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Abstract. Recently, L. Rozansky and E. Witten associated to any hyddrtéf manifoldX a system of
‘weights’ (numbers, one for each trivalent graph) and used them to construct invariants of topological
3-manifolds. We give a simple cohomological definition of these weights in terms of the Atiyah
class ofX (the obstruction to the existence of a holomorphic connection). We show that the analogy
between the tensor of curvature of a hypéihker metric and the tensor of structure constants of a Lie
algebra observed by Rozansky and Witten, holds in fact for any complex manifold, if we work at the
level of cohomology and for any &ler manifold, if we work at the level of Dolbeault cochains. As

an outcome of our considerations, we give a formula for Rozansky—Witten classes usingtdey K
metric on a holomorphic symplectic manifold.
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Recently, L. Rozansky and E. Witten [RW] associated to any hyadiét manifold

X aninvariant of topological 3-manifolds. In fact, their construction gives a system
of weightscr (X)) associated to 3-valent grapghand the corresponding invariant of

a 3-manifoldY” is obtained as the subcr (X )Ir(Y) wherelr(Y) is the standard
integral of the product of linking forms.

So the new ingredient is the system of invariast6X') of hyper-Kahler man-
ifolds X, one for each trivalent gragh They are obtained from the Riemannian
curvature of the hyper-&hler metric.

In this paper we give a reformulation of tleg(X) in simple cohomological
terms which involve only the underlying holomorphic symplectic manifold. The
idea is that we can replace the curvature by the Atiyah class [At] which is the
cohomological obstruction to the existence of a global holomorphic connection.
The role of what in [RW] is called ‘Bianchi identities in hypeiaKler geometry’
is played here by an identity for the square of the Atyiah class expressing the
existence of the fiber bundle of second order jets.

The analogy between the curvature and the structure constants of a Lie algebra
observed in [RW] in fact holds even without any symplectic structure, and we study
the nonsymplectic case in considerable detail so as to make the specialization to
the symplectic situation easier. We show, first of all, that the Atiyah class of
the tangent bundle of any complex manifold satisfies a version of the Jacobi
identity when considered as an element of an appropriate operad. In particular,
we find (Theorem 2.3) that for any coherent shdabf O x-algebras the shifted
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cohomology spacdi*~1(X,Tx ® A) has a natural structure of a graded Lie
algebra, given by composing the cup-product with the Atiyah clask. g any
holomorphic vector bundle oveY, thenH*~1(X, E ® A) is a representation of
this Lie algebra.

Then, we unravel the Jacobi identity to make the space of cochains with coef-
ficients in the tangent bundle into a ‘Lie algebra up to higher homotopies’ [S].
An algebra of this type is best described by exhibiting a complex replacing the
Chevalley—Eilenberg complex for an ordinary Lie algebra. In our case this latter
complex is identified with the sheaf of functions on the formal neighborhood of
the diagonal inX x X, the identification being given by the ‘holomorphic expo-
nential map’ (the construction of this map goes back at least to the 1953 paper of
E. Calabi [C] and was recently rediscovered by physicists under the name of
canonical coordinates [BCOV]).

As far as the choice of cochains is concerned, we consider two versions. First,
we use Dolbeault forms (and assume thais equipped with a Ehler metric).
Second, we put ourselves into the framework of formal geometry [B] [GGL] [GKF]
and use relative forms on the space of formal exponential maps. The underlying
algebraic result here is a 1983 theorem of D. B. Fuks [Fuk] who described the sta-
ble cohomology of the Lie algebra of formal vector fields with tensor coefficients
in terms of what we can today identify as the suspension of the PROP (in the
sense of [Ad]) governing weak Lie algebras. In the same fashion, we identify
(Theorem 3.7.4) a certain Gilkey-type complex of natural tensorsairidf mani-
folds with the suspended weak Lie PROP.

With the nonsymplectic case studied in detail, the introduction of a holomorphic
symplectic structure amounts to some easy madifications, presented in Section 5. As
another outcome of our considerations we obtain that(& ) can be calculated
from the curvature of an arbitrarydler metric, not necessarily compatible in any
way with the symplectic structure. This may be useful because the hyidde
metric is rarely known explicitly.

The outline of the paper is as follows. In Section 1 we collect some general
(well known) properties of the Atiyah classes of arbitrary holomorphic vector
bundles. In Section 2 we specialize to the case of the tangent bundle, intepret
the ‘cohomological Bianchi identity’ of Section 1 as the Jacobi identity and then
present an unraveling of this identity on the level of Dolbeault forms oflalét
manifold. In Section 3 we recast the properties of the Atiyah class in the language
of operads and PROPs which is well suited to treat identities among operations
such as the Jacobi identity, in an abstract way. At the end of Section 3 we realize the
weak Lie PROP by natural differential covariants oatter manifolds. Section 4
is devoted to the formal geometry analog @ftider considerations of Sections 2—3.
Finally, in Section 5 we specialize to the case of holomorphic symplectic manifolds
and show how the previous constructions are modified and specialized in this case,
in particular, how to get the Rozansky—Witten class€s() from the Atiyah class
of X.
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The author’s thinking about this question was stimulated by the letter of
M. Kontsevich [K2] where he sketched an interpretation of Rozansky—Witten
invariants by applying the formalism of characteristic classes of (symplectic) foli-
ations to thed-foliation existing onX considered as &°°-manifold. By trying
to understand his construction, the author arrived at the very elementary descrip-
tion using the Atiyah class. However, the material of Section 4 comes closer to
Kontsevich's approach in that we use the formalism of tautological forms
familiar in the theory of characteristic classes of foliations and Gelfand—Fuks
cohomology [B].

1. Atiyah classes in general
1.1. THE ATIYAH CLASS OF A VECTOR BUNDLE

Let X be a complex analytic manifold (we can, if we want, work with smooth
algebraic varieties over any field of characteristic 0). Eebe a holomorphic
vector bundle onX, andJ}(E) be the bundle of first jects of sections Bf It fits
into an exact sequence

0B QE = JYE) - E—0, (1.1.1)
which therefore gives rise to the extension class
ap € Exty (B, @ E) = HY(X, Q' ® End E)) (1.1.2)

known as the Atiyah class df. An equivalent way of gettingy is as follows.

Let Conr(E) be the sheaf oX whose sections ovdi C X are holomorphic
connections inE|y. As well known, the space of such connections is an affine
space ovel (U, Q! ® End E)), so ConiE) is a sheaf of2! @ End(E))-torsors.
Sheaves of torsors over any shgiadf Abelian groups are classified by elements of
HY(X, A), anday is the element classifying Col). Soay; is an obstruction to
the existence of a global holomorphic connectiorZJiF are two vector bundles,
then, in obvious notation, we have

04E®F:04E®1F+1E®05F7 (113)
because of the well known formula for the connection in a tensor product.
LetD = Dx be the sheaf of rings of differential operatorsX¥pandDs? C D
be the subsheaf of operators of oreep. It has a natural structure 6fx -bimodule,
the two module structures being different. The tensor profiict®e E is dual
to JY(E*). Therefore(—ag) is represented by the extension (symbol sequence)

0 E—-DY®pE—-T®E 0. (1.1.4)
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1.2. THE BIANCHI IDENTITY

If a,b € HY(X,Q! ® End E)) are any elements, their cup-product) b is an
element off?(X, Q' ® Q' ® End E) ® End E)). We have a natural map of vector
bundles onX

Q' Q' ® EndE) ® EndE) — S%(Q') ® EndE), (1.2.1)

which is the symmetrization with respect to the first two arguments and the com-
mutator in the second two. We denote [ayU b] € H2(X, S2Q! @ End E)) the
image ofa U b under the map induced by (1.2.1) in cohomology.

If A,B,C are three sheaves ot andu € Ext'(B,C), v € Ex¥/ (A, B), then
by u o v € ExttI(A, C) we will denote their Yoneda product.

If a is as before and € H'(X,Hom(T ® T,T)) = Ext'(T'® T, T), then we
denote by * ¢ € H?(X, S°Q! @ EndE)) the Yoneda product of the embedding
ST ® E — T ® T ® E and the elements

ac EXX(TQ®E,E), ¢1lcExt(T®T®E,TQ®E).

PROPOSITION 1.2.2The classeay, ay satisfy the following propertycohomo-
logical Bianchi identity

Z[OéE U OéE] +ap*ar =0 in HZ(X, SZQl ® EncKE))
Proof. Consider the two-step filtration
ECDS'QECDS°QE,

with quotientsE, T' ® E, S?°T ® E respectively. This filtration gives the extension
classes between consecutive quotients

(—ap) € ExXX{(T ® E, E), ¢ e ExXt{(S?T Q E, T ® E),

whose Yoneda product is 0. Our next task is to idenfifyn fact, we have the
following lemma.

LEMMA 1.2.3. Lets: T @ T — S?T be the symmetrization. Then; s €
Ext{(T ® T ® E,T ® E) can be expressed as

arge = —§o(s®1p) — 1y ® ag.

The lemma implies (1.2.2) once we expangs by (1.1.3).

Proof. This is a particular case of a statement from [AL], n. (4.1.2.3) applicable
to any leftD-module M with a good filtration(M;) by vector bundles. In such a
situation we have the ‘symbol multiplication” maps

p. T ® (Mi/Mi_1) = Miy1/ M,
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induced by thé>-action onM. We also have natural extension classes
1
fi € EXt(Mig1/ My, Mi/ Mi—1).

LEMMA 1.2.4. [AL] In the described situation the clags-aay, /g, ,) IS the
difference between the following two compositifvisneda pairings in which the
degree oExtis indicated by square brackeéts

T® M;/Mi1 - M1/ M; L5 M/ Mi_1[1],

®fic1
T& Mi/Mi1 —L75 T @ My 1/ M a[1] 5 Mi/Mi_1[1].

To obtain Lemma 1.2.3, we takef = D @ E with M; = D' @ E. Then for
i = 1 the statement identifi€s-arg ). The first composition i§ o (o ® 1g),
while the second one is1l; ® ag. This completes the proof.

1.3. ATIYAH CLASS AND CURVATURE

The classay: can be easily calculated both {dech and Dolbeault models for
cohomology. In theCech model, we take an open coveriig= |J U; and pick
connection$/; in E|y,. Then the differences

¢ij =V, —=V,; e I'(U;nUj, Qe EndE))

form aCech cocycle representing;.
In the Dolbeault model, we pick &>°-connection inE of type (1,0), i.e., a
differential operator

ViE-QWQE,  V(f-5)=0(f) s+ f-(Vs).

LetV = V+dwheredis the (0, 1)-connection defining the holomorphic structure.
The curvatureF. splits into the sunfe, = F2° + F&* according to the number
of antlholomorphlc differentials. Then (seeTAt])

PROPOSITION 1.3.1f V is any smooth connection i of type(1, 0), thenrz*
is a Dolbeault representative afz.

Remarkl.3.2. It may be worthwhile to explain why 1.3.1 is indeecbanplete
analog of theCech construction above. Namely, holomorphic connections in
can be identified with holomorphic sections of a natural holomorphic fiber bundle
C(E), which is an affine bundle ovél' @ End E). The fiberC(E), of C(E) at
x € X is the space of first jets of fiberwise linear isomorphisiisx X — E

https://doi.org/10.1023/A:1000664527238 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000664527238

76 M. KAPRANOV

defined near and identical oh, x {z}. Clearly, this is an affine space over
TxX ® End E;). Now, (1,0)-connection¥ in E are in natural bijection with
arbitary C*° sectionso of C(FE). SinceC(FE) is a holomorphic affine bundle,
every suchr has a well defined antiholomorphic derivati®e which is a (0,1)-
form with values in the corresponding vector bundle, i.e.,

do € Q%@ QY @ End E) = QY @ End E).

