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Abstract. Recently, L. Rozansky and E. Witten associated to any hyper-Kähler manifoldX a system of
‘weights’ (numbers, one for each trivalent graph) and used them to construct invariants of topological
3-manifolds. We give a simple cohomological definition of these weights in terms of the Atiyah
class ofX (the obstruction to the existence of a holomorphic connection). We show that the analogy
between the tensor of curvature of a hyper-Kähler metric and the tensor of structure constants of a Lie
algebra observed by Rozansky and Witten, holds in fact for any complex manifold, if we work at the
level of cohomology and for any K̈ahler manifold, if we work at the level of Dolbeault cochains. As
an outcome of our considerations, we give a formula for Rozansky–Witten classes using any Kähler
metric on a holomorphic symplectic manifold.
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Recently, L. Rozansky and E. Witten [RW] associated to any hyper-Kähler manifold
X an invariant of topological 3-manifolds. In fact, their construction gives a system
of weightsc�(X) associated to 3-valent graphs� and the corresponding invariant of
a 3-manifoldY is obtained as the sum�c�(X)I�(Y ) whereI�(Y ) is the standard
integral of the product of linking forms.

So the new ingredient is the system of invariantsc�(X) of hyper-K̈ahler man-
ifoldsX, one for each trivalent graph�. They are obtained from the Riemannian
curvature of the hyper-K̈ahler metric.

In this paper we give a reformulation of thec�(X) in simple cohomological
terms which involve only the underlying holomorphic symplectic manifold. The
idea is that we can replace the curvature by the Atiyah class [At] which is the
cohomological obstruction to the existence of a global holomorphic connection.
The role of what in [RW] is called ‘Bianchi identities in hyper-Kähler geometry’
is played here by an identity for the square of the Atyiah class expressing the
existence of the fiber bundle of second order jets.

The analogy between the curvature and the structure constants of a Lie algebra
observed in [RW] in fact holds even without any symplectic structure, and we study
the nonsymplectic case in considerable detail so as to make the specialization to
the symplectic situation easier. We show, first of all, that the Atiyah class of
the tangent bundle of any complex manifoldX satisfies a version of the Jacobi
identity when considered as an element of an appropriate operad. In particular,
we find (Theorem 2.3) that for any coherent sheafA of OX -algebras the shifted
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72 M. KAPRANOV

cohomology spaceH��1(X;TX 
 A) has a natural structure of a graded Lie
algebra, given by composing the cup-product with the Atiyah class. IfE is any
holomorphic vector bundle overX, thenH��1(X;E 
 A) is a representation of
this Lie algebra.

Then, we unravel the Jacobi identity to make the space of cochains with coef-
ficients in the tangent bundle into a ‘Lie algebra up to higher homotopies’ [S].
An algebra of this type is best described by exhibiting a complex replacing the
Chevalley–Eilenberg complex for an ordinary Lie algebra. In our case this latter
complex is identified with the sheaf of functions on the formal neighborhood of
the diagonal inX �X, the identification being given by the ‘holomorphic expo-
nential map’ (the construction of this map goes back at least to the 1953 paper of
E. Calabi [C] and was recently rediscovered by physicists under the name of
canonical coordinates [BCOV]).

As far as the choice of cochains is concerned, we consider two versions. First,
we use Dolbeault forms (and assume thatX is equipped with a K̈ahler metric).
Second, we put ourselves into the framework of formal geometry [B] [GGL] [GKF]
and use relative forms on the space of formal exponential maps. The underlying
algebraic result here is a 1983 theorem of D. B. Fuks [Fuk] who described the sta-
ble cohomology of the Lie algebra of formal vector fields with tensor coefficients
in terms of what we can today identify as the suspension of the PROP (in the
sense of [Ad]) governing weak Lie algebras. In the same fashion, we identify
(Theorem 3.7.4) a certain Gilkey-type complex of natural tensors on Kähler mani-
folds with the suspended weak Lie PROP.

With the nonsymplectic case studied in detail, the introduction of a holomorphic
symplectic structure amounts to some easy modifications, presented in Section 5. As
another outcome of our considerations we obtain that thec�(X) can be calculated
from the curvature of an arbitrary K̈ahler metric, not necessarily compatible in any
way with the symplectic structure. This may be useful because the hyper-Kähler
metric is rarely known explicitly.

