if 0 < a < 1, and decreases otherwise. 

PROOF. The sequence (43) decreases with n precisely when 

(44) (n + 1)0 + 2) a ( l a + • • • + na) < n(n + l)a(la + ••• + (« + l ) a ) , 

for n — 1,2,..., and increases when (44) is reversed. 
Let x be the (n + l)rc-tuple formed by repeating (n + 1) times each term of the «-tuple: 

( 1 (n + 2), 2(n + 2) , . . . , n(n + 2)). Similarly, let y be the n(n +1 )-tuple formed by repeating 
n times each term of the (n + l)-tuple: (\{n + 1), 2{n + 1 ) , . . . , (n + \){n + 1)Y A routine 
(but rather tedious) calculation shows that x is majorized by y, so that (12) holds for 
all continuous convex functions <j> : (0, oo) —» R. Taking <j> (t) = fa, in case a > 1, or 
a < 0, shows that inequality (44) holds for these values of a. On the other hand, taking 
<j> (t) — —ta, shows that (44) is reversed when 0 < a < 1. This completes the proof of 
the lemma. 

THEOREM 4. Let a, p be fixed real numbers withp > 1 and a > —1//?*, and let 
A be the power mean with entries given by (42). Then A, acting on lp, attains its lower 
bound in its first column provided that a < 0 or a > 1. The result fails ifO< a < 1. 

PROOF. With an — na (a < 0 or a > 1), we see that the sequence nan+\/ An 

decreases with n by Lemma 8. Therefore, the sequence A~l belongs to R(l), and hence 
to R(p). The result now follows from Theorem 3. 

The situation is a good deal more complicated when 0 < a < 1. Certainly, the 
theorem fails to hold, for all a's in this range, when/? = 1. To see this, we note that the 
sequence A~l no longer belonges to R(l); indeed, by Lemma 8, the defining inequality 
for R(l) is reversed. It follows, from the remark after Lemma 7, that the infimum in (32) 
occurs when r — oo, so that the lower bound for A is never attained. 

On the other hand, it can be shown that the sequence A~x is logarithmically convex, 
so that A^1 belongs to R(oo). This suggests, for each fixed a, 0 < a < 1, that the 
theorem might be true for suitably large p (depending on a). The theorem is certainly 
false for suitably small p (not just for/? = 1). It would be interesting to determine the 
exact "breakdown" point. At issue here is the following elementary 

PROBLEM. Let a and/? be real numbers with/? > 1 and a > —l/p*. Determine 
completely the monotonicity properties of the squence 

i !^—TILL £ ( 1 * +... + n*yp 
n k>n 

(The outstanding case is 0 < a < 1 < /?.) 
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7. Moment sequences. In this section we describe some elementary inequalities 
satisfied by moment sequences. We recall that these are sequences having a representa­
tion of the form (10). 

Our first inequality is merely a summary of the results of Sections 3 and 4. 

THEOREM 5. Let (j) : [0,1] —> R be a non-negative, convex function, with <j> (0) = 0, 
and let (JL be a moment sequence. Then 

ùtt&Çr* ) 
is an increasing function ofr (r =• 0,1,...). 

Our next result is the analogue of Theorem 5 for quasi-Hausdorff matrices. The proof 
is omitted. 

THEOREM 6. Let <j> : [0, oo) —• R be a convex function and let \k be a moment se­
quence. Then 

is an increasing function ofr (r — 0,1,...). 

Our next three theorems are motivated by the papers [18], [19] and [21] of Rhoades. 
They are similar in spirit to the other results of this paper, but they do not have a direct 
bearing on the lower bound problem. 

Rhoades ([21], Problem 1) asks whether the square root of every totally monotone 
sequence is again totally monotone (the square root being taken coordinate wise). The 
answer is no. We give here an indirect proof because our method, which provides rather 
more information than is needed, enables us to answer another question of Rhoades ([21], 
Problem 2). 