If o corresponds t&, thendo = F21.

Proposition 1.3.1 has a corollary for Hermitian connections. Recall [W] that a
Hermitian metric in a holomorphic vector bundlgives rise to a unigue connection
V = V + 0 of the above type which preserves the metric. This connection is called
the canonical connection of the hermitian holomorphic bundle. Itis knowrFthat
is in this case of type (1,1). Proposition 1.3.1 implies at once the following.

PROPOSITION 1.3.2If E is equipped with a Hermitian metric an¥ is its
canonical connection, theR, is a Dolbeault representative of.

1.4. ATIYAH CLASS AND CHERN CLASSES

If X is Kahler, ther,,,(E) € H>"(X, C), themth Chern class of, can be seen as

lying in H™(X,Q™), and the relation between the Atiyah class and the curvature

implies thatc,,, (E) is recovered fronar; by the standard Chern—Weil construction
cm(E) = tro(a$™), m (QH®™ @ End E¥™) — Q™ @ EndA™(E)).

It follows that themth component of the Chern character can be expressed as

chy(E) = %Alt (tr(am)). (1.4.1.)

Herea? is an element o™ (E, (21)®™ @ End(E)) obtained using the tensor
productin the tensor algebra and the associative algebra structure(iff Emdhile

Alt is the antisymmetrizatioiQ)®™ — Q™. Note that the antisymmetrization
constitutes in fact an extra step which disregards a part of information: without it,
we get an element

em(E) = tr(al) € H™(X, (Q1)®™). (1.4.2)

For a vector spac¥ let us denote by Cy&(V') the cyclic antisymmetric tensor
power ofV, i.e.

Cyc™ (V) ={a € VO : ta = (-1)™a}, t=(12,...,m), (1.4.3)
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wheret is the cyclic permutation. Then, the cyclic invariance of the trace implies
that

&™(E) € H™(X,Cyc™(QY), (1.4.4)

but it is not, in general, totally antisymmetric. We will cal},(E) the big Chern
classof E; the component of the Chern character is obtained from it by total
antisymmetrization.

1.5. THE ATIYAH CLASS OF A PRINCIPAL BUNDLE

Let G be a complex Lie group with Lie algebgaand P — G be a principal
G-bundle onX. Let ad P) be the vector bundle oX associated with the adjoint
representation aff. By considering connections iR, we obtain, similarly to the
above, its Atiyah clasapr € HY(X,Q! ® ad P)). All the above properties of
Atiyah classes are obviously generalized to this case.

2. Atiyah class of the tangent bundle and Lie brackets
2.1. SYMMETRY OF THE ATIYAH CLASS

Let X be as before an@’ = T'X be the tangent bundle of. Specializing the
considerations of (1.1) to the case whBn= T', we get the Atiyah clasa;x
which we can see as an elementbf( X, T* @ T* @ T).

PROPOSITION 2.1.1The elementx is symmetric, i.e., lies in the summand
HY(X,S%(T*)®T).

Proof. Itis enough to exhibit a sheaf 6% (7™) ® T-torsors from which Conff")
(asheaf o *®T™* RT-torsors) is obtained by the change of scalars. Tofind it, recall
that any connectioV in T'X has a natural invariant called itsrsion v which
is a section of\?(T*) ® T The sheaf Conp(T X) of torsion-free connections is
thus a torsor ove$?(7*) ® 1" with required properties.

2.2. (EOMETRIC MEANING OF TORSIONFREE CONNECTIONS

It is convenient to ‘materialize’ the sheaf Cop(i" X)) by realizing it as the sheaf

of sections of a fiber bundi&(X) — X whose fiber ovet € X is an affine space
overS?(T; X) ® T, X . This is done as follows. Far € X let ®,(X) be the space

of second jets of holomorphic mags 7,, X — X with the properties)(0) =
z,do¢ = 1d. A similarly defined space but for self-mapsX — T,.X is clearly
justS2(T: X) ® T, X . Therefored, (X) is an affine space ove(T: X) @ T, X .

The ¢,(X) for z € X obviously unite into a fiber bundlé(X) — X. It is

well known classically that sections of this bundle are the same as torsion-free
connections.
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As a corollary of this, let us note the following interpretatiorgfy which can
be also deduced from Lemma 1.2.3.

PROPOSITION 2.2.1The classyrx is, up to a scalar factor, represented by the
following extensiorisecond symbol sequernce

0— T = DsY/D<C — D?/PS0 — D?/Dst = 52T — 0.

We now state the first main result of this section.

THEOREM 2.3Let X be any complex manifold amtlbe any quasicoherent sheaf
of commutative) x -algebras. Then:
(&) The maps

H(X,T®A) @ H (X, T®A) - HYYX, T ® A)

given by composing the cup-product withy € H*(X, Hom(S?T,T)), make the
graded vector spac#*~1(X,T ® A) into a graded Lie algebra
(b) For any holomorphic vector bundl® on X the maps

H(X,T®A) @ H(X,E® A) - HYTYX,E® A)

given by composing the cup-product with the Atiyah ctasss H(X, Hom(T ®
E,E)), makeH* (X, E ® A) into a gradedH*~*(X,T ® A)-module

Remark.3.1. (a) By construction, the structure of a Lie algebra on the space
H*~1(X,T ® A) is bilinear over the graded commutative algeHr¥ X, A), over
which the former space is amodule. Same for the module structif@ ol X, E®
A).
(b) To see that the graded Lie algebra structure defined above is, in general,
nontrivial, it suffices to taked = S*(7*) (the symmetric algebra with grading
ignored),i = j = 0, anda = b = 1 € HX,T ® T*). Then the bracket
[a,b] € HY(X,T ® S?T*)is arx.

(c) Theorem 2.3 is also true for sheaves of graded commutative algéhris
we replace cohomology with the hypercohomology, i.e., consider

H/ (X, T® A*) = P H'(X,T®A).
i+j=p

Proof of Theoren2.3. (a) Ifg® is a graded vector space with an antisymmetric
bracket3: A% g® — g°, then the left-hand side of the Jacobi identity fois a
certain elemenj(8) € Hom(A3g®, g*). In our casey® = H* (X,T ® A) and
we find thatj () is given by composing the cup product with a certain class

J € H3(X,Hom(S°T,T)).
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This class is nothing but the symmetrization of
[OéTX U OéTX] S HZ(X, SZQ]' ® Hom(T, T)),

so it vanishes by the ‘cohomological Bianchi identity’ (1.2.2) applie@te- T'.
(b) If g* is a graded Lie algebray/® is a graded vector space with a map
¢ g° ® M* — M*, then the left-hand side of the identity

(91, g2lm — g1(g2m) — (—1)49)9A92) g, (g1m) = 0

is a certain element(c) € A%g* ® Hom(M, M), vanishing if and only ifM is a
g-module. In our casg® = H* (X, T ® A), M* = H*"}(X,E ® A), and the
elementr(c) is induced by a class

o € H3(X, 5’0 @ Hom(E, E))

which is nothing but the left-hand side of 1.2.2 fiér Theorem is proved.
The cased = Ox does not lead to anything interesting. Indeed, we have

PROPOSITION 2.3.2The Lie algebra structure of*~%(X, T') given byarx, is
trivial (all brackets are zerp Similarly, the module structure oH*~ (X, E) is
trivial .

Proof Leta € H(X,T), b € H/(X,T). Using Proposition 2.2.1, the brack-
et [a,b] € HY(X,T) is obtained by applying ta U b € HJ (X, S?T)
the boundary homomorphistn H+7 (X, S2T) — H*J+1(X, T) of the second
symbol sequence. But we have a pairing of sheaves

T @cT — Dt @c DL — D2 - D<2/D<C,

induced by the composition of differential operators. Therefore we get an element
allb € HI (X, Ds?/D<C) mapping intaz U b. But this implies thas(a Ub) = 0.

For the bundle case the argument is similar. We notecthas represented by
the symbol sequence (1.1.4) and that we have a pairing of sheaves

T®cE < DNYQcE — DY @oE.

2.4. WEAK LIE ALGEBRAS AND THEIR MODULES

Theorem 2.3 is a global cohomological statement about the Atiyah class. We now
want to give a local, cochain level strenghtening of this result. Each time when
the cohomology of some sheaf forms a graded Lie algebra, it is natural to seek an
underlying structure on the space of cochains. The standard way for doing this is
by using the concept of weak Lie algebras (or shLAS), see [S]. Let us recall this
concept.
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DEFINITION 2.4.1. Aweak Lie algebra isAa-gradedC-vector spacg® equipped
with a differentiald of degreet1 and (graded) antisymmetrniclinear operations

bn: (go)®n_>go, $1®"'®$n'_>[]717-"7]771]717”227
degb,) = 2 n,

satisfying the conditionggeneralized Jacobi identities

dbn) = > > sgno)byia(by ® 1)o, (2.4.2)

p+q=ngeSh(p,q)

where Skip, q) is the set ofp, ¢)-shuffles and/(b,,) is the value ab,, of the natural
differential in Hon{(g*)®", g°).

In particular,b, is a morphism of complexeg(b.) = 0), and it makes13(g*)
into a graded Lie algebra. The highgrare the compensating terms for the violation
of the Jacobi identity on the level of cochains rather than cohomology.

An equivalent formulation of (2.4.2) is as follows [S]. Consid&g*[—1]), the
completed symmetric algebra of the shifted dual spacg Eachb,, gives a map
by g*[—1] — S™(g*[—1]) of degree 1. Letl,, be the unique odd derivation of
the algebraé’(g*[—l]) extendingp;,. Then the identities (2.4.2) all together can be
expressed as one condition

D*=0, D=d+) dy. (2.4.3)

n>2

Let (9°, (b,)) be a weak Lie algebra. A weak-module is a graded vector
spaceM*® equipped with a differential of degree+1 and maps

e (@) V@ M® — M*,n>2 dedc,)=2—n, (2.4.4)

antisymmetric in the first — 1 arguments and satisfying the identities which it
is convenient to express right away in the form similar to (2.4.3). Namely, let us
extend::: M* — M*®S"1(g*[—1]) toaderivation/! of theS(g*[—1])-module

M* ® 5(g*[—1]). Then the condition on the, is that

(1® D+ Dy)? =0, Dy =) dy. (2.4.5)

n>2

2.5. WEAK LIE ALGEBRA IN KAHLER GEOMETRY

Let X be a complex manifold. We now unravel the Jacobi identity for the Atiyah
class on the level of Dolbeault forms. Since we will work with holomorphic as well
as with antiholomorphic objects, let us agree that in the remainder of this section
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T = T X will mean the holomorphic tangent bundleXf while Q5 will signify
the space of global’> forms of type(p, ¢). Similarly, for a holomorphic vector
bundleE on X we will denote byQ??( E') the space of all’>° forms of type(p, q)
with values inE.

Suppose thak is equipped with a Khler metrich.

Let V be the canonical (1, 0)-connectionihassociated witlt, so that (1.3)

[V,V]=0 in Q*°(EndT)). (2.5.1)

SetV = V + 9, whered is the (0, 1)-connection defining the complex structure.
The curvature oWV is just

R =1[9,V] € QYYEndT)) = Q®Y(Hom(T ® T,T)). (2.5.2)
This is a Dolbeault representative of the Atiyah class;, in particular
OR=0 in Q% (Hom(T ® T,T)) (2.5.3)

(Bianchi identity). Further, the condition fér to be Kahler is equivalent, as it is
well known, to torsion-freeness &f, so actually

R € Q%Y(Hom(S?T, T')). (2.5.4)

Let us now define tensor field®,, n > 2, as higher covariant derivatives of the
curvature

Ry € Q%Y (Hom(S?’T @ T2 T)),  Rz:= R, Ri11 = VR;. (2.5.5)

PROPOSITION 2.5.@&achR,, is totally symmetric, i.eR,, € Q%Y(Hom(S"T, T)).
Proof. Follows immediately from (2.5.1).