The outline of the paper is as follows. In Section 1 we collect some general
(well known) properties of the Atiyah classes of arbitrary holomorphic vector
bundles. In Section 2 we specialize to the case of the tangent bundle, intepret
the ‘cohomological Bianchi identity’ of Section 1 as the Jacobi identity and then
present an unraveling of this identity on the level of Dolbeault forms on a Kähler
manifold. In Section 3 we recast the properties of the Atiyah class in the language
of operads and PROPs which is well suited to treat identities among operations
such as the Jacobi identity, in an abstract way. At the end of Section 3 we realize the
weak Lie PROP by natural differential covariants on Kähler manifolds. Section 4
is devoted to the formal geometry analog of Kähler considerations of Sections 2–3.
Finally, in Section 5 we specialize to the case of holomorphic symplectic manifolds
and show how the previous constructions are modified and specialized in this case,
in particular, how to get the Rozansky–Witten classesc�(X) from the Atiyah class
of X.
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ROZANSKY–WITTEN INVARIANTS VIA ATIYAH CLASSES 73

The author’s thinking about this question was stimulated by the letter of
M. Kontsevich [K2] where he sketched an interpretation of Rozansky–Witten
invariants by applying the formalism of characteristic classes of (symplectic) foli-
ations to the�@-foliation existing onX considered as aC1-manifold. By trying
to understand his construction, the author arrived at the very elementary descrip-
tion using the Atiyah class. However, the material of Section 4 comes closer to
Kontsevich’s approach in that we use the formalism of tautological forms
familiar in the theory of characteristic classes of foliations and Gelfand–Fuks
cohomology [B].

1. Atiyah classes in general

1.1. THE ATIYAH CLASS OF A VECTOR BUNDLE

Let X be a complex analytic manifold (we can, if we want, work with smooth
algebraic varieties over any field of characteristic 0). LetE be a holomorphic
vector bundle onX, andJ1(E) be the bundle of first jects of sections ofE. It fits
into an exact sequence

0! 
1
X 
E ! J1(E)! E ! 0; (1.1.1)

which therefore gives rise to the extension class

�E 2 Ext1X(E;

1
E) = H1(X;
1
 End(E)) (1.1.2)

known as the Atiyah class ofE. An equivalent way of getting�E is as follows.
Let Conn(E) be the sheaf onX whose sections overU � X are holomorphic
connections inEjU . As well known, the space of such connections is an affine
space over�(U;
1 
 End(E)), so Conn(E) is a sheaf of
1 
 End(E))-torsors.
Sheaves of torsors over any sheafA of Abelian groups are classified by elements of
H1(X;A), and�E is the element classifying Conn(E). So�E is an obstruction to
the existence of a global holomorphic connection. IfE;F are two vector bundles,
then, in obvious notation, we have

�E
F = �E 
 1F + 1E 
 �F ; (1.1.3)

because of the well known formula for the connection in a tensor product.
LetD = DX be the sheaf of rings of differential operators onX, andD6p � D

be the subsheaf of operators of order6 p. It has a natural structure ofOX -bimodule,
the two module structures being different. The tensor productD61 
O E is dual
to J1(E�). Therefore(��E) is represented by the extension (symbol sequence)

0! E ! D61
O E ! T 
E ! 0: (1.1.4)
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74 M. KAPRANOV

1.2. THE BIANCHI IDENTITY

If a; b 2 H1(X;
1 
 End(E)) are any elements, their cup-producta [ b is an
element ofH2(X;
1

1
End(E)
End(E)). We have a natural map of vector
bundles onX


1
 
1
 End(E) 
 End(E)! S2(
1)
 End(E); (1.2.1)

which is the symmetrization with respect to the first two arguments and the com-
mutator in the second two. We denote by[a [ b] 2 H2(X;S2
1 
 End(E)) the
image ofa [ b under the map induced by (1.2.1) in cohomology.

If A;B;C are three sheaves onX andu 2 Exti(B;C), v 2 Extj(A;B), then
by u � v 2 Exti+j(A;C) we will denote their Yoneda product.

If a is as before andc 2 H1(X;Hom(T 
 T; T )) = Ext1(T 
 T; T ), then we
denote bya � c 2 H2(X;S2
1
 End(E)) the Yoneda product of the embedding
S2T 
E ,! T 
 T 
E and the elements

a 2 Ext1(T 
E;E); c
 1 2 Ext1(T 
 T 
E; T 
E):
PROPOSITION 1.2.2.The classes�E; �T satisfy the following property(cohomo-
logical Bianchi identity)

2[�E [ �E] + �E � �T = 0 in H2(X;S2
1
 End(E)):

Proof. Consider the two-step filtration

E � D61
E � D62
E;
with quotientsE; T 
E;S2T 
E respectively. This filtration gives the extension
classes between consecutive quotients

(��E) 2 Ext1(T 
E;E); � 2 Ext1(S2T 
E; T 
E);
whose Yoneda product is 0. Our next task is to identify�. In fact, we have the
following lemma.