Suppose, then, that the square root of every totally monontone sequence is totally 
monotone. If (JL is such a sequence, we must have 

(45) A"(/z£)>0 ( A I , £ = 0 , 1 , . . . ) , 

whenever p is of the form, p — 2~~r for some positive integer r. Now (45) may be rewritten 
in a more suggestive way 

(46) (2- E (JO'"> (̂ " E("k)'". 
V j even \J / J V j odd \J / J 

which we recognize as a comparison of //-norms on two probability spaces. Letting 
p —-»• 0 (through the values 1/ 2 , 1 / 4,...), and applying Theorem 3 of [9], gives 

(47) n M S > n /*$ (»,* = o,i,...). 
j even j odd 
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(The empty product, appearing on the right of (47), when n = 0, is to be interpreted as 
"zero". This is in accordance with the derivation of (47) as a limit of (46).) We call a 
sequence |X satisfying (47) logarithmically totally monotone. 

Now the first three inequalities (n = 0,1 and 2) implied by (47) are satisfied by any 
totally monotone sequence. (For n — 2 see [23] and [19]). But the fourth inequality, 

(48) VkHk+2 > Wfc+i M*+3 (A: = 0,1,...), 

is not, and this fact enables us to solve Rhoades' square root problem. 

THEOREM 7. There exists a totally monotone sequence that is not logarithmically 
totally monotone. 

PROOF. We give an example of a moment sequence that fails to satisfy (48). The 
example arises from a two-point probability space, with measure determined by 

jo
lf(9)d^(0)=af(x) + bf(y) 

for/ continuous on 0 < 9 < 1. Here b — I —a, and the remaining numbers, a, JC, v, will 
be determined later. Inequality (48) is 

(a + bXax2 + by2)3 - (ax + by)3(ax3 + by3) > 0, 

and this may be rewritten as 

(49) ab(x - y)3(a2x3 - b2y3) > 0. 

If JC = 1/ 3, y = 2/ 3, a = 3/ 4, and b = 1/ 4, it is easily checked that (49) is violated. 
Thus |m, the moment sequence associated with d[i(Q ), fails to be logarithmically totally 
monotone. The corresponding "moments" are ŷo = 1, /ii = 5/ 12, ^ — 7/36, ^3 = 
11/108,. . . . 

From the discussion preceding Theorem 7 we deduce the following 

COROLLARY. There exists a totally monotone sequence whose square root is not 
totally monotone. 

Our next result provides a natural complement to Theorem 7. We shall need the well-
known Leibnitz formula for differences 

(50) An(Wk) = E K W~Wy)(AV,) (n,k = 0,1,...). 

From (50) it follows that the set of totally monotone sequences is closed under products. 
Being closed also under sums it is closed under exponentiation. In other words, if /i* is 
totally monotone, then so is e^k. 
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THEOREM 8. A logarithmically totally monotone sequence, with positive terms, is 
totally monotone. 

PROOF. Suppose that |X satisfies (47) and that /x* > 0 for all k. Taking logarithms 
in (47) gives 

(51) Aw(log/i*)>0 ( * > l , * > 0 ) . 

It follows that the sequence log(/i^//i^+i) = A(\og/jik) is totally monotone, and hence, 
by exponentiation, so is the sequence /ik/ iik+\. From (51), with n — 1, we see that 
M*/ M*+i > 1, so that the sequence (/x*/ /x*+i) — 1 = vk, say, is totally monotone. Writing 
A/z* = ^/ifc+i, and applying (50) inductively, we see that \ik is totally monotone. 

REMARK. Credit for Theorem 8 is due to Rhoades. He does not prove the theorem, 
nor does he even state it, but the ideas used in the proof are discussed in his paper [18]. 

Given a sequence ft, we denote by |ULa the sequence whose kth term is /x". 

COROLLARY. Let \X be a totally monotone sequence. Then the following conditions 
are equivalent: 

(i) |JLa is totally monotone for all a > 0, 
(ii) (X is logarithmically totally monotone. 

PROOF. (i)=>(ii) is just a restatement of the remarks made after Theorem 6. 
(ii)=>(i). If fJL is totally monotone, then either /i has the form (c, 0,0,...), or \xk > 0 for 

all k (according as whether /z(0+) = /x(l) or not). In the first case the desired implication 
is obvious; in the second we use Theorem 8—after noting that definition (47) holds for 
\3La if it holds for |X. 