Except forR, = R the formsR,, are not, in general)-closed. Letﬂoﬁ'(T)
be the Dolbeault complex of global smoat®, i)-forms with values inZ’, and
Q%*—1(T) be the shifted complex.

THEOREM 2.6.The maps
by: QOINT) @ - -~ @ Q%n(T) — QAT+t > 2
given by composing the wedge prod(eith values inQ%*(T%")) with R,, €

QO%L(Hom(T®", T)), make the shifted Dolbeault compl@®*—%(T') into a weak
Lie algebra

COROLLARY 2.6.1lf X is a Hermitian symmetric space, thBmake£2%*—Y(T’)
into a genuine Lie dg-algebra
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Proof. We need to establish the generalized Jacobi identities (2.4.1) fét,the
For this, write

OR, = dV---VR, (2.6.2)

(with (n — 2) instances o) and use the commutation relation (2.5.2) together
with (2.5.3). This gives

OR,= Y V"0R,oV'R, (2.6.3)
a+b=n—2

where
R, € Q@YY EndHom(S*2T, T)))

is the operator-valued (1, 1)-form induced ByBy evaluatingR., we find

8R = Z Z Rp—l—l 1) g,

P+q=n oc€Sh(p,q)

which differs from the right-hand side of the generalized Jacobi identity only by
the absense of the signs $aih These signs, however, constitute exactly the effect
of shift from H* to H*~1. Theorem is proved.

RemarkThe first instance of Theorem 2.6 (thiad cobounds the Jacobi identity
for the curvature) was communicated to me by L. Rozansky.

2.7. GOMPANION THEOREM FOR VECTOR BUNDLES

Let now(E, hg) be a Hermitian holomorphic vector bundle on aifer manifold
X, and letV g be its canonical (0, 1)-connection, so that

[Ve,Ve] =0 in Q*%EndE)). (2.7.1)
Let

F =1[0,Vg] € OYYEndE)) = Q*Y(Hom(T ® E, E)) (2.7.2)
be the total curvature &7 ;. Then

OF =0 in Q*°(Hom(T ® E, E)) (2.7.3)

and F is the Dolbeault representative of the Atiyah clags. Define the tensor
fields

F, € Q%Y(Hom(S" T ® E, E)) (2.7.4)
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by setting
F,=F, F,=VF,_1,n>3. (2.7.5)

As before, the required symmetry Bffollows from (2.7.1).

THEOREM 2.7.6 The maps
Cn: (QO,ofl(T))(@(nfl) ® Qo”*l(E) N Qo"*l(E)

given by composing the wedge product with, make the Dolbeault complex
Q%*—1(E) into a weak module over the weak Lie algeby&*—1(T).

The proof, using (2.7.1-3), is almost identical to that of Theorem 2.6 and is left
to the reader.

COROLLARY 2.7.7.If (E, hg) is a homogeneous Hermitian bundle over a Her-
mitian symmetric spacél, then F makes2®*~1(E) into a dg-module over the
dg-Lie algebra2®*—1(T).

2.8. INTERPRETATION VIA D2 = 0
In the notation of Section 2.5, let
R € Q%Y (Hom(T™*, S™T™))

be the partial transpose &,. Consider the completed symmetric algeB{a™)
(this is a sheaf of ungrade@ly -algebras) and introduce in the algeby®* (S(7*))

the grading induced from that &f>*. Let R;; be the odd derivation of this algebra
induced byR;;,. Theorem 2.6 can be reformulated as follows (I am grateful to
V. Ginzburg for suggesting that | do this).

REFORMULATION 2.8.1.The derivationD = d + X,52R" of Q0*($(T*))
satisfiesD? = 0.

This is not exactly the result of applying (2.4.3)dd = Q%*~1(T) because
we take symmetric powers ovélx rather tharC and also do not seem to dualize
the space§)®*. But because the mag®, are Ox-linear and because the formal
adjoint of 9: Q0% — Qi+l s 9. QOr—i—1 » QOr—i ( = dim(X)), this change
of context is justified.

Let us now viewD geometrically. The sheaf(7™) is the sheaf of functions on

X%’;) the formal neighborhood oX (regarded as the zero section) in (the total

space of JI'’X. More formally, denoting byr: X%}) — X the natural projection,
we can write

S(T*) = W*(OX;O;?)'
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The derivationD in Q%*(S(7*)) can thus be regarded as a non-linear (0, 1)-
connectiorD in the fiber bundler: X%";) — X. The conditionD? = 0 means that

D is integrable, i.e., defines a new holomorphic structurﬁ’éi’j}). We are going
to describe this new structure and at the same time give a very natural explanation

of the previous constructions. Namely, consi ><)X’ the formal neighborhood
of the diagonalX C X x X. This is a fiber bundle ovek (with respect to the
projection to, say, the second factor) whose fiber averX is xf‘("o) = Spf(@x,x),
the formal neighborhood of in X. Clearly, this fiber bundle has a holomorphic
structure induced from that ok.

THEOREM 2.8.2The bundIeX}";) with the new complex structuiis naturally
isomorphic tox °, .

The proof is given in the next subsection.

2.9. THE HOLOMORPHIC EXPONENTIAL MAP

We want now to recall a classical but not very well known constructionahl&r
geometry [C]. We preserve the notations from the previous subsections.

Letz € X be a point. Recall that by, X we denote’>:°X, the *holomorphic’
tangent space which we want to distinguish fr@i.X, the tangent space t&
considered as a real manifold. More precisely/lefR X — TRX be the complex
structure,I? = —1, andTSX = C ®r TRX. ThenT, X is the (+i)-eigenspace
of 1® I onT¢X. The correspondende— ¢ — iI¢ defines an isomorphism of
complex vector spaced’R X, I) — (T, X, 1).

Now, the geodesic exponential maprafor X considered as a real manifold)

exft: TRX — X

is not, in general, holomorphic. Suppose first that oahkr metric is real analytic.
Then so is exp, and we can take its analytic continuation ‘to the complex domain’.
In other words, letX’ = X andX” be X with the opposite complex structure.
Then the image of the diagonal embeddiig— X' x X" is totally real, so
X' x X" can be seen as the complexificationdf Therefore exp continues to a
holomorphic map

exg: TSX =T, X ® TO'X — X' x X",
defined in some neighborhood of 0.

LEMMA 2.9.1. Suppose the &ler metric onX is real analytic. Then, the restric-
tion ofexy to 7, X takes values itX’ x {x} and thus givesvia the holomorphic
identification X’ — X) a holomorphic magexp,: 7, X — X defined in some
neighborhood 00, and whose differential at O is the identity
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Proof The complexified Riemannian connection 87X is V = V + 9.
Its analytic continuation is a holomorphic connecti®¥ = V¢ + € in the
holomorphic tangent bundle of’ x X", defined in some neighborhood&f The
summand& ¢ andd® have types (1, 0) and (0, 1) with respect to the decomposition

T(I’,J:”)(X, X X”) = TIIX, D TIHX”.

This decomposition being flat fov© and holomorphic, the exponential map for
V¢ at a diagonal poin{z,z),z € X takesT,X' into X’ x {z} ~ X. But
T, X' C T(,.)(X' x X") is preciselyT-°X C T X, and the exponential map
for VC is just the restriction of expto 7:1°. Lemma is proved.

The map exp can be called thé@olomorphic exponential majt was redis-
covered in 1994, in the physical paper [BCOV] and called ‘canonical coordinates’.
Note that even when the metric is not analytic but only smooth, consideration of the
Taylor expansion of expin coordinates;, z; (wherez; form a local holomorphic
coordinate system), furnishes an isomorphism of formal neighborhoods

exp,: O(Tio))( — 2, (2.9.2)
which will be sufficient for the purposes we have in mind.

EXAMPLE 2.9.3. LetX = CP?! with the Fubini—-Study metric. As a Riemannian
manifold, X is the unit spheres? ¢ R®. Choose a point € X and introduce
in T, X a linear coordinate syste(n, v) by means of an orthogonal frame. Then
identify a neighborhood af with T, X by means of the stereographic projection
from the opposite point, thereby introducing a coordinate systexn lBlementary
trigonometry gives

2 sinvu? + v?
Vu? + v2(1+ cosvu? + v?)

(this is real analytic since sim)/z and co$z) are even functions). Now, the
complex structure iR X is I(a, b) = (b, —a). Thinking now ofu, v as complex
variables and substituting= « — ib, v = b + ia with a,b € R (which means that
we restrict toT-0 ¢ T) we find that the radicals vanish and we get gx) =
z, z € T, X. So the holomorphic exponential map is, in this case, exactly the
stereographic projection, i.e., the affine coordinateCdn for which the point
opposite tor serves as the infinity. In a similar way, f&r a Grassmannian the map
exp, provides an affine identification @f, X with an open Schubert cell.

Let us now prove Theorem 2.8.2. Consider, for any X, the formal isomor-
phism (2.9.2). These isomorphisms unite into a fiberwise holomorphic isomorphism
of fiber bundles

exd} (u,v) =

(u, ),

exp: X}‘}‘}) — X&O‘;)X.
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The variation with respect to of the exp, is not, in general, holomorphic in the
usual sense. However, we have the following statement which implies our theorem.

PROPOSITION 2.9.4The mapexpis holomorphic with respect to the complex
structureD on X >,

Proof. We will consider the real analytic case. The general case presents only
notational complications in that we repla&é and X" below by working in the
variablesz; andz;.

By considering the connectioli® on X’ x X", we reduce ourselves to the
following purely holomorphic problem.

Suppose given a complex manifoldand a familyV = (V) ses of flat torsion-
free connections i X parametrized by some complex maniféldLetp, ¢ be the
projections ofX x S to X andS respectively. Then the variation (derivative) of
the V, with respect tos is a section

ReT(X x 8, ¢"Q% @ p*Hom(S*T X, TX)).

We can apply to each restrictid] y . () the covariant derivativ¥ ; several times,
getting tensor fields

R, =V" 2ReT(X x S, ¢"Q} @ p*Hom(S"T X, TX)), n>2.

On the other hand, for every, s the connectiorV; gives rise to the exponential
map

exp, ;: ToX — X, 0z, doexp, , = Id,

whose variation with respect tas, for each fixed:, a 1-form onX with valuesin
analytic vector fields on (some neighborhood of Glih)X with vanishing constant
and linear terms. Recall that for any vector sp&téhe space of formal vector
fields onV at O is the producf],,..o Hom(S™V, V). Thus we can write the Taylor
expansion of the variation as

exp, s ds exp, , € I (X x S, " ® ] p*Hom(S"TX, TX)) _
n>2
In order to establish Proposition 2.9.4, it is enough to prove the following.

PROPOSITION 2.9.89n the described situatioR,, is thenth homogeneous com-
ponent olexp; 1 ds exp, ;.

Proof. Fix somezg € X, so € S and identifyT, X with C", r = dim(X) by
means of some linear isomorphism. Then use,gxpas a coordinate system on
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X nearxg. For anys the connectiorV is then defined in our coordinates by its
connection matrix’(s) € I'(C",Hom(S?T,T)), so thatR = d,I'(s) is just its
derivative with respect te. For s = so we havel'(sp) = 0, because the expo-
nential map for a flat torsion free connection takes it into the standard Euclidean
connection on the tangent space. This implies that the higher covariant derivatives
V§0R| Xx{so} are the same as the usual derivatives, with respect to our chosen
coordinates, oRR;, = d;|s=s,I'(s). By the same token as before, for arbitraye
flatness otV ; allows us to describe it as the connection induced from the standard
Euclidean connection o@" by the change of coordinates given by gxp So our
statement reduces to the following lemma.

