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Abstract

In this paper, we obtain a new result for overtwisted contact (+1/n)-surgery. We also give a
counterexample to a conjecture by James Conway on overtwistedness of manifolds obtained by contact
surgery.
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1. Introduction

Contact surgeries have long been an essential tool in the study of contact 3-manifolds.
This paper is concerned with the behaviour of contact structures under contact
(+1/n)- and contact (+n)-surgeries along Legendrian knots where the surgery slope
is measured with respect to the contact framing of the Legendrian knot.

Let L be a null homologous oriented Legendrian knot in a closed contact 3-manifold
(M, ξ) with cooriented contact structure ξ. For the remainder of the paper, let tb(L)
denote the Thurston–Bennequin invariant of L, rot(L) the rotation number of L and
χ(L) the Euler characteristic of any Seifert surface of L.

The goal of this paper is to study the conditions on L and the surgery
coefficient r under which tightness is preserved or new overtwistedness is created.
Wand’s fundamental result states that all contact r-surgeries, for r < 0, preserve
tightness [12]. On the other hand, a contact surgery on a tight contact 3-manifold
with surgery coefficient r > 0 can yield tight or overtwisted contact structures. Contact
(+1/n)-surgeries along stabilised Legendrian knots always yield overtwisted contact
structures [11]; however, such a stabilisation restriction is not necessary in this paper.

The first result gives a condition under which contact (+1/n)-surgery along L results
in an overtwisted manifold.

Theorem 1.1. Let L be a null homologous oriented Legendrian knot in a tight contact
3-manifold. If tb(L) < 0, n tb(L) + 1 , 0 and |rot(L)| > −χ(L), then for any positive
integer n, contact (+1/n)-surgery along L is overtwisted.
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In particular, if tb(L) < 0 and |rot(L)| > −χ(L), then contact (+1)-surgery along L
is overtwisted. Note that (+1)-surgery in a tight contact 3-manifold is not necessarily
overtwisted; for example, a single contact (+1)-surgery in the tight 3-sphere along the
tb = −1 Legendrian unknot yields the tight and Stein fillable S 1 × S 2 [3].

Conjecture 6.13 of James Conway [2] states that if L is a null homologous
Legendrian knot with tb(L) ≤ −2, then contact (+n)-surgery along L is overtwisted
for any positive integer n < |tb(L)|. Conway explains that the conjecture, if true,
would allow him to remove the bounds on the rotation number from his results in
[2, Theorems 6.7 and 6.10]. As a corollary of his theorems he shows that for every
genus g and positive integer n ≥ 2, there is negative integer t (which depends on the
bound on the rotation number) such that if L is a null homologous Legendrian knot of
genus g and tb(L) ≤ t, then contact (+n)-surgery is overtwisted.

In this paper, we give a counterexample to Conway’s conjecture.

Theorem 1.2. There exists a null homologous Legendrian knot L in a tight contact
3-manifold with tb(L) ≤ −2 where contact (+n)-surgery along L is tight, for any
positive integer n < |tb(L)|.

Note that contact (+1/n)-surgeries are unique, while this is not true for general
surgery slopes. For contact (+n)-surgeries there are exactly two choices of contact
structures on the resulting manifold that fit to the contact surgery. Theorem 1.2 is true
for both choices.

We assume that the reader is familiar with the elements of contact topology. The
reader may refer to [5–7] for the fundamentals of contact structures and Legendrian
knots.

2. Proof of the theorems

Proof of Theorem 1.1. Let L be a null homologous oriented Legendrian knot with
tb(L) = tb < 0, |rot(L)| = |rot| > −χ(L) and n tb + 1 , 0. Using an algorithm from [3]
that turns a rational contact surgery into a sequence of contact (±1)-surgeries, contact
(+1/n)-surgery along L is equivalent to contact (+1)-surgeries along n successive push-
offs L1, L2, . . . , Ln of L. Let L′ be the (n + 1)th push-off of L and let L∗ denote
the surgery dual knot which is the image of L′. We will show that L∗ violates a
generalisation of Bennequin’s inequality [1, Theorem 2.1], which holds only for knots
in tight contact 3-manifolds. To do so, we compute the rational Thurston–Bennequin
invariant tbQ(L∗) and the rational rotation number rotQ(L∗). For the definition of
rational classical invariants, the knot L∗ needs to be a torsion element in the first
homology, and this is the case if n tb + 1 , 0.

Since (+1/n)-surgery along L is a topological (n tb + 1)/n-surgery, the homological
order r of L∗ is |n tb + 1|. Note that if Σ is a rational minimal-genus Seifert surface
of L∗, then topologically it is the image of a minimal-genus Seifert surface of L and
hence χ(Σ) = χ(L).
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Following [2, Lemma 6.4], which extends [8, Lemma 2] and [10, Lemma 6.6] to
more general contact 3-manifolds, the linking matrix M is the (n × n) matrix

M =



tb + 1 tb tb . . . tb
tb tb + 1 tb . . . tb
... tb tb + 1 . . .