LEMMA 1.2.3. Let s: T 
 T ! S2T be the symmetrization. Then�T
E 2
Ext1(T 
 T 
E; T 
E) can be expressed as

�T
E = �� � (s
 1E)� 1T 
 �E :
The lemma implies (1.2.2) once we expand�T
E by (1.1.3).
Proof. This is a particular case of a statement from [AL], n. (4.1.2.3) applicable

to any leftD-moduleM with a good filtration(Mi) by vector bundles. In such a
situation we have the ‘symbol multiplication’ maps

�: T 
 (Mi=Mi�1)!Mi+1=Mi
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ROZANSKY–WITTEN INVARIANTS VIA ATIYAH CLASSES 75

induced by theD-action onM. We also have natural extension classes

fi 2 Ext1(Mi+1=Mi;Mi=Mi�1):

LEMMA 1.2.4. [AL] In the described situation the class(��Mi=Mi�1
) is the

difference between the following two compositions(Yoneda pairings in which the
degree ofExt is indicated by square brackets)

T 
Mi=Mi�1
��!Mi+1=Mi

fi�!Mi=Mi�1[1];

T 
Mi=Mi�1

1T
fi�1�����! T 
Mi�1=Mi�2[1]
��!Mi=Mi�1[1]:

To obtain Lemma 1.2.3, we takeM = D 
E withMi = D6i 
E. Then for
i = 1 the statement identifies(��T
E). The first composition is� � (� 
 1E),
while the second one is�1T 
 �E . This completes the proof.

1.3. ATIYAH CLASS AND CURVATURE

The class�E can be easily calculated both iňCech and Dolbeault models for
cohomology. In thěCech model, we take an open coveringX =

S
Ui and pick

connectionsri in EjUi . Then the differences

�ij = ri �rj 2 �(Ui \ Uj;
1
 End(E))

form aČech cocycle representing�E.
In the Dolbeault model, we pick aC1-connection inE of type (1;0), i.e., a

differential operator

r: E ! 
1;0
E; r(f � s) = @(f) � s+ f � (rs):

Let ~r = r+�@ where�@ is the (0, 1)-connection defining the holomorphic structure.
The curvatureF ~r splits into the sumF ~r = F 2;0

~r
+ F 1;1

~r
according to the number

of antiholomorphic differentials. Then (see [At]).

PROPOSITION 1.3.1.If r is any smooth connection inE of type(1; 0), thenF 1;1
~r

is a Dolbeault representative of�E .

Remark1.3.2. It may be worthwhile to explain why 1.3.1 is indeed acomplete
analog of theČech construction above. Namely, holomorphic connections inE
can be identified with holomorphic sections of a natural holomorphic fiber bundle
C(E), which is an affine bundle over
1 
 End(E). The fiberC(E)x of C(E) at
x 2 X is the space of first jets of fiberwise linear isomorphismsEx � X ! E
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76 M. KAPRANOV

defined near and identical onEx � fxg. Clearly, this is an affine space over
T �xX 
 End(Ex). Now, (1,0)-connectionsr in E are in natural bijection with
arbitaryC1 sections� of C(E). SinceC(E) is a holomorphic affine bundle,
every such� has a well defined antiholomorphic derivative�@� which is a (0,1)-
form with values in the corresponding vector bundle, i.e.,

�@� 2 
0;1

1;0
 End(E) = 
1;1
 End(E):

If � corresponds tor, then�@� = F 1;1
~r

.
Proposition 1.3.1 has a corollary for Hermitian connections. Recall [W] that a

Hermitian metric in a holomorphic vector bundleEgives rise to a unique connection
~r = r+ �@ of the above type which preserves the metric. This connection is called
the canonical connection of the hermitian holomorphic bundle. It is known thatF ~r
is in this case of type (1,1). Proposition 1.3.1 implies at once the following.

PROPOSITION 1.3.2.If E is equipped with a Hermitian metric and~r is its
canonical connection, thenF ~r is a Dolbeault representative of�E .

1.4. ATIYAH CLASS AND CHERN CLASSES

If X is Kähler, thencm(E) 2 H2m(X;C), themth Chern class ofE, can be seen as
lying in Hm(X;
m), and the relation between the Atiyah class and the curvature
implies thatcm(E) is recovered from�E by the standard Chern–Weil construction

cm(E) = tr�(�
mE ); �: (
1)
m 
 End(E
m)! 
m 
 End(�m(E)):

It follows that themth component of the Chern character can be expressed as

chm(E) =
1
m!

Alt (tr(�mE )): (1.4.1.)

Here�mE is an element ofHm(E; (
1)
m 
 End(E)) obtained using the tensor
product in the tensor algebra and the associative algebra structure in End(E), while
Alt is the antisymmetrization(
1)
m ! 
m. Note that the antisymmetrization
constitutes in fact an extra step which disregards a part of information: without it,
we get an element

ĉm(E) = tr(�mE ) 2 Hm(X; (
1)
m): (1.4.2)

For a vector spaceV let us denote by Cycm(V ) the cyclic antisymmetric tensor
power ofV , i.e.