LEMMA 2.9.6. Letv = ¥]_,v;(2)0/0z; be a holomorphic vector field ofsome
domain of C". Regardingv as an infinitesimal diffeomorphisii.e., the tan-
gent to a family of diffeomorphismgs): C" — C", s € C, g(0) = Id), let

I' € T(C",Hom(S?T, T)) be the corresponding infinitesimal variation of the con-
nections(induced by theg(s) from the Euclidean oneThen the components of
are

() =
Ik N 8z]8zk '
The proof of this lemma is straightforward from the standard formulas of dif-
ferential geometry.

3. Operadic interpretation

As we saw, for any sheaf of commutative algebras oXi, the Atiyah classirx €
HY(X,Hom(S?T,T)) makes eaclii*~(X,T ® A), into a graded Lie algebra.
Each composite:-ary operation in this algebra (such as, €@, x2], [x3, z4]] for

m = 4) is represented by a certain classHi*~1(X, Hom(T®™, T)) composed

out of arx. In this section we study these classes by themselves rather than by
using the operations aii*~%(X, T ® A) represented by them. For this, we use the
language of operads and PROPs, see [Ad] [GiK], [GeK1-2] [KM].

3.1. REMINDER ON OPERADS PRORS AND MODULES

Recall that an operéagl is a collection of vector spac@¥n), n > 0, together with
the action ofS;,, the symmetric group, oR(n) for eachn and composition maps

0;j: P(m)® P(n) = Pim+n—-1), i=1...,m

satisfying appropriate equivariance and associativity axioms. Informally, elements
of P(m) can be thought of asi-ary operations, thé,,,-action as permutation of
arguments in the operations, and; ¢ as the operation

P(x1y - Tim1,q(Tis - -+ s Titn—1), Titny - -+ Trntn—1)- (3.1.1)
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An algebra over an operad is a vector spacel together with.S,,-invariant
mapsu,: P(n) ® A®™ — A satisfying the associativity properties which mean
that the compositions; in P indeed go, under the,,, into the substitution of one
operation inside another, as described in (3.1.1).

The concept of a PROP (see [Ad]) is slightly more general. While operads
describe algebrag with operations of the formt®™ — A, PROPs allow for more
general operationd®™ — A®™ (which may or may not be deducible from the
former ones).

Thus a PRORI is a family of vector spacds(n, m), n,m > 0, equipped with
a left S,,-action and a righf,,,-action, commuting with each other, as well as the
following structures:

(3.1.2) Composition mapH(n,p) ® I(m,n) — II(m,p), makingIl into a
category with the set of objectsn|,m € Z, and Hon{[n|,[m]|) =
II(n,m).

(3.1.3) Juxtaposition mag§(n, m)QI(n',m') — II(n+n', m+m'), makingll
into a symmetric monoidal category with monoidal operation on objects
defined by[n] © [n] = [n + n/].
A (right) module over an operag is (see [M]) a collectionM of S,,-modules
M(n),n > 0 and compositions

oj: M(m)®P(n) = M(m+n—-1), i=1...,m

satisfying the equivariance and associativity axioms obtained by polarizing those
of an operad.

EXAMPLE 3.1.4. (a) For any vector spatewe have itsendomorphism operad
&y with component€y (n) = Hom(V®" V) = (V*)®" @ V. The spacé/ is
canonically an algebra oves . For any operad a structure ofP-algebra on a
vector spacel is the same as a morphism of oper@ss £4.

Similarly, we have a PROP ENDPwith ENDy (n, m) = Hom(V ®", V™) An
algebra over a PROH is a vector spacel together with a morphism of PROPs
IT — END4. For example, the class of Hopf algebras can be described by a PROP
but not an operad.

(b) Any operad is a module over itself.Ilfis a PROP, then the spacBén) =
II(n, 1) form an operad. For every the space$l,(n) = II(n,a) form a module
over this operad.

3.2. DG-OPERADS ANDPROFR

All the above constructions can be carried out in any symmetric monoidal cate-
gory. By a differential graded (dg-) operad we mean an operad in the symmetric
monoidal category of differential graded vector spaces, i.e., cochain complexes

https://doi.org/10.1023/A:1000664527238 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000664527238

ROZANSKY-WITTEN INVARIANTS VIA ATIYAH CLASSES 89

(in that category the symmetry isomorphisms are given by the Koszul sign rule).
For a dg-vector spaceé® we define its shiftd *[m] by (V*[m])! = V™*. For a
dg-operadp its suspensio:(P) is a new dg-operad formed by the shifted spaces
Y(P)(n) = P(n)[1 — n] with the symmetric group action differing from that on
P(n) be tensoring with the sign representation, see [GeK1] for the explicit formu-
las for the compositions. I1A°* is a differential graded-algebra, thend[1] is a
Y.(P)-algebra. Fop € P(n) let X(p) be the corresponding elementX{P)(n).

The conventions for PROPs are similar. Thus, the suspedioof a dg-PROHRI
has¥II(n,m) = II(n, m)[m — n]. We will view graded vector spaces as dg-vector
spaces with zero differential.

3.3. A PRORROM AN OPERAD

Let P be an operad. We define2-module P(—,0) = {P(n,0)} called the
module of natural forms (of-algebras). It is defined as tlfemodule generated
by symbols

tr(p) € P(n,0), p € P(n+1), (3.3.1)
subject to the following relations
tr(po) = tr(p)o, o €8Sy C Spi1, (3.3.2)

tr(po;q) =tr(p)o;jq, pePla+1), ge Pb+1), ia+1 (3.3.3)

tr(p ogt1q) = tr(gopy1p)7,

1 2 ... a..a+b
- @ eat , (3.3.4)
a+1l ... a+b 1 a

p € Pla+1), qgePb+1).

Motivation: if A is a finite-dimensionaP-algebra, then any € P(n+ 1) gives
a morphismy,: A"+ — A, and we can take its trace,r (u,): A®" — C
with respect to the last contravariant argument and the only covariant argument.
The requirements on the(fr) are the axiomatizations of the properties of these
traces.

We now define a PROP, denotBg to be generated by formal juxtapositions
and permutations from®(n, 0) = IIp(n, 0) andP(n) C IIp(n,1). In other words

IIp(n,m) = P Q) P(A) ® Q) P(B;,0), (3.3.5)
( J

{1,..., n}=
AqU---UAmUB U---UByp
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whereP(A),#(A) = a, is the notation for the functor on the category:eélement
sets and their bijections associated to.$hemoduleP (a).

PROPOSITION 3.3.6lf A is a finite-dimensionaP-algebra, then it is also a
[Ip-algebra

3.4. THE LIE OPERAD AND PROP

We denote by ie the Lie operad, whose algebras are Lie algebras in the usual sense,
see [GeK1-2] [GiK]. Explicitly,Lie(n) is a subspace in the free Lie algebra on
generators:, .. ., £, spanned by Lie monomials containing eaglexactly once.

Thus Lie(2) is one-dimensional and spanned [y, z»] (which is anti-invariant
undersS5,), while Lie(3) is two-dimensional and spanned by three elements

[*’L‘lv [(L‘z, $3]]v [va [xlv :Eg]], [$37 [*’I;la *’1"2]]’

whose sum is zero (Jacobi identity). Given an arbitrary op@rashd an element
p € P(2), we will say thatp is aLie elementif p is antisymmetric and satisfies the
Jacobiidentity. In other wordg,is a Lie element if there is a morphism of operads
Lie — P which takes the generatpr,y| € Lie(2) into p. Such a morphism is
unique, if it exists.

We denote the PROH,;. by LIE. The new generators in LIE (apart from the
bracket[z1, z2] € LIE(2,1)) form the space LIk, 0) = Lie(n,0). An example
of an element of the latter space is given by

kn =tU([z1[z2. .. [T, Tnya] - ])- (3.4.1)

Here[z1]zy. .. [y, zn41] .. .] IS regarded as an element®fe(n + 1). It follows
from (3.3.4) that,, is cyclically symmetric, i.e.,

Kt = K, t=(12...n)€Z, CS,. (3.4.2)
If gis a finite-dimensional Lie algebra, thep gives thenth Killing form ong

T1Q - Qxy — tr(adzy) ... adxy)). (3.4.3)
PROPOSITION 3.4.4The spaceCie(n, 0) has dimensiorfn — 1)! and a basis
there is formed by the elemeniso, o € S,,/Z,,.

Proof. This follows from the fact that a basisitie(n + 1) is formed by the Lie
monomials

[Toy[- -+ [To(n), Tnya] -], 0 € Sn.
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3.5. THE ATIYAH CLASS AS A LIE ELEMENT

Let nowX be a complex manifold]’ = T'X its tangent bundle. We have a sheaf
of operad€’r and a sheaf of PROPs EN{N X defined by

Er(n) = Hom(T®", T),  ENDy(n,m) = Hom(T®", T®™).

By applying the functoi/*(X, —) from sheaves to graded vector spaces, we get
a graded operad*(X, &) an a graded PROR* (X, ENDy). Recall also (1.4)
that we have the ‘big Chern classésg;(T) € H™ (X, Cyc™(Q1)) of the tangent
bundle. Now, a more inclusive formulation of the properties of the Atiyah class is
by using the suspension of the above PROP and goes as follows.

THEOREM 3.5.1The elemenE~larx € S71H*(X,£E7)(2) is a Lie element.
Furthermore, the correspondence

[£1,22] € LIE(2,1) — X tapx € S 1H*(X,END;)(2,1),

fin € LIE(n,0) = ¥, (T) € ©~1H*(X,ENDr)(n,0)
defines a morphism of PROPs

LIE — X 'H*(X,ENDy) = H*(X,ENDy_q)).

The proof follows readily from the cohomological Bianchi identity (1.2).

3.6. WEAK LIE OPERAD AND PROP

We denote byV Lie the dg-operad governing weak Lie algebras (2.4). It is generat-
ed by elements,, € WLie(n), ded3,) = 2—n,n > 2, which are antisymmetric
with respect ta5,, and satisfy the conditions obtained from Definition 2.4.1. Thus,
the cohomology operal ;W Lie) is just Lie.

The operadV Lie can be also described as the cobar-construction of the com-
mutative operad [GiK]. Explicitly, this means that a basigh¥Lie(n) is formed
by certain trees. More precisely, by ariree we mean a connected oriented graph
I with no loops, equipped with structures satisfying the conditions listed below.

(1) Eachvertex of has valency at least 3. In additidnhasr + 1 legs, i.e., edges
bounded by a vertex from one side only.

(2) For every vertex all edges incident tw, except exactly one, are oriented
towardsv. The set of such edges is denoted bfvn

(3) It follows that all the legs of except exactly one, are oriented towafdg he
set of such legs is denoted by(I).

(4) The set II') is identified with{1,2,...,n}.
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Let 7 (n) be the set of isomorphism classestrees. Foil® € 7 (n) set

defl) = X r;ix(c:'”@)). (3.6.1)

veVert(T)

PROPOSITION 3.6.2Me have an identification of graded vector spaces
WCLie(n) = QB detI’)", degdetI")*) = Z (2 —In(v)]),

re7(n) veVert(T)

with the differential being dual to the map given by contraction of edges, and the
operad structure given by the grafting of trees, g8 |.

Proof. The identification is obtained by associatingpthe uniquen-tree with
one vertex (‘corolla’) and to any composition of tj¥g the tree describing the
composition. The terms in the generalized Jacobi identity correspond, in geometric
language, to all possibte-trees with exactly two vertices and one edge (so that the
corolla is obtained from such a tree by contracting this unique edge).