The corollary contradicts Corollary 1 of [21]. The hypothesis, "|Ji G Q\ therein, 
should be replaced by "|X is logarithmically totally monotone". (See also the corollary 
to Theorem 9.) 

Our next theorem deals with products of Hausdorff matrices and enables us to solve 
another problem of Rhoades ([21], Problem 2). We recall ([8], Theorem 197) that the 
product, H^Hy, of two Hausdorff matrices is again a Hausdorff matrix, and that the as­
sociated moment sequence is given by 

(52) Xk = [ikvk. 

We shall need the following result, which, in conjunction with Lemma 4, shows that 
Hausdorff matrices "transform decreasing sequences into decreasing sequences". 

LEMMA 9. Let A = (anyk)™k=l be a matrix with non-negative entries, and consider 
the associated transformation, x —• y, given by yn = 72^ \ cin^xk. Then the following 
conditions are equivalent. 

(i) y\ ^ yi ^ * * * :> 0 whenever x\ >X2> — - >0, 
(H) EJUi an,k > EJUi an+\jc (n,r= 1,2...). 

PROOF. (i)=>(ii) follows by taking x to be the sequence ( 1, . . . , 1,0,0,... ) of r "ones" 
followed by "zeros". 

(ii)=^(i) follows by summation by parts. 
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THEOREM 9. Fixp > 1, and let H\, H^, Hv be Hausdorff matrices related by H\ = 
H^HV. Then H\ is bounded on tp if and only if both H^ andHv are. Moreover, we have 

(53) | | / / A | | ^ = | \Hp\ \p#\Hv\p$-

PROOF. If H^ and Hv are bounded on lp, then so, clearly, is H\, and we have 

(54) \W\\\P^<\\HA\PA\HAW 

On the other hand, suppose that H\ is bounded on lp. If x is a decreasing sequence 
with \\x\\p = 1, we have, by Lemma 9, 

\\Hx\\P,P>\\Hxx\\p 

= Il W ^ I I P 
> (lower bound of H^) • ||//^x||p 

> \\UVAP-

Taking the supremum over all x, and applying (22), gives H/Z^H^ < ||//A||p,p. Since 
Hausdorff matrices commute ([8], Theorem 197), we also have ||//M||p,^ < ||//\|Up-
This completes the proof of the first part of the theorem. 

To prove (53) we follow an argument of Hardy ([7], page 48), with some slight mod­
ifications. We take 0<e<-,xn = {n+ \)~e~xlp, and any positive S, 0 < 6 < 1. We 
choose a,N and e, in that order, to satisfy 

(\ + \/otT2lp>b 

fl f[ (e<j>rxipdli(6)dv{<t>)> 6 [lf\e(j>rlipd^e)dv{<t>) 
J\/a/NJ\/a/N JO JO 

and 

n=N n=0 

As in Hardy's proof, we have 

Ê (\o<t>T(\-Q<j>T-mxm> è{0<j>yxlpxn 

m=0 W 

whenever a j n< d(j> < 1. 
It follows from (52) that 

" " Ê '" 
m=0 

If n > N, we have 

(Hxx)n= [ f £ (nKO(l>ni-0<l>)n-mxmdii(0)dv(<l>). 

(Hxx)n>6xn j f (0<j>yxlpdv(6)dv(<l>) 
JyJ a/ N J^J a/ N 

>62xnJ
l j\o<j))-xlpdn(Q)di/((i)), 
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and it follows from (23) that 

\\HXAP>SMIP\\HA\PA«A\PP\\*\\P-
This gives 

PAIU>* 2 + 1 / 1^U| / / , , |U , 
and letting è —> 1, we obtain (53). 

COROLLARY. Let p be fixed, 1 <p < oo, and let H^ be a Hausdorff matrix bounded 
on tp. lf\L is logarithmically totally monotone then H^a is bounded on lp, for each 
a > 0, and 

(55) \\H,4P,P=\\HX,P-

PROOF. If a is rational, say a — mj n with m and n positive integers, then 

(H\ka)n = H^m = (H^)m, 

and (55) follows from Theorem 9. A simple continuity argument shows that equality in 
(55) persists even if a is irrational. 