Cycm(V ) = fa 2 V 
m : ta = (�1)m+1ag; t = (12; : : : ;m); (1.4.3)
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wheret is the cyclic permutation. Then, the cyclic invariance of the trace implies
that

ĉm(E) 2 Hm(X;Cycm(
1)); (1.4.4)

but it is not, in general, totally antisymmetric. We will callĉm(E) thebig Chern
classof E; the component of the Chern character is obtained from it by total
antisymmetrization.

1.5. THE ATIYAH CLASS OF A PRINCIPAL BUNDLE

Let G be a complex Lie group with Lie algebrag andP ! G be a principal
G-bundle onX. Let ad(P ) be the vector bundle onX associated with the adjoint
representation ofG. By considering connections inP , we obtain, similarly to the
above, its Atiyah class�P 2 H1(X;
1 
 ad(P )). All the above properties of
Atiyah classes are obviously generalized to this case.

2. Atiyah class of the tangent bundle and Lie brackets

2.1. SYMMETRY OF THE ATIYAH CLASS

Let X be as before andT = TX be the tangent bundle ofX. Specializing the
considerations of (1.1) to the case whenE = T , we get the Atiyah class�TX
which we can see as an element ofH1(X;T � 
 T � 
 T ).

PROPOSITION 2.1.1.The element�TX is symmetric, i.e., lies in the summand
H1(X;S2(T �)
 T ).

Proof. It is enough to exhibit a sheaf ofS2(T �)
T -torsors from which Conn(T )
(a sheaf ofT �
T �
T -torsors) is obtained by the change of scalars. To find it, recall
that any connectionr in TX has a natural invariant called itstorsion �r which
is a section of�2(T �)
 T . The sheaf Conntf (TX) of torsion-free connections is
thus a torsor overS2(T �)
 T with required properties.

2.2. GEOMETRIC MEANING OF TORSION-FREE CONNECTIONS

It is convenient to ‘materialize’ the sheaf Conntf (TX) by realizing it as the sheaf
of sections of a fiber bundle�(X)! X whose fiber overx 2 X is an affine space
overS2(T �xX)
TxX. This is done as follows. Forx 2 X let�x(X) be the space
of second jets of holomorphic maps�: TxX ! X with the properties�(0) =
x; d0� = Id. A similarly defined space but for self-mapsTxX ! TxX is clearly
justS2(T �xX)
 TxX. Therefore�x(X) is an affine space overS2(T �xX)
 TxX.
The �x(X) for x 2 X obviously unite into a fiber bundle�(X) ! X. It is
well known classically that sections of this bundle are the same as torsion-free
connections.
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78 M. KAPRANOV

As a corollary of this, let us note the following interpretation of�TX which can
be also deduced from Lemma 1.2.3.

PROPOSITION 2.2.1.The class�TX is, up to a scalar factor, represented by the
following extension(second symbol sequence)

0! T = D61=D60! D62=D60! D62=D61 = S2T ! 0:

We now state the first main result of this section.

THEOREM 2.3.LetX be any complex manifold andA be any quasicoherent sheaf
of commutativeOX -algebras. Then:

(a) The maps

Hi(X;T 
A)
Hj(X;T 
A)! Hi+j+1(X;T 
A)
given by composing the cup-product with�TX 2 H1(X;Hom(S2T; T )), make the
graded vector spaceH��1(X;T 
A) into a graded Lie algebra.

(b) For any holomorphic vector bundleE onX the maps

Hi(X;T 
A)
Hj(X;E 
A)! Hi+j+1(X;E 
A)
given by composing the cup-product with the Atiyah class�E 2 H1(X;Hom(T 

E;E)), makeH��1(X;E 
A) into a gradedH��1(X;T 
A)-module.

Remarks2.3.1. (a) By construction, the structure of a Lie algebra on the space
H��1(X;T 
A) is bilinear over the graded commutative algebraH�(X;A), over
which the former space is a module. Same for the module structure onH��1(X;E

A).

(b) To see that the graded Lie algebra structure defined above is, in general,
nontrivial, it suffices to takeA = S�(T �) (the symmetric algebra with grading
ignored), i = j = 0, anda = b = 1 2 H0(X;T 
 T �). Then the bracket
[a; b] 2 H1(X;T 
 S2T �) is �TX .