Let WLIE be the (dg-) PROP corresponding to the dg-op&vatic as described
in (3.3). It also has a natural graphical description. Namely, cafham)-graph
a (not necessarily connected) oriented graphith n + m legs, of whichn are
inputs and are labelled with numbers 1 , n, andm are outputs and are labelled
by 1 ...,m, and which satisfy the conditions (1)—(2) above. Each component of
an (n,m) graph is either a tree satisfying (1)—(3), or a graph with no output. Let
G(n,m) be the set of isomorphism classes(nfm)-graphs. Retaining the same
notations Vert, In, det, as for trees, we easily conclude the following.

PROPOSITION 3.6.3We have identifications
WLIE(n,m) = 5 de(T)*, degdetl)*) = > (2—In(v)]),

reg(n,m) veVert(T)

with the differential being dual to the map given by contraction of edges, compo-
sition maps given by grafting of graphs, and juxtaposition maps given by disjoint
union

If P is any dg-operad, a family of elemenis € P(n), n > 2, is calleda
weak Lie familyif the correspondencg, — p,, gives a morphism of dg-operads
WCLie — P. If (p,) is a weak Lie family, then the class p$ in H(P(2)) is
a Lie element inH*(P). In this case they, give also a morphism of PROPs
WLIE — IIp.

3.7. DFFERENTIAL COVARIANTS AND THE WEAK LIE PROP

We now want to restate Theorem 2.6 (which describes the unraveling of the Jacobi
identity for the Atiyah class in the framework ofalkler geometry) in a more
universal form.
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Notice, first of all, that the structure we really used, was not thal& metric
itself but only its canonical (1, 0)-connecti®@h So let us call aemiflat manifold
a pair(X, V) whereX is a complex manifold an® is a (1, 0)-connection iff' X
such thafV, V] = 0. For such a connection we defifie= [0, V] and all the
considerations of (2.6), 2.8 hold true.

Fix d, i, m,n andletC, be the sheaf of semiflat (0,1)-connection&nFollow-
ing Gilkey [Gil] and Epstein [E], introduce the spakg(n, m) of (not necessarily
linear) differential operators of finite ordér — Q% ® Hom(T®", T7%™) defined
in some neighborhood of 0, and 18%(n,m) C V,i(n,m) be the subspace of
operators equivariant under the group of holomorphic diffeomorphisms. Elements
of the latter space will be called differential covariants of type:, m) of r-
dimensional semiflat manifolds, since for each such man{f&ldv) they produce
natural tensors iR% (Hom(7=", T®™)). In particular, they do so for eachaiiler
manifold. In fact, we can say that elementd&ifn, m) are differential covariants
of Kahler manifolds which depend only on the canonical connection. The differ-
entiald makesU? (n, m) into a complex; taken for att, m, these complexes form
adg-PRORJ;.

For example,R, = V" 2R (the covariant derivative of the curvature) is an
element ofU}(n, 1). Furthermore, lef" be a(n,m)-graph with N vertices. For
every vector spacld’ we have the contraction map

e R Hom(S"@lw, W) — Hom(Ww &, w &™), (3.7.1)
veVert(T")

Applying this to the tensor product of tHe | € Q% (Hom(SMWIT, T)), we
get a covariant

Rr = pr (Q) Ringwy) € U (n,m). (3.7.2)

Because of the symmetry of tiig, the desuspended elemé&nt! R;- can be viewed
as a morphism

> 1Rr: det(l)* — 21U (n, m). (3.7.3)

THEOREM 3.7.4. (aY he map& 'Ry define amorphism of dg-PROPSWLIE —
»-1up.

(b) For any i,n,m the morphism of vector spacgaﬁ}m: WLIE!(n,m) —
(1U,)¥(n, m) is surjective '

(¢) If r > 4, m,n, then the morphismy, ., is in fact bijective

Part (c) means that the ‘stabilized’ PROP of differential covariants is just the
suspension of the weak Lie PROP.
Proof. (a) Follows from Theorem 2.6.
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(b) Covariants oV can be viewed as covariants of the total connectioa:
V + 0. It is known classically that all covariants of an affine connection are
obtained from the covariant derivatives of the curvature (and torsion) by performing
‘tensorial contractions’. For example, the argument sketched in [E] exhibits the
Taylor expansion of the Christoffel symbols in the normal coordinates in such a
form, and this clearly suffices. In our case, the covariant derivatives of the curvature
of V all reduce to theR,,, while a way to perform the contractions produces an
(n,m)-graph.

(c) This follows from the main theorem of invariant theory which implies that
for dim(W) > nq,...,ny, N, the space of all GUV )-equivariant maps

N
&) Hom(S™ W, W) — Hom(W ", W &™)
=1

has as its basis, the maps for various (n,m)-graphsI’ with N vertices of
valenciesy;.

4. The weak lie operad in formal geometry and Gelfand—Fuks cohomology
4.1. THE COCHAINS

In this section we describe another way of unraveling the Jacobi identity for the
Atiyah class which uses ‘formal geometry’ (analysis in the space of infinite jets, see
[B] [GGL] [GKF]) instead of Kahler geometry. This approach has the advantage of
being purely holomorphic. Instead of Dolbeault cochains, we will use the following
lemma to represent necessary cohomology classes.

LEMMA 4.1.1. Let X be a complex manifold angt A — X be a locally trivial
fibration with fibers isomorphic t&” for someN. Then for any coherent she&t
on X we have a natural morphism

T I(A,Q% x ® p*F) — RI(X, F).

If Ais a Stein manifold, then is a quasi-isomorphism

The first statement means that any closed relatfeem on A with values in
p*F gives rise to a class i’ (X, F). The second statement means that iis
Stein, then this correspondence is 1-to-1.

Proof. Follows from the quasiisomorphis@yx — p*QA/X (i.e., from the

acyclicity of the global holomorphic de Rham complexaif).

It was proved by Jouanolou [J] thatkf is a quasi-projective algebraic manifold,
then there always exists ahas above which is an affine variety (therefore Stein).
We will be interested in some natur@f" -fibrations which, though not Stein in
general, still give the holomorphic cohomology classes we need.
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4.2. FORMAL EXPONENTIAL MAPS

Let X be a complex manifold. Consider the spae@)(X) 2% X of ‘nth order

exponential maps’, cf. [B]. By definition, for € X the fiber@é") (X) is the
space ofnth order jets of holomorphic maps 7, X — X such that(0) = z,
dop = Id. Thus®@ (X) = ®(X) is the affine fibration (2.2) defining torsion-free
connections. Thus we have a chain of projections

X+ 0@(X) 0O (X) ... (4.2.1)

Each ("t is an affine bundle ove®(™ whose associated vector bundle is
pHom(S" 1T X, T X). Thus each fiber 0b(™) (X) is isomorphic taC” for some

N and Lemma 4.1.1 is applicable: every closed relative fornd6n(X) gives a
holomorphic cohomology class ox.

EXAMPLE 4.2.2. Since the space(X) = @ (X) is an affine bundle over
Hom(S?T X, TX),itcarries atautological 1-foram, € Qé(x)/X ®p*Hom(S?T X,
TX). This form is relatively closed and represents, via Lemma 4.1.1, the Atiyah
classary.

Let J™)(T'X) — X be the group bundle whose fiber ovee X is the group
of nth jets of biholomorphismg: 7, X — T, X with 4(0) = 0, dpy) = Id. Then
() (X) is a bundle ofJ() (T X)-torsors. Letj™ (T'X) be the bundle of Lie
algebras associated 6™ (T'X ). Note that we have a natural splitting

j"(TX) = P Hom(S'TX,TX), (4.2.3)
=2

induced by the action of GI'X ) onj (™ (T'X).

Let now® := ®()(X) % X be the inverse limit of the diagram (4.2.1), i.e.,
the space oformal exponential mapst is a bundle ofJ(>) (X)-torsors, where
J®)(TX) = lim J™(TX). The Lie algebra bundle of the bundle of proalgebraic
groupsJ () (T X) is just

j)(1rX) =[] Hom(s"T,T), T =TX. (4.2.4)

n>2

Denote byp(™: & — &™) (X) the projection and set

/x = O™ Qo x)x- (4.2.5)

n

As with any bundle of torsors, we have the tautological relative 1-form

w e Qg x ®p'| N (TX). (4.2.6)
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Projectingw to thenth graded component in (4.2.4), we get thatological form
an € Qg x ® p*Hom(S" T, T). (4.2.7)

These forms are formal geometry analogs of the covariant derivatives of the curva-
ture in (2.5) and satisfy very similar identities, as we shall explain later.
For every coherent she&f on X set

AL (F) =T(®, 92 x @ p"F).

This is a complex naturally mapping iniI'( X, F). Accordingly, for any coherent
sheaf of operad® on X (i.e., an operad in the category of coherent sheaves) we
have a dg-operad? (7). Similarly for PROPs.

Let us consider, in particular, the sheaf of operégs= {Hom(7T*",T)} and
the sheaf of PROPs END= {Hom(7T®", 7®™)}. The tautological forn,,
n > 2, gives an element o2 Er(n) C A3 ENDy(n, 1), which is antisymmetric
and has degree 1. Consider the desuspended dg-PR&P,_END7. The shifted
tautological forms= ~1«,, becomes antisymmetric of degree-2.. Further, letl
be an(n,m)-graph (3.6) with/ vertices. We denote byr € A _ENDr(n,m)
the composition of the tautological forms,, for all verticesv of I, by using
the contractions along the edgeslbfThen, because of the antisymmetry of the
¥ ~1q,,, we have that

> tar € Hom(det(I")*, 2 1A% ENDy(n, m)).
Now, a formal geometry version of Theorem 2.6 is as follows.

THEOREM 4.3.The element& 1, € 1A% &r(n) form a weak Lie family.
Moreover, the maps

> tap: defl)* — £ 1A% ENDy(n,m), T € G(n,m),

define a morphism of PRORELIE — X ~1A4% ENDr. In particular, the complex
of sheavep*Q;ﬁ( ®T onX (quasi-isomorphic td'[—1]) has a natural structure
of a weak Lie algebra

To formulate the companion theorem for a vector buridleve can proceed in
a similar way, by working on the produét x x C, whereC' is the fiber bundle
over X whose fiber at: consists of infinite jets of fiberwise linear isomorphisms
E, x X — Eidentical overz. We leave this to the reader.

We know three proofs of Theorem 4.3. The first two will be sketched, and the
third one given in more detail.
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First proof (sketch)4.3.1). We can mimic all features ofdkler geometry but
on the space. First of all, the bundleb — X (like other infinite jet bundles,
see [GKF] [GGL]), carries a natural (non-linear) formally integrable connection
D. Its covariantly constant sections over a simply connetted X correspond
to affine structures oV, i.e., embeddings d¥/ into an affine space of the same
dimension, modulo affine equivalence. This decomposes the tangent/3idaae

every point into a direct sutﬁ;’% + Tg’lé, WhereTg’1 is the tangent space to the

fiber of p passing throughp andT(;’0 is the horizontal subspace of the connection.
Accordingly, we have decompositions

pe @ os oo en,
a+b=m

and the de Rham differential is decomposed as

d= d/ + d", d// — er/Xa (d/)z — (d//)z — [d,,d”] =0
We can speak therefore about (0, 1) and (1, 0)-connections in fiber bundées on
Every bundle of the formp* E, lifted from X, has a canonical integrable (0, 1)-
connection. The bundlgT has, in addition, a natural integrable (1, 0)-connection
V satisfying the identities

[dﬂv V] = ay, Va, = apy1,
which imply our theorem in the same way as in thihier case.

Second proof (sketcli.3.2). In line with 2.8, we consider the odd derivation
D of the algebra

Q,x ®p"S(1*)

obtained by extendings, x + ¥,>2c;,. Then we have only to prove thar = 0.
To do this, we consider, as in 2.8, the fiber bundles

x5 x, o x o X,

whereX}oo) is the formal neighborhood of the zero sectiofl'of andX&oi)X isthe
formal neighborhood of the diagonali x X. The algebraﬁ‘(T*) is justOX(oo>.