We remark that the corollary answers affirmatively a question raised by Rhoades ([22], 
page 296). Rhoades obtains (55), but only for p = 2 and for a of the form 2~k (k — 
1,2,...). (See also the remark following the corollary to Theorem 8 above). 

We now return to our study of lower bounds. It turns out that there is an analogue, 
Lemma 10, of the familiar "submultiplicative" property, (54), of matrix norms. This ana­
logue, when applied to products of Hausdorff matrices, leads to some intriguing inequal­
ities for moment sequences. 

LEMMA 10. Fix p, 1 < p < oo. Let A and B be matrices, bounded on tp, and 
having non-negative entries. Suppose, further, that B transforms decreasing sequences 
into decreasing sequences. Then 

L(AB) > L(A)L(B). 

PROOF. This is an immediate consequence of the definition, (2), of lower bound. 

THEOREM 10. Let [l,v be moment sequences. Then 
oo oo oo 

£(AmMoy 2 > V 0 y < £(A"(M</)of, 
m=0 «=0 n=0 

whenever p > 1. 

PROOF. Consider the Hausdorff matrices, H^ and Hu, associated with the given mo­
ment sequences. It follows from Lemma 4 that these matrices satisfy condition (ii) of 
Lemma 9, and hence transform decreasing sequences into decreasing sequences. More­
over, the product matrix, H^H», is the one generated by the product sequence, namely 
H(nv). We now apply Lemma 10, Theorem 1, and the representation (7). 

Theorem 10 has several amusing consequences. We mention here one of the simplest 
of these, obtained by taking \xn — vn — l / (n + 1) (which is the moment sequence 
corresponding to Lebesgue measure). 
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COROLLARY. Ç2(p) < EZ\{^T (P > l)> whereHn = 1 + (1 /2 ) + • • • + (l/n) 
denotes the nth harmonic number. 

Based on our experience with the earlier results of this paper, it is natural to ask 
whether Theorem 10 can be extended to convex functions. That this is indeed the case is 
given by 

THEOREM 11. Let |X, V be moment sequences and let </>: [0,1] —• R be a non-
negative convex function with (f)(0) = 0. Then 

oo oo 

E <A(Am
Mo • AVo) < E <j> (A"(/^)o). 

m,n=0 n—0 

Theorem 11, of course, depends upon a majorization inequality, and this is given be­
low in its most basic form. The majorization, however, is different than any we have 
encountered in this paper. The sequence to be majorized (doubly-infinite, in this case) is 
not in descending order, and its decreasing rearrangement is not at all accessible. Theo­
rem 12, then, requires a more sophisticated approach, and this will have to be described 
elsewhere (see [4]). 

THEOREM 12. Let x and y be fixed real numbers with 0 < x, y < 1, and let N be any 
positive integer. Then the sum of any N terms from the set {xmyn : m,n = 0 ,1 ,2 . . . } 
does not exceed 1 + (x + y — xy) + • • • + (x + y — xy)^ - 1 . 

APPENDIX BY ANDREW L E N A R D | . In his studies on lower bounds of matrix opera­
tors Bennett proved a monotonicity property for the sequence 

CD S r = E ( E . )L ek(l-6rkdn) ( r = 0,1,2,...) 

namely 

(2) S0<Sl/2<S2/3<---

Here p is an arbitrary real number no less than 1, and [i is an arbitrary probability measure 
on the interval [0,1]. This surprising fact was at first conjectured from the much weaker 
statement 

(3) S0<Sr/(r+l) ( r = l , 2 , . . . ) 

shown by the present writer for the particular cases when/7 is an integer and the measure 
\i has a single point of support. Let 0 < x < 1, and let p be supported at 9 = 1 — x, so 
that (3) reads 

(4) ^ ( r + l X l - A ? ) - 1 ( r = l , 2 , . . . ) 

j" Department of Mathematics, Indiana University, Bloomington, Indiana, U. S. A. 
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where 

(5) *r=g(é(?W(l "*)*)' 
In the application to lower bound problems the weaker inequality (3) rather than (2) is of 
importance. Furthermore, the method by which (4) was obtained is quite different from 
the one later designed by Bennett to prove his generalization. Thus it may be of some 
interest to have the proof of (4) on record, and this is the purpose of the present note. 