(c) Theorem 2.3 is also true for sheaves of graded commutative algebrasA�, if
we replace cohomology with the hypercohomology, i.e., consider

Hp(X;T 
A�) =
M
i+j=p

Hi(X;T 
Aj):

Proof of Theorem2.3. (a) Ifg� is a graded vector space with an antisymmetric
bracket�: ^2 g� ! g�, then the left-hand side of the Jacobi identity for� is a
certain elementj(�) 2 Hom(^3g�;g�). In our caseg� = H��1(X;T 
 A) and
we find thatj(�) is given by composing the cup product with a certain class

J 2 H2(X;Hom(S3T; T )):
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ROZANSKY–WITTEN INVARIANTS VIA ATIYAH CLASSES 79

This class is nothing but the symmetrization of

[�TX [ �TX ] 2 H2(X;S2
1
 Hom(T; T ));

so it vanishes by the ‘cohomological Bianchi identity’ (1.2.2) applied toE = T .
(b) If g� is a graded Lie algebra,M� is a graded vector space with a map

c: g� 
M� !M�, then the left-hand side of the identity

[g1; g2]m� g1(g2m)� (�1)deg(g1)deg(g2)g2(g1m) = 0

is a certain element�(c) 2 ^2g� 
 Hom(M;M), vanishing if and only ifM is a
g-module. In our caseg� = H��1(X;T 
 A), M� = H��1(X;E 
 A), and the
element�(c) is induced by a class

� 2 H2(X;S2
1
 Hom(E;E))

which is nothing but the left-hand side of 1.2.2 forE. Theorem is proved.
The caseA = OX does not lead to anything interesting. Indeed, we have

PROPOSITION 2.3.2.The Lie algebra structure onH��1(X;T ) given by�TX , is
trivial (all brackets are zero). Similarly, the module structure onH��1(X;E) is
trivial .

Proof. Let a 2 Hi(X;T ), b 2 Hj(X;T ). Using Proposition 2.2.1, the brack-
et [a; b] 2 Hi+j+1(X;T ) is obtained by applying toa [ b 2 Hi+j(X;S2T )
the boundary homomorphism�: Hi+j(X;S2T ) ! Hi+j+1(X;T ) of the second
symbol sequence. But we have a pairing of sheaves

T 
C T ! D61
C D61! D62! D62=D60;

induced by the composition of differential operators. Therefore we get an element
atb 2 Hi+j(X;D62=D60)mapping intoa[b. But this implies that�(a[b) = 0.

For the bundle case the argument is similar. We note that�E is represented by
the symbol sequence (1.1.4) and that we have a pairing of sheaves

T 
C E ,! D61
C E ! D61
O E:

2.4. WEAK LIE ALGEBRAS AND THEIR MODULES

Theorem 2.3 is a global cohomological statement about the Atiyah class. We now
want to give a local, cochain level strenghtening of this result. Each time when
the cohomology of some sheaf forms a graded Lie algebra, it is natural to seek an
underlying structure on the space of cochains. The standard way for doing this is
by using the concept of weak Lie algebras (or shLA’s), see [S]. Let us recall this
concept.
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80 M. KAPRANOV

DEFINITION 2.4.1. A weak Lie algebra is aZ-gradedC-vector spaceg� equipped
with a differentiald of degree+1 and (graded) antisymmetricn-linear operations

bn: (g�)
n ! g�; x1
 � � � 
 xn 7! [x1; : : : ; xn]n; n > 2;

deg(bn) = 2� n;
satisfying the conditions(generalized Jacobi identities)

d(bn) =
X

p+q=n

X
�2Sh(p;q)

sgn(�)bp+1(bq 
 1)�; (2.4.2)

where Sh(p; q) is the set of(p; q)-shuffles andd(bn) is the value atbn of the natural
differential in Hom((g�)
n;g�).

In particular,b2 is a morphism of complexes (d(b2) = 0), and it makesH�d (g
�)

into a graded Lie algebra. The higherbnare the compensating terms for the violation
of the Jacobi identity on the level of cochains rather than cohomology.

An equivalent formulation of (2.4.2) is as follows [S]. ConsiderŜ(g�[�1]), the
completed symmetric algebra of the shifted dual space tog. Eachbn gives a map
b�n: g�[�1] ! Sn(g�[�1]) of degree 1. Letdn be the unique odd derivation of
the algebrâS(g�[�1]) extendingb�n. Then the identities (2.4.2) all together can be
expressed as one condition

D2 = 0; D = d+
X
n>2

dn: (2.4.3)

Let (g�; (bn)) be a weak Lie algebra. A weakg�-module is a graded vector
spaceM� equipped with a differentiald of degree+1 and maps

cn: (g�)
(n�1) 
M� !M�; n > 2; deg(cn) = 2� n; (2.4.4)

antisymmetric in the firstn � 1 arguments and satisfying the identities which it
is convenient to express right away in the form similar to (2.4.3). Namely, let us
extendc�n: M� !M�
Sn�1(g�[�1]) to a derivationdMn of theŜ(g�[�1])-module
M� 
 Ŝ(g�[�1]). Then the condition on thecn is that

(1
D +DM )
2 = 0; DM =

X
n>2

dMn : (2.4.5)

2.5. WEAK LIE ALGEBRA IN KÄHLER GEOMETRY

LetX be a complex manifold. We now unravel the Jacobi identity for the Atiyah
class on the level of Dolbeault forms. Since we will work with holomorphic as well
as with antiholomorphic objects, let us agree that in the remainder of this section
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T = TX will mean the holomorphic tangent bundle ofX, while
p;qX will signify
the space of globalC1 forms of type(p; q). Similarly, for a holomorphic vector
bundleE onX we will denote by
p;q(E) the space of allC1 forms of type(p; q)
with values inE.