The pullback to® of the nonlinear bundle possesses an integrable connection
along the fibers, which gives rise to an algebra differeriai Q&)/X ®p O ()

X xX
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satisfyingA2 = 0. On the other hand, o we have the tautological exponential
map which is a nonlinear isomorphism of fiber bundles

Exp: p*X%w) — p*X&oi)X,
and one can verify that Exp is takirdg into A, thereby proving the theorem.

4.4. TAUTOLOGICAL FORMS AND GELFAND—FUKS COHOMOLOGY

Another way of proof of Theorem 4.3 is to reduce it to known results about the
cohomology of the Lie algebra of formal vector fields, by making use of the general
relationship between this cohomology and tautological forms. Let us first recall
this relationship [B] [GKF].

Letr > 1 be fixed. Denote bg (™ the group ofnth jets of biholomorphisms
$: C" — C" with ¢(0) = 0, and byJ(™ < G the normal subgroup formed by
¢ with dpg = Id. So we have an exact sequence

1—J™ 5 a5 6L, — 1, (4.4.1)

which, moreover, canonically splits (by considering jets of linear transformations),
makingG(™ a semidirect product.

If X is anr-dimensional complex manifold and € X, let 2 (X) be the
space ofuth jets of biholomorphismg: C" — X with ¢(0) = z. This is aG(")-
torsor. These torsors unite into a princigdl -bundle ™ (X) 2% X called the
bundle ofnth order frames. The quotiedt(™ (X)/GL, is (™ (X), the space of
nth jets of exponential maps from (4.2).

Letg = he@k be a Lie algebra split into a semidirect product of two subalgebras
of whichk is anideal. Lef\/ be arh-module. Because of the identificatigfk = h,
we can regard/ as ag-module, and form the relative cochain complex

C*(g,h, M) = Hom(A*(g/h), M)".
Recall the following standard fact about this complex.

PROPOSITION 4.4.3If g, h, k are the Lie algebras of connected Lie groups
G, H, K sothatG is a semidirect produdt K, then for everyr-torsor P we have
a natural identification

C*(g,h, M) = T(P/H, 0%/ 5y © M)".

Letus apply thist@d = G™, H = GL,, K = J™, Letg™ be the Lie algebra
of G, A representationM/ of GL, gives rise, in a standard way, to the functor
from the category of-dimensional vector spaces and their isomorphisms to the
category of vector spaces called the Schur functor and denotdd by S™ (W).
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In particular, the vector bundig™ (T X) over X is defined. We denote by the
standard--dimensional representation of GGLTake alsoP to be (fibers of) the
principal G(™-bundleF (™) (X) — X. We obtain the following.

PROPOSITION 4.4.4We have a natural identification of complexes of sheaves
onX

(o . . SO X)
Ox @ C* (g™, g, M) = puo (L 1) x © €(SY(TX))) :

Note that the tautological forms from (4.2.7) give global sections of the complex

in (4.4.4). They correspond t/ = Hom(S"(V), V).
By passing to the limit: — oo, we consider

T (n) _ n
Vect = lim g = [I Hom(s™Vv, V), (4.4.5)

n>1

the Lie algebra of formal vector fields @i vanishing at 0. This is a topological
Lie algebra and we will consider its continuous cohomology.

4.5. THE LIE OPERAD IN GELFAND—FUKS COHOMOLOGY. RESULTS OF FUKS
Taking, for everyn, m > 0, the relative cochain complex
C*(Vecl, gl,, Hom(V ", V&™) = 112 (n, m), (4.5.1)

we get a dg-PROPI}. Let H; be the graded PROP formed by the cohomology
of II. By the above, an element &f, (n) gives, for eachr-dimensional complex
manifold X, a class inH*(X, Hom(T®" T®™)). Let

an € CY(Vecl, gl,,Hom(V®", V)), n > 2,
be the tautological cochain which associates to a formal vector field its degree
homogeneous component (lying in HE$ftV, V')). For any(n, m)-graphl’ with
N vertices let

ar € CV (Vecl, gl,, Hom(V&n, yom))

be the cochain obtained by contracting the cup product o fhe), v € Vert(T')
along the edges df, cf. 4.2. Now, Theorem 4.3 can be reformulated as follows.

THEOREM 4.5.2L et the maps
> tap: detD)* — 1Y (n, m)

define a morphism of PRORYLIE — X 11°.
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In this formulation the theorem follows at once from results of D. B. Fuks [Fuk]
who studied stable cohomology Bf (m, n) (whenr is big compared ten, n and
the number of the cohomology) and identified it with the cohomology of a certain
graph complex. Translated into our language, his results immediately imply the
relation with LIE and WLIE. More precisely, we deduce the following fact.

THEOREM 4.5.3Asr — oo, each term of the compldX® (m, n) stabilizes, so
that we have a limit compled®(m, n). Taken for allm, n, these complexes form
a dg-PROP, which is isomorphic 8~ (WLIE).

Proof. The existence of the stabilization and its identification with a graph
complex is completely explicit in [Fuk]. Namely, the spd&g (n, m) consists of
GL,-invariant antisymmetric continuous maps

N

A [ [] Hom(S'V, V) | = Hom(VE™, V&™), (4.5.4)
i>2

Thus

ILY (n,m)

N; GL,
@ Hom (@ /\ Hom(5"V, V'), Hom(V ", v®m)> . (4.5.5)

(Ni€Zy)iz2 1>2
STN=N
LetI" be an(n,m)-graph (3.1) withV vertices. Then we have a natural contraction
map
pr: ® Hom(g\ln(v)l (V),V) — Hom(V&", yem), (4.5.6)
veVert(T")

which is obviously invariant. Moreover, wherts> 0, then by the main theorem of
invariant theory such contraction maps for variduprovide a basis in the space
of all invariant maps. This implies the stabilization of iifn, m). Let N;(I") be
the number ob € Vert(T") with [In(v)| = 4, and let

N;(T)
tr): @ /\ Hom(S'V,V) — Hom(V ", vem) (4.5.7)
i>2

be the antisymmetrization f-. Then

t: de(D)* s (I)
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is the desired isomorphism of complexes WiiEm) — I1°(n,m) of degree
m — n. To finish the proof, it remains to identify the composition structur&tn
with that in S ~1(WLIE), which is straightforward.

4.6. (ENERALIZATION TO OTHER OPERADS

Theorem 4.5.3 can be straightforwardly generalized to any quadratic Koszul operad
Q in the sense of [GiK]. Namely, let VEXQ) be the Lie algebra of derivations of
Fo(r), the freeQ-algebra on- generators.

THEOREM 4.6.1Set
A? o(m,n) = C*(Vecf(Q), gl,, Hom(V¥", v7¥m),

Then, as~ — oo, each term ofd} 5(m,n) stabilizes, and the stable complexes
A% (m,n) form a dg-PROPAY,. This PROP is isomorphic tblp(g), the PROP
associatedZ.lO) to the dg-operadD(Q), the cobar-construction a@. In particu-

lar, the graded PROP formed by the cohomologylgfis isomorphic tox o
whereQ' is the Koszul dual quadratic operad

This statement provides a non-symplectic analog of the result of M. Kontsevich
[K1] describing the stable cohomology of the algebra of hamiltonial vector fields.
Theorem 4.5.3 corresponds to the case wier Com, the operad describing
commutative algebras.

4.7. EXAMPLE: NONCOMMUTATIVIZATION

As we could see before, all the properties of the Atiyah class, including the detailed
unraveling of the Jacobi identity, can be deduced from the careful study of the
non-linear fiber bundle orX whose fiber over: is the formal neighborhood

of z, i.e., the spectrum of the completed local algeb}@@. This algebra is
free, i.e., isomorphic t&€[[¢1,. .., t4]], d = dim(X), but there is no canonical
identification, the Atiyah class being an obstruction to choosing such identifications
for all z in a holomorphic way. Taken for all € X, the algebra@X arrange
themselves into a sheaf of complete commuta@walgebra@x(m) (functions

on the formal neighborhood of the diagonal), which is Iocall)mlrsomorphlc to

Ox([ts, - -, ta]]-

For any commutative rn& let R{(t1, ..., tq)) be the algebra of non-commuta-
tive formal power seriesity, . .. , t4, with coefficients inR, i.e., the completion of
the free associative algebra on the Now let us make the following definition.

DEFINITION 4.7.1. LetX be ad-dimensional complex manifold. Anoncommuta-
tive structure onX is a sheaf of complete associati{dg; -algebragO on X which
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locally on X is isomorphic toOx ({t1,...,tq)), together with an isomorphism
0/[0,0] = O, .

In other words, such a structure gives, for everg X a ‘non-commutative
formal neighborhood’ whose ring of functions@,, the fiber ofO atz. These
rings are noncanonically isomorphic@(t1, . .., tq)).

EXAMPLE 4.7.2. A natural class of examples of manifolds and, more generally,
stacks with nhoncommutative structure is provided by the moduli spaces of vector
bundles (as opposed to more general prinaipdiundles). Namely, iZ is a vector
bundle on an algebraic variety. Suppose thaf%(X,Hom(E, E)) = C. Let

M be Kuranishi deformation space éf, so that we have a distinguished point
[E] € M. Then, by the general principles of deformation theory [GM], the formal
neighborhood of£] in M is the spectrum dfi®,, (RI'(Z, End(E))), the zeroth Lie
algebra hypercohomology of the dg-Lie algel®&(Z, End E)). Here we regard
End E) as a sheaf of Lie algebras with respect to the bragké{ = ab — ba,
thereby ignoring a richer structure of an associative algebra. If we do notignore this
structure, we get an associative dg-algebra structufd@®, End E)). Therefore,

the associative algebra hypercohomology

HRss(RT(Z, End E))),

(to be precise, here we mean the Hochshild cohomology@idbefficients and the

algebra should be modified so as to get rid of the unity), will give us an associative

algebra whose quotient by the commutant maps naturally into the Lie algebra

cohomology, i.e., into the completed local ring.® at [E], and under suitable

conditions (when the bundle is simple and unobstructed) this is an isomorphism.
A more down-to earth explanation of this phenomenon can be obtained as

follows. The moduli space af/-bundles for anyG gives rise to a representable

functor (stack) which is a contravariant functor on the category of affine schemes, or,

whatis the same, a covariant functor on the category of commutative algebras. Inthe

case whery = GL,, i.e., we are dealing with rankvector bundles, this functor

can be naturally extended to all associative algebras, i.e., we can meaningfully

speak about families of rankvector bundles parametrized by ‘Siyd¢’ where A

is any associative algebra. Such a family is just given, deah coveringU; },

by transition functiong;; which are sections of GIlOx ® A) overU; N U;. For

example, ifA = Mat, (C), then a ‘family’ of rankr bundles parametrized by is

just a rankrn bundle onX.

Remark As M. Kontsevich communicated to the author upon reading the man-
uscript, he also has had the idea equivalent to Definition 4.7.1 and was aware of
Example 4.7.2.

The considerations of this and the earlier sections revolve, as it is clear from
contemplating Theorem 4.5.3, around the Koszul dual pair of opé€aats, Lie):
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manifolds are described by commutative algebras of functions, while the curvature
data lead to Lie algebras. So they can be generalized to manifolds with a noncom-
mutative structure, if we consider instead the dual pdiss, Ass), whereAss is

the (self-dual) operad governing associative algebras, see [GiK]. Let us summarize
briefly this generalization.

THEOREM 4.7.3Let X be a complex manifold with a noncommutative structure,
T = TX isits usual tangent bundle. Then:

(a) The second-order obstruction to global trivialization of the nhoncommuta-
tive formal neighborhoods is a certain class € H(X,T ® T) (the non-
commutative Atiyah clags whose symmetrization is the usual Atiyah
classarx.