...

tb
...

...
. . . tb

tb tb . . . tb tb + 1


,

and det(M) = n tb + 1. The extended matrix M0 is the (n + 1) × (n + 1) matrix

M0 =

(
0 tb
tb M

)
and det(M0) = −n tb2. Then we compute

tbQ(L∗) = tb(L′) +
det M0

det M
= tb +

−n tb2

n tb + 1
=

tb
n tb + 1

and

rotQ(L∗) = rot(L′) −

〈rot(L1)
rot(L2)

...
rot(Ln)

 ,M−1


`k(L′, L1)
`k(L′, L2)

...
`k(L′, Ln)


〉

= rot −

〈rot
rot
...

rot

 ,M−1


tb
tb
...

tb


〉

= rot −

〈rot
rot
...

rot

 ,

tb/(n tb + 1)
tb/(n tb + 1)

...
tb/(n tb + 1)


〉

= rot −
n rot tb
n tb + 1

=
rot

n tb + 1
.

Since L is a Legendrian knot in a tight contact 3-manifold, Bennequin’s inequality
tb(L) + |rot(L)| ≤ −χ(L) holds for L. If tb(L) < 0 and |rot(L)| > −χ(L) ≥ 0, then
tb(L) + |rot(L)| ≤ −χ(L) or −tb(L) ≥ χ(L) + |rot(L)|. We compute

tbQ(L∗) + |rotQ(L∗)| =
tb

n tb + 1
+

∣∣∣∣ rot
n tb + 1

∣∣∣∣ =
−tb

|n tb + 1|
+

|rot|
|n tb + 1|

≥
χ(L) + 2|rot|
|n tb + 1|

≥
−χ(L)
|n tb + 1|

,

since |rot| > −χ(L). Thus, the surgery dual knot L∗ violates a generalisation of
Bennequin’s inequality. Hence L∗ is a knot in an overtwisted contact 3-manifold. �
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Figure 1. The Legendrian knot L has tb = −3 in the surgered manifold.

Remark 2.1. To compute the rational classical invariants, one can use the formulas for
contact (+1/n)-surgeries from [9, Section 8.3] for tbQ and from [4, Theorem 4.3] for
rotQ.

Lemma 2.2. Let L be a Legendrian knot in a contact 3-manifold (M, ξ). If contact (+1)-
surgery along L is tight, then for relatively prime integers p, q > 0 with q < p, contact
(+p/q)-surgery along L is tight.

In particular, if contact (+1)-surgery along L is tight, then contact (+n)-surgery
along L is tight for any positive integer n. Contact r-surgery is in general not unique.
Lemma 2.2 is true for all choices of tight contact structures on the new glued-in solid
tori.

Proof. By Ding et al. [3], contact (+p/q)-surgery along L is equivalent to contact
(+1)-surgery along L and a contact (−p/(p − q))-surgery along its push-off, say L′.
By [3] again, contact (−p/(p − q))-surgery along L′ is equivalent to a sequence of
(−1)-surgeries along push-offs of L′ with some additional zigzags. If contact (+1)-
surgery along L is tight, then by [12] the remaining (−1)-surgeries result in a tight
contact 3-manifold. �

Proof of Theorem 1.2. Let L be the Legendrian knot in Figure 1. By [3], a single
contact (+1)-surgery along a standard Legendrian unknot produces the unique tight
and Stein fillable contact structure on S 1 × S 2. A further two contact (−1)-surgeries
in Figure 1 produce a Stein fillable and hence a tight contact structure. Thus, contact
(+1)-surgery along L is tight. Then, by Lemma 2.2 contact (+n)-surgery along L is
tight for any n ≥ 2.

We now check that tb(L) = −3 where L is seen as a Legendrian knot in the surgered
manifold. For this we may use the tb formula from the proof of Theorem 1.1. Consider
the linking matrix M and the extended linking matrix M0:

M =

(
0 −1
−1 −2

)
, M0 =

 0 −1 0
−1 0 −1

0 −1 −2

 .
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The Thurston–Bennequin invariant of L in the unsurgered manifold is denoted by
tb0 and here tb0 = −1. Then in the surgered manifold,

tb(L) = tb0 +
detM0

detM
= −1 +

2
−1

= −3. �

Remark 2.3. One can alternatively replace the knot L in Figure 1 by any knot having
tb ≤ −1 in (S 3, ξstd) where contact (+1)-surgery is tight; the knot L in Figure 1 is the
simplest choice. The same proof applies for all such knots and each one gives a new
counterexample to Conway’s conjecture.
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