Suppose thatX is equipped with a K̈ahler metrich.
Letr be the canonical (1, 0)-connection inT associated withh, so that (1.3)

[r;r] = 0 in 
2;0(End(T )): (2.5.1)

Set ~r = r + �@, where�@ is the (0, 1)-connection defining the complex structure.
The curvature of~r is just

R = [�@;r] 2 
1;1(End(T )) = 
0;1(Hom(T 
 T; T )): (2.5.2)

This is a Dolbeault representative of the Atiyah class�TX , in particular

�@R = 0 in 
0;2(Hom(T 
 T; T )) (2.5.3)

(Bianchi identity). Further, the condition forh to be K̈ahler is equivalent, as it is
well known, to torsion-freeness ofr, so actually

R 2 
0;1(Hom(S2T; T )): (2.5.4)

Let us now define tensor fieldsRn, n > 2, as higher covariant derivatives of the
curvature

Rn 2 
0;1(Hom(S2T 
 T
(n�2); T )); R2 := R; Ri+1 = rRi: (2.5.5)

PROPOSITION 2.5.6.EachRn is totally symmetric, i.e.,Rn 2 
0;1(Hom(SnT; T )).
Proof. Follows immediately from (2.5.1).

Except forR2 = R the formsRn are not, in general,�@-closed. Let
0;�(T )
be the Dolbeault complex of global smooth(0; i)-forms with values inT , and

0;��1(T ) be the shifted complex.

THEOREM 2.6.The maps

bn: 
0;j1(T )
 � � � 
 
0;jn(T )! 
0;j1+���+jn+1(T ); n > 2;

given by composing the wedge product(with values in
0;�(T
n)) with Rn 2

0;1(Hom(T
n; T )), make the shifted Dolbeault complex
0;��1(T ) into a weak
Lie algebra.

COROLLARY 2.6.1.IfX is a Hermitian symmetric space, thenRmakes
0;��1(T )
into a genuine Lie dg-algebra.
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Proof. We need to establish the generalized Jacobi identities (2.4.1) for theRn.
For this, write

�@Rn = �@r� � �rR; (2.6.2)

(with (n � 2) instances ofr) and use the commutation relation (2.5.2) together
with (2.5.3). This gives

�@Rn =
X

a+b=n�2

ra �R� � rbR; (2.6.3)

where

R� 2 
1;1(End(Hom(Sb+2T; T )))

is the operator-valued (1, 1)-form induced byR. By evaluatingR�, we find

�@R =
X

p+q=n

X
�2Sh(p;q)

Rp+1(Rq 
 1)�;

which differs from the right-hand side of the generalized Jacobi identity only by
the absense of the signs sgn(�). These signs, however, constitute exactly the effect
of shift fromH� toH��1. Theorem is proved.

Remark. The first instance of Theorem 2.6 (thatR3 cobounds the Jacobi identity
for the curvature) was communicated to me by L. Rozansky.

2.7. COMPANION THEOREM FOR VECTOR BUNDLES

Let now(E; hE) be a Hermitian holomorphic vector bundle on a Kähler manifold
X, and letrE be its canonical (0, 1)-connection, so that

[rE ;rE] = 0 in 
2;0(End(E)): (2.7.1)

Let

F = [�@;rE ] 2 
1;1(End(E)) = 
0;1(Hom(T 
E;E)) (2.7.2)

be the total curvature ofrE. Then

�@F = 0 in 
2;0(Hom(T 
E;E)) (2.7.3)

andF is the Dolbeault representative of the Atiyah class�E. Define the tensor
fields

Fn 2 
0;1(Hom(Sn�1T 
E;E)) (2.7.4)
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by setting

F2 = F; Fn = rFn�1; n > 3: (2.7.5)

As before, the required symmetry ofF follows from (2.7.1).

THEOREM 2.7.6.The maps

cn: (
0;��1(T ))
(n�1) 
 
0;��1(E)! 
0;��1(E)

given by composing the wedge product withFn, make the Dolbeault complex

0;��1(E) into a weak module over the weak Lie algebra
0;��1(T ).

The proof, using (2.7.1–3), is almost identical to that of Theorem 2.6 and is left
to the reader.

COROLLARY 2.7.7.If (E; hE) is a homogeneous Hermitian bundle over a Her-
mitian symmetric spaceX, thenF makes
0;��1(E) into a dg-module over the
dg-Lie algebra
0;��1(T ).