(b) The desuspensiorE—tay, regarded as an element of the operad
E—lH'(X, Er), is an associative element, i.e., it defines a morphism of
operadsAss — Y~YH*(X,&r). In particular, for any sheafd of com-
mutative O x-algebras the shifted cohomologff*~1(X,T ® A) has a
natural structure of an associative algebra, givenday.

(c) The graded Lie algebra structure dif*~1(X,T ® A) defined by the usual
Atiyah class, is obtained from the associative structurgbiby the standard
formula[a,b] = ab £ ba. In particular, if A = Ox, then the structure of an
associative algebra off*~1(X,T) is in fact commutative.

5. The symplectic Atiyah class
5.1. SYMMETRY OF THE ATIYAH CLASS

Let now X be a complex manifold equipped with a holomorphic symplectic struc-
ture. Letw € I'(X, Q?) be the symplectic form. We will identify the tangent bundle
T = T X with its dualT™* by means ofv. After this identification, we can view the
Atiyah classayy as an element df* (X, S?(T) @ T').

PROPOSITION 5.1.1The elementyyx is totally symmetric, i.e., it lies in the
summand? (X, S3(T)).

Proof. Let Symg X') be the sheaf of connections X preserving the sym-
plectic formw. Since for a symplectic vector spaée the Lie algebra sfi’)
of infinitesimal symplectic transformations is identified wisit(V'), the sheaf
SympX) is, by 1.5, a torsor oveR! ® sp(T) ~ Q' ® S?(T) ~ T ® SX(T).
This shows thatv;x is symmetric with respect to the permutation of the second
and third argument. Since it is already symmetric in the first two arguments, the
assertion follows.

Remarks5.1.2. One can right away exhibit &®(T')-torsor from whichazx
is obtained by change of scalars. This is the torsor Sy(dp) of torsion-free

https://doi.org/10.1023/A:1000664527238 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000664527238

104 M. KAPRANOV

symplectic connections. As in (2.2), it can be materialized as the sheaf of sections
of the fiber bundle&’ (X)) — X whose fibe,(X) for z € X is the space of second

jets of holomorphic symplectomorphisgs7, X — X such¢(0) = xz,d,¢ = Id.
Clearly, ¥, (X) is an affine space oves3(7,X), and sections ol are the same

as torsion-free symplectic connections.

5.2. THE IHX RELATION FOR THEATIYAH CLASS

Let V' be a finite-dimensional symplectic vector space whose symplectic form
is denoted byw. ThenV* is also a symplectic vector space, with respect to the
inverse formw~1. Let I be a finite 3-valent graph with possibly several legs
(non-compact edges bound by a vertex from one side only, cf. [GeK]). Denote by
Vert(T"), EA(T"), Leg(T") the sets of vertices, (compact) edges and legE.dfet
also FlagI') be the set of all flags consisting of a vertex and an incident half-edge
(including a leg) of". For a vertex let Flagv) be the 3-element set of flags having
v as a vertex. We will distinguish between arbitrary automorphisnisasfd strict
automorphisms (i.e., those fixing each leg).

For a finite-dimensional vector spatg€ we will denote by deii’) the top
exterior power of¥. If I is a finite set, then deE’) will be abbreviated to déf).
Note that detl)®? is canonically (i.e., Autl)-equivariantly) isomorphic t&€. For
an edge: of I we denote by OR) the orientation line o¢, i.e., ORe) = det{0e)
wherede C Flag(T') is the set formed by the two flags with edge

With these notations, note that we have a naturél’Sgequivariant projection

pr: (S3(V))@VertD) — (veredl) @ (R OR(e), (5.2.1)
ecEd(T)

obtained by applying the form: V @ V' — Cto any edge of . The factors ORe)
appear because of the antisymmetryof

For example, there is a unique, up to scalaf;iSpequivariant antisymmetric
map

prux: SS(V)© S3(V) = S4V),  prax(a@b) ={a,b},  (5.2.2)
the Poisson bracket efandb considered as cubic polynomial functionsioh. By
working out the definition of the Poisson bracket, we find that the composition of
prx With the embedding®(V') — V4 can be represented as the sum of three
projections

prax =P +pH+px : S3(V) @ S3(V) — V4 (5.2.3)

wherel, H, X are the three possible (up to strictisomorphism) trivalent graphs with
two vertices and the set of legs identified with 2, 3, 4}.
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Now the Bianchiidentity (1.2.2) gives, after the symmetrization, that the Atiyah
classary € HY(X, S3(T)) satisfies the so-called IHX relation

pIHX(aTX U Osz) = {Osz,aTx} =0 in HZ(X, 54(T)) (5.2.4)

Of course, this can be understood from the point of view of the Lie operad, as in
(3.5-6), the graphis H, X corresponding to the three terms in the Jacobi identity.

5.3. RozANSKY-WITTEN CLASSES

Let nowI be a trivalent graph without legs havihgertices. Then the projectigir
from (5.2.1) takes values i@. By applying it to(ayx )t € HY(X, (S3(T))®Vvert)
we get elements

cr(X) € HY(X,0) @ detVert(I')) ® ® OR(e (5.3.1)

The factor dgfVert(I") appears because of the anticommutativity of the multipli-
cation in the cohomology, while the origin of the QR was explained in 5.2.

The following lemma shows that the sign factor in (5.3.1) is the same as the one
considered by Rozansky—Witten [RW] and Kontsevich [K1].

LEMMA 5.3.2. For a trivalent graphl” without edge-loops there is a natur@le.,
Aut(I")-equivariany identification ofl-dimensional vector spaces

detVert(l')) ® (X OR(e) ~ de{Ed(T")) ® def H1(T,C))
ecEd(T")
~ ® detFlag(v)).
veVert(T)

Proof. We start with the first isomorphism. Note that
detEdI)) ® (X) OR(e ~det( P OR(e )
e€Ed(T) e€Ed(T)

while the consideration of the chain complexiof

P OR(e) — c¥etl),
ecEd(T")

gives

det P OR(e)) ~ detC¥*"")) @ det Hy(T, C)).
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This implies that the tensor product of the left and the right-hand sides of the first
proposed isomorphism in (3.3.2), is canonically trivial. Becaus@fét ~ C for

any finite set/, we get the first isomorphism.
To establish the second isomorphism, consider the projections

vert(T') «2- FlagT) -2 EA(T).

The consideration of fibers af gives

detFlagI)) det(Ed(F) oP OR(e))

— det(Ed(I")) ® det(Vert(I')) ® de{ H4(T, C)),

and the consideration of fibers ¢fgives that

deFlagl')) = detVert(I')) ® () detFlag(v)),

veVert(T')

whence the statement.

For a 3-element sdta choice of direction of the real line d&) is the same
as a cyclic order od. Thus the classes (X) can be seen as being elements of
H'(X,0) but defined on graphs with cyclic orders on each Flagnd changing
the sign under the changing of the cyclic order. Further, it follows from (5.2.3) that
thecr thus understood satisfy the IHX relation in the sense of [RW]. So we get the
first part of the following statement.

THEOREM 5.4.For any holomorphic symplectic manifol the classes(X)
defined before, give rise to invariants ®manifolds with values if' (X, O). If

X is compact and hyperdhler, then the:r coincide with the coefficients defined
by Rozansky and Witten

The second part just follows from the fact that the curvature represents the
Atiyah class (Proposition 1.3.1).

It is convenient to consider as in [RW], numerical invariants constructed from
thecp (X'). Namely, let us put

er(X) = w'?er(X) € HY(X, QY. (5.4.1)
Herew € HO(X,Q?) is the symplectic form antiis the (necessarily even) number

of vertices of the 3-valent gragh Further, ifX is compact and. is a line bundle
on X, we define the number

be(X, L) = / & (X) - e(L)IMO~1 ¢ (5.4.2)
X
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PROPOSITION 5.4.3The classesr(X) and the numbergr (X, L) remain
unchanged if the symplectic formon X is replaced by\w, A € C*.

Proof. The classyv;y, € HY(X, S?T* @ T') does not depend anat all. When
we write it in the totally symmetric form, we in fact apply the isomorphism

bo: SPT* T — ST R T,

which is homogeneous in of degreg(—2). Since every pairing corresponding to
anedge of'is homogeneous in of degreet-1, we find thatr (X) is homogeneous
of degree

—|Vert(T')| + |Ed(T)| = —(1/2)|Very(T)| = —1/2,

where we used the fact thatis 3-valent. Thereforer(X) is homogeneous of
degree 0.

5.5. CALCULATION OF THE cr VIA NON-SYMPLECTIC CONNECTIONS

Note that the Atiyah class;x used to construct thg, is defined in terms of the
tangentbundl& X alone, without any symplectic structure. Provided such structure
w is given,arx just happens to bé¢otally symmetric in all three arguments (if
we identify T ~ T* by means ofv). This means that a Dolbeault representative
of ary in Q%! ® S3(TX) can be found by forcibly symmetrizing the (1, 1)-part
of the curvature of any (1, 0)-connectionTnX. In particular, we can take any
Kahler (not necessarily hyperaKler) metric, write its curvature as a section of
Q%1 (1200 @T), identify 7 with Q10 via the symplectic form and then just
symmetrize with respect to the last 3 arguments. Denoting the corresponding

(0, 1)-form with values inS3(T"), we find:

THEOREM 5.5.1The class: is represented by th@, [)-form pp (RVe(D)).

5.6. REMINDER ON MODULAR OPERADS AND GRAPH COMPLEXES

We are now going to upgrade the operadic analysis of the properties of the Atiyah
class and the curvature for general complex manifolds to the symplectic case. For
this, we need the concept of a modular operad [GeK2]. Let us briefly recall this
concept.

A stable((g, n))-graph is a connected graptwith the following structures and
properties:

(5.6.1) The set of legs df is identified with{1,...,n}.

(5.6.2) A functiong: Vert(I') — Z is given such that@(v) — 1) + |v| > 0
for each vertex.

(5.6.3.) din{HL(T,C)) + S,g9(v) = g.
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_ LetI((g,n)) be the set of isomorphism classes of stalien))-graphs, and
I((g,n)) be the similar set in which we allow disconnected graphs as well.

In [GeK2], several versions of modular operads were introduced, differing by
the sign conventions (‘cocycles’) entering the definition. In the present paper we
are going to use only one of them. Namely, for a stébjen))-graphI’ we set

RI)= (&) OR(e). (5.6.4)

ecEd(T")

The space®(I") define a cocyclét on the category of graphs in the sense of
[GeK2], Section 4. By a modular operad we will in the sequel always mean a
R-modular operad. Explicitly, this is an ordinary oper&dwith the following
additional structures:

(5.6.5) Symmetry between the inputs and the output, i%,,a-action onP(n).
To emphasize this symmetry, we wrigd (n + 1)) for P(n).

(5.6.6) Adecompositio®((n)) = @zy_24,>0P((g,n)) into Sy,-invariant sub-
spaces. Th&,,-moduleP((g,n)) defines, in a standard way, a functor
on the category ofi-element sets and bijections, whose value on & set
will be denote ofP((g, J)).

(5.6.7) Graphical composition maps

RO & Pllg(v),Leg(v))) — P((g,n)).

veVert(T')

These structures are required to satisfy the compatibility properties given in
[GeK2], n. 4.2.

EXAMPLES5.7. (a) IfV is a vector space with a skew-symmetric inner prodgict
then we have thendomorphism modular oper@dV] with £[V]((g,n)) = V&
for all g, the S,,-action being the standard one and the compositions defined by
contracting with help ofB. Accordingly, for a holomorphic symplectic manifold
X we have a graded modular opetdd (X, E[T]) = {H*(X,T%®™)}.