Actually, a natural generalization, but in a different direction, is needed for our proof. 
Instead of one parameter x and the pth power of the truncated binomial sum we use p 
separate parameters and take the product of the corresponding sums. Thus we let x = 
(jci ,x2 , . . . ,^)G[0,iy ?and 

00 P r I n\ 
(6) Sr = E n E J ^ d - ^ ; 

n=0s=\ks=0 \Ks/ 

and we shall prove 

(7) Sr>(r+l)(l-xiX2--xpr
l ( r = l , 2 , . . . ) . 

Let t\9t2,...,tp be auxiliary variables, and consider the function 

(8) F(tut2,..., tp) = (l - fl(xs + ts - Xsts)^ 

If Ckxkx-kp is the coefficient of f*'f*2 • • • tkp in its multi-power series expansion, we find 
that 

(9) Sr= Y, Qi*2~*p 
k\,k2,...,kp<r 

It is convenient to use the following abbreviations: P = {1,2,... ,/?} and, for N Ç P, 
*N = USCNXS, (1-X)N = ILQV(1 - x)s and tN = fLc/v ts. Then 

p 

(10) H(xs + ts- xsts) = J2 XP-N(1 - x)NtN 
s= 1 NCP 

When all the r's vanish we obtain from this the identity 

(11) £ * / > - * ( ! - * ) * = 1. 
NQP 

We rewrite this in the form 

(12) £ ' 6 v = i , 

where generally £ ' denotes a sum over all non-empty subsets of P, and £N = 
xp^N(l — JC)#(1 — xp)~l (note the different use of the subscript TV here). From (8) and 
(10) it follows then that 

oo 

(13) F(tu...,tp)= (1 -xp)~\l - E ' ^ A f ) " 1 = (1 -*/>)"' E ( E ' ^ " ) " 
71 = 0 
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The sum E7 contains q = 2P — 1 terms. We expand its nth power by the multinomial 
theorem. This yields 

(14) F(tu...,tp) = (1 -xpy
lZ(EfJN)l ÏÏ^N^/JND 

j 

where n ' denotes a product over non-empty subsets TV of P, and where 7 = (// j \ Jr 2} » • • • » 
7{ 1,2} » • • • J/0 is a multi-index with g components. Since 

(i5) i f # = n ^ ^ 

one finds that the coefficient Q,...^ in the power series expansion of F can be written as 
the sum of all those terms 

(16) V-Xp)-\Y!jN)l]]!(tiN/JNl) 

for which the conditions 

(17) ^2JN = kuYlJN = k2,..., J2JP = kp 
\EN 2<EN peN 

hold. But then (9) shows that Sr is the sum of all those terms ( 16) for which the conditions 

(is) £ ^ E ^ - . . , 2 > < r 
\EN 2ev peN 

hold. Let us observe now that the single condition 

(19) £ % < r 

implies all of the/? conditions (18). Therefore if one sums the terms (16) under the sole 
restriction (19) one obtains a lower bound for Sr. But this latter sum can be easily carried 
out. It is 

(20) (î-jcr'èi! E n,(^7^o = (i-^r1E(E,^y 
«=o 5 ^ = , - «=o 

In view of (12) this is precisely the right hand side of (7), as required. 
Knowing the validity of (4) for all positive integral values of p makes it, of course, 

tempting to speculate that it also holds for arbitrary real p > 1. Bennett's alternate proof, 
based on quite different ideas, not only shows that this is the case, but extends the conclu­
sion to a vastly larger class of sequences. Still, if some usable argument could be found, 
to pass from integral to arbitrary real values of p, it would likely provide new insight. 

The writer wishes to acknowledge the fortuitous but propitious circumstance that 
brought this problem to his attention, and his gratitude to Grahame Bennett for patiently 
explaining its origin and significance. 
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