2.8. INTERPRETATION VIAD2 = 0

In the notation of Section 2.5, let

R�n 2 
0;1(Hom(T �; SnT �))

be the partial transpose ofRn. Consider the completed symmetric algebraŜ(T �)

(this is a sheaf of ungradedOX -algebras) and introduce in the algebra
0;�(Ŝ(T �))
the grading induced from that on
0;�. Let ~R�n be the odd derivation of this algebra
induced byR�n. Theorem 2.6 can be reformulated as follows (I am grateful to
V. Ginzburg for suggesting that I do this).

REFORMULATION 2.8.1.The derivationD = �@ + �n>2 ~R
�
n of 
0;�(Ŝ(T �))

satisfiesD2 = 0.

This is not exactly the result of applying (2.4.3) tog� = 
0;��1(T ) because
we take symmetric powers overOX rather thanC and also do not seem to dualize
the spaces
0;�. But because the mapsRn areOX -linear and because the formal
adjoint of �@: 
0;i ! 
0;i+1 is �@: 
0;r�i�1 ! 
0;r�i (r = dim(X)), this change
of context is justified.

Let us now viewD geometrically. The sheaf̂S(T �) is the sheaf of functions on

X
(1)
TX , the formal neighborhood ofX (regarded as the zero section) in (the total

space of )TX. More formally, denoting by�: X(1)
TX ! X the natural projection,

we can write

Ŝ(T �) = ��(OX(1)
TX

):
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The derivationD in 
0;�(Ŝ(T �)) can thus be regarded as a non-linear (0, 1)-

connectionD in the fiber bundle�: X(1)
TX ! X. The conditionD2 = 0 means that

D is integrable, i.e., defines a new holomorphic structure inX
(1)
TX . We are going

to describe this new structure and at the same time give a very natural explanation
of the previous constructions. Namely, considerX

(1)
X�X , the formal neighborhood

of the diagonalX � X � X. This is a fiber bundle overX (with respect to the
projection to, say, the second factor) whose fiber overx 2 X isx(1)

X = Spf(ÔX;x),
the formal neighborhood ofx in X. Clearly, this fiber bundle has a holomorphic
structure induced from that onX.

THEOREM 2.8.2.The bundleX(1)
TX with the new complex structureD is naturally

isomorphic toX(1)
X�X .

The proof is given in the next subsection.

2.9. THE HOLOMORPHIC EXPONENTIAL MAP

We want now to recall a classical but not very well known construction in Kähler
geometry [C]. We preserve the notations from the previous subsections.

Letx 2 X be a point. Recall that byTxX we denoteT 1;0
x X, the ‘holomorphic’

tangent space which we want to distinguish fromTR
x X, the tangent space toX

considered as a real manifold. More precisely, letI: TR
x X ! TR

x X be the complex
structure,I2 = �1, andTC

x X = C 
R T
R
x X. ThenTxX is the(+i)-eigenspace

of 1
 I on TC
x X. The correspondence� 7! � � iI� defines an isomorphism of

complex vector spaces(TR
x X; I)! (TxX; i).

Now, the geodesic exponential map atx (for X considered as a real manifold)

expR
x : TR

x X ! X

is not, in general, holomorphic. Suppose first that our Kähler metric is real analytic.
Then so is expRx , and we can take its analytic continuation ‘to the complex domain’.
In other words, letX 0 = X andX 00 beX with the opposite complex structure.
Then the image of the diagonal embeddingX ,! X 0 � X 00 is totally real, so
X 0 �X 00 can be seen as the complexification ofX. Therefore expRx continues to a
holomorphic map

expC
x : TC

x X = TxX � T 0;1
x X ! X 0 �X 00;

defined in some neighborhood of 0.

LEMMA 2.9.1.Suppose the K̈ahler metric onX is real analytic. Then, the restric-
tion ofexpC

x to TxX takes values inX 0�fxg and thus gives(via the holomorphic
identificationX 0 ! X) a holomorphic mapexpx: TxX ! X defined in some
neighborhood of0, and whose differential at 0 is the identity.

comp4328.tex; 8/08/1998; 7:27; v.7; p.14

https://doi.org/10.1023/A:1000664527238 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000664527238


ROZANSKY–WITTEN INVARIANTS VIA ATIYAH CLASSES 85

Proof. The complexified Riemannian connection onTCX is ~r = r + �@.
Its analytic continuation is a holomorphic connection~rC = rC + �@C in the
holomorphic tangent bundle ofX 0�X 00, defined in some neighborhood ofX. The
summandsrC and�@C have types (1, 0) and (0, 1) with respect to the decomposition

T(x0;x00)(X
0 �X 00) = Tx0X

0 � Tx00X 00:

This decomposition being flat forrC and holomorphic, the exponential map for
rC at a diagonal point(x; x); x 2 X takesTxX 0 into X 0 � fxg ' X. But
TxX

0 � T(x;x)(X
0 � X 00) is preciselyT 1;0

x X � TC
x X, and the exponential map

forrC is just the restriction of expCx to T 1;0
x . Lemma is proved.