(b) The suspended Lie operadie is amodular operad withLie((g,n)) =0
for g > 0 andXLie(n — 1) (i.e., the spac&ie(n — 1) placed in degree — 2)
for ¢ = 0, and with theS,,-action described in [K1], [GeK1-2]. This action arises
naturally from the consideration of Lie algebras with an invariant inner product. In
the same way W _.Lie is a modular dg-operad.

(c) The graph complexes of Kontsevich [K1], once generalized to allow graphs
with legs, form a modular operad. More preciselydétg, n)) C I((g,n)) be the
set ofI" for which all the numberg(v) are 0. Then the condition (5.6.2) just means
|v| > 3 forall v, and (5.6.3) means that the number of loopE i8 g. Set

Fllg,m) = D 1), (5.7.2)

reg((g.n))
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5(T) = de(Ed())* ® de( HX(T, C))*, degd(L)) = |Ver(T)|.  (5.7.2)

Then theF((g,n)) form a modular dg-operad with compositions given by
grafting of graphs and the differential dual to the one contracting edges. In fact,
F is a certain twist of"Com, the Feynman transform of the commutative operad
defined in [GeK2]. We chose the present version to avoid dealing in this paper with
twists and suspensions of modular operads and the resulting sign issues.

Note that the tree part of is

F((0,n)) = SWLie((n)) = SWLie(n — 1). (5.7.3)

Further,7((1,n)) (the part formed by 1-loop graphs) can be expressed in terms
of the weak Lie PROP, namely it is the subcompleX3WLIE (n, 1) formed by
connected graphs. The legless pait(g,0)) is the graph complex defined by
Kontsevich in [K1].

(d) LetG((g,n)) be the subset af((g,n)), see 5.6 formed by graphs with all
g(v) = 0. LetF((g,n)) be the space defined similarly to (5.7.1) but by summing
overG((g,n)). They form a modular dg-opera.

5.8. COPERADIC INTERPRETATION OF THEJACOBI IDENTITY: THE LEVEL OF
COHOMOLOGY

Let (X, w) be a holomorphic symplectic manifold. Then we have a graded modular
operadd*® (X, £[T]), see the example 5.7(a). The Atiyah clags; can be regarded
as an element of a modular operad

arx € H*(X,€[T])((0,3)).
THEOREM 5.8.1The correspondence
Y([z1, x2]) € BLie(2) = £Lie((0,3)) — arx,

(with ¥ meaning the suspensipaefines a morphism of modular operaigie —
H*(X,E[T]).

Proof. The only new property here, as compared to Theorem 3.5.1, is that
we have a morphism of modular operads, i.e., that it is invariant with respect to
the action of larger symmetric groups. But this follows from the total symmetry
of arx.

5.9. OPERADIC INTERPRETATION DOLBEAULT FORMS

We now look at the modular dg-oper@d*(£[7]) = {Q%*(T®")}. Assume that

X is equipped with a hyper-&hler metrich . Then the canonical (0,1)-connection

V of h, see 2.5, preserves the symplectic structure. The covariant derivatives of the
curvature, which we denoted,, n > 2, are also totally symmetric

R, € QY(sntir). (5.9.1)
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For a graph’ € G((g,n)) and a symplectic vector spab€ let

P R Stw - wen (5.9.2)
veVert(T)

be the natural contraction map. Let
Rp = pr ( (% Rv_l) e QOn(T®"), N = |Very(I)|. (5.9.3)
vEVert(T)
ThenRr can be regarded as a morphism
Rr: §(0) — QO (T%m). (5.9.4)
THEOREM 5.9.5The morphism&; extend to a morphism of modular dg-operads
F — QO (&[T)).
In particular, for connected graphs with no legs the tens@yslefine a morphism
from F((g,0)) (Kontsevich’s graph complex) into the Dolbeault com§hx.

Proof. This follows from Theorem 2.6, once we take into account the additional
symmetries of thek;.

5.10. QPERADIC INTERPRETATION FORMAL GEOMETRY

Similarly to 4.2, letp: ¢ — X be the fiber bundle whose fiber atconsists
of all formal symplecticexponential mapgd,X — X. This bundle carries the
tautological forms

an € Oy x ®p* ST, (5.10.1)
from which we construct the forms

ar € QY x ®p T*", T €G((g,n)), |Vert(l')| = N, (5.10.2)
similarly to (5.9.3).
THEOREM 5.10.3The formsx give rise to a morphism of modular dg-operads

F = HYX, (p.QY ) x) ® E[T)),

In particular, for connected graphs with no legs these form define a map(gf 0))
into p, 2y, /-
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The proof can be obtained by embeddingl — ® where® is the space of
all formal exponential maps from 4.2 and noticing that = e*«a,,, wherea,, is
the tautological form from (4.2.7). Our statement, which amounts to calculating
dy x 0, follows from Theorem 4.3.

5.11. (PERADIC INTERPRETATION LIE ALGEBRA COHOMOLOGY

The construction of 5.10 comes close to the original approach of [K2]: even though
we do not use thé-foliation on X and its universal characteristic classes, the
formal geometry framework can be regarded as a holomorphic replacement of the
0-theory. In particular, the cohomology of the Lie algebra of formal Hamiltonian
vector fields has direct interpretation in both frameworks. The role of Fuks’ theorem
(4.5.3) from the non-symplectic case is played here by the result of Kontsevich
[K1]. Let us formulate it in a more general form, allowing graphs with legs so that
the operadic formalism is applicable.

Letr be an even integer arid = C" be the standard symplectic vector space
of dimensionr. Let

Hanf = [ 5"V (5.11.1)

n>2

be the Lie algebra of formal Hamiltonian vector fieldsW6rwith trivial constant
term. Its degree 2 part8°V = sp,, the Lie algebra of linear symplectomorphisms.
As in 4.4, any relative cochain gHan?f, sp,) with coefficients in some tensor
power of V' gives rise to a natural relative form ob/X with values in the
corresponding tensor power gf7" X . In particular, the tautological cochain

an € CY(Hant, sp,, S"*1V), (5.11.2)

associating to a vector field its degnee- 1 part, corresponds to the for@y,. For
any graptll’ € G((g,n)) define

ar € CN(Han{r)a sp,, Sn+lv)7 (5113)
as in 5.8.1. Furthermore, the complexes
P! ((g,n)) = C*(Hanf,sp,,S"V) (5.11.4)

define a modular dg-operad®. The symplectic analog of Theorem 4.5.2 is as
follows.

THEOREM 5.11.5. (aYhe maps

ay: 6(T) = PP ((g:n), T €G((g,n))
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define a morphism of modular operatsF — Pe.
(b) If » > g, n,1, then the map of vector spaces

7: F((9,m)) = Pi((g,n)

is an isomorphism

This is proved in the same way as the result in [K1] (Theorem 1.1, which
concerns graphs without legs, i.e., cohomology with trivial coefficients) or [Fuk].

Acknowledgements

I would like to thank V. Ginzburg for showing me Kontsevich’s letter and V. Ginzburg
and L. Rozansky for useful discussions and suggestions which lead the paper to
evolve to its present form. Among other things, V. Ginzburg made several sugges-
tions about organization of the paper, in particular that | reformulate Theorem 2.6
in the form (2.8.1), while L. Rozansky communicated to me a formula containing
the germ of Theorem 2.6. | am also grateful to M. Kontsevich who alerted me to
an error in the earlier version of the text and pointed out the reference [BCOV] and
to S. T. Yau who pointed out Calabi’s paper [C]. This work was partially supported
by an NSF grant and an A. P. Sloan fellowship.

References

[Ad] Adams, J. F.Infinite Loop Space$rinceton Univ. Press, 1977.

[AL] Ang éniol, B. and Lejeune-Jalabert, M.: Leetheme de Riemann-Roch singulier pour les
‘D-modules Asterisquel30 (1985), 130-160.

[Af] Atiyah, M. F.: Complex analytic connections in fiber bundl§sans. AMS 85 (1957),
181-207 (Shorter version reprinted in his Collected Papers, Vol. 1, p. 95-102, Clarendon
Press, Oxford, 1988).

[BCOV] Bershadsky, M., Cecaotti, S., Ooguri, H., and Vafa, C.: Kodaira-Spencer theory of gravity
and exact results for quantum string amplitudesmm. Math. Phy<.65 (1994), 311-428.

[B] Bott, R.: Some aspects of invariant theory in differential geometrfifierential Operators
on Manifolds(CIME), p. 49-145, Edizione Cremonese, 1975 (Reprinted in his Collected
Papers, Vol. 3, p. 357-453, Birkhauser, Boston, 1996).

[C] Calabi, E.: Isometric embedding ofdkler manifoldsAnn. Math.58 (1953), 1-23.

[E] Epstein, D. B.A.: Natural tensors on Riemannian manifol@isDifferential Geom.10
(1975), 631-645.

[Fuk] Fuks, D. B.: Stable cohomologies of a Lie algebra of formal vector fields with tensor
coefficientsFunct. Anal. Appl17 (1983), 295-301.

[GGL] Gabrielov, A. M., Gelfand, I. M. and Losik, M. V.: Combinatorial computation of charac-
teristic classes-unct. Anal. Appl9 (1975), 103-115. (Reprinted in: Collected Papers of
I. M. Gelfand, Vol. 3, p. 407-419, Springer-Verlag, 1989).

[GKF] Gelfand, I. M., Kazhdan, D. A. and Fuks, D. B.: The actions of infinite-dimensional Lie
algebras,Funct. Anal. Appl.6 (1972), 9-13. (Reprinted in: Collected papers of I. M.
Gelfand, Vol. 3, p. 349-353, Springer-Verlag, 1989).

[GeK1] Getzler, E. and Kapranov, M.: Cyclic operads and cyclic homologg&umetry, Topology
and Physics for R. BofS.-T. Yau, Ed.) p. 167-201, International Press, Boston, 1995.

[GeK2] Getzler, E. and Kapranov, M.: Modular opera@smpositio Math110 (1998), 65-126.

https://doi.org/10.1023/A:1000664527238 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000664527238

ROZANSKY-WITTEN INVARIANTS VIA ATIYAH CLASSES 113

[Gill
[GiK]
[GM]
[J]
[K1]
[K2]
[KM]

[M]
[Rw]

[S]
W]

Gilkey, P. B.: Curvature and eigenvalues of the Dolbeault complex fanl&r manifolds,
Adv. in Math.11 (1973), 311-325.

Ginzburg, V. and Kapranov, M.: Koszul duality for opera@sjke Math. Journa¥6 (1994),
203-272.

Goldman, W. M. and Millson, J. J.: The deformation theory of representations of funda-
mental groups of compactédtler manifoldsPubl. IHES 67 (1988), 43-96.

Jouanolou, J.-L.: Une suite exacte de Mayer-Vietoris dank {tneorie algebrique, in:
Lecture Notes in Math. 341, p. 293-316, Springer-Verlag, 1973.

Kontsevich, M.: Formal noncommutative symplectic geometryGeifand Mathematical
Seminars 1990-9%. Corwin, |. Gelfand, J. Lepowski (eds.)) p. 173-187, Birkhauser,
Boston, 1993.

Kontsevich, M.: Letter to V. Ginzburg, Jan. 8, 1997.

Kriz, I. and May, J. P.: Operads, Algebras, Modules and Motivasterisque233, Soc.
Math. France, 1995.

Markl, M.: Models for operadsComm. in Algebra24 (1996), 1471-1500.

Rozansky, L. and Witten, E.: Hyper&kler geometry and invariants of 3-manifol8glecta
Math. New Series 3 (1997), 401-458.

Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy
algebras, in: Lecture Notes in Math., 1510, p. 120-137, Springer-Verlag, 1992.

Wells, R. O.:Differential Calculus on Complex ManifoldSpringer-Verlag, 1982.

https://doi.org/10.1023/A:1000664527238 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000664527238