The map expx can be called theholomorphic exponential map. It was redis-
covered in 1994, in the physical paper [BCOV] and called ‘canonical coordinates’.
Note that even when the metric is not analytic but only smooth, consideration of the
Taylor expansion of expRx in coordinateszi; �zi (wherezi form a local holomorphic
coordinate system), furnishes an isomorphism of formal neighborhoods

expx: 0(1)
TxX
! x

(1)
X ; (2.9.2)

which will be sufficient for the purposes we have in mind.

EXAMPLE 2.9.3. LetX = CP 1 with the Fubini–Study metric. As a Riemannian
manifold,X is the unit sphereS2 � R3. Choose a pointx 2 X and introduce
in TxX a linear coordinate system(u; v) by means of an orthogonal frame. Then
identify a neighborhood ofx with TxX by means of the stereographic projection
from the opposite point, thereby introducing a coordinate system inX. Elementary
trigonometry gives

expR
x (u; v) =

2 sin
p
u2 + v2

p
u2 + v2(1+ cos

p
u2 + v2)

(u; v);

(this is real analytic since sin(z)=z and cos(z) are even functions). Now, the
complex structure inTR

x X is I(a; b) = (b;�a). Thinking now ofu; v as complex
variables and substitutingu = a� ib; v = b+ ia with a; b 2 R (which means that
we restrict toT 1;0

x � TC
x ) we find that the radicals vanish and we get expx(z) =

z, z 2 TxX. So the holomorphic exponential map is, in this case, exactly the
stereographic projection, i.e., the affine coordinate onCP 1 for which the point
opposite tox serves as the infinity. In a similar way, forX a Grassmannian the map
expx provides an affine identification ofTxX with an open Schubert cell.

Let us now prove Theorem 2.8.2. Consider, for anyx 2 X, the formal isomor-
phism (2.9.2). These isomorphisms unite into a fiberwise holomorphic isomorphism
of fiber bundles

exp:X(1)
TX ! X

(1)
X�X :
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The variation with respect tox of the expx is not, in general, holomorphic in the
usual sense. However, we have the following statement which implies our theorem.

PROPOSITION 2.9.4.The mapexp is holomorphic with respect to the complex
structureD onX(1)

T .
Proof. We will consider the real analytic case. The general case presents only

notational complications in that we replaceX 0 andX 00 below by working in the
variableszi and�zi.

By considering the connectionrC on X 0 � X 00, we reduce ourselves to the
following purely holomorphic problem.

Suppose given a complex manifoldX and a familyr = (rs)s2S of flat torsion-
free connections inTX parametrized by some complex manifoldS. Letp; q be the
projections ofX � S to X andS respectively. Then the variation (derivative) of
thers with respect tos is a section

R 2 �(X � S; q�
1
S 
 p�Hom(S2TX; TX)):

We can apply to each restrictionRjX�fsg the covariant derivativers several times,
getting tensor fields

Rn = rn�2R 2 �(X � S; q�
1
S 
 p�Hom(SnTX; TX)); n > 2:

On the other hand, for everyx; s the connectionrs gives rise to the exponential
map

expx;s: TxX ! X; 0 7! x; d0 expx;s = Id;

whose variation with respect tos is, for each fixedx, a 1-form onX with values in
analytic vector fields on (some neighborhood of 0 in)TxX with vanishing constant
and linear terms. Recall that for any vector spaceV the space of formal vector
fields onV at 0 is the product

Q
n>0 Hom(SnV; V ). Thus we can write the Taylor

expansion of the variation as

exp�1
x;s ds expx;s 2 �

0@X � S; q�
1
S 


Y
n>2

p�Hom(SnTX; TX)

1A :
In order to establish Proposition 2.9.4, it is enough to prove the following.

PROPOSITION 2.9.5.In the described situationRn is thenth homogeneous com-
ponent ofexp�1

x;s ds expx;s.
Proof. Fix somex0 2 X; s0 2 S and identifyTx0X with Cr, r = dim(X) by

means of some linear isomorphism. Then use expx0;s0 as a coordinate system on
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X nearx0. For anys the connectionrs is then defined in our coordinates by its
connection matrix�(s) 2 �(Cr;Hom(S2T; T )), so thatR = ds�(s) is just its
derivative with respect tos. For s = s0 we have�(s0) = 0, because the expo-
nential map for a flat torsion free connection takes it into the standard Euclidean
connection on the tangent space. This implies that the higher covariant derivatives
ris0

RjX�fs0g are the same as the usual derivatives, with respect to our chosen
coordinates, ofRs0 = dsjs=s0�(s). By the same token as before, for arbitrarys the
flatness ofrs allows us to describe it as the connection induced from the standard
Euclidean connection onCr by the change of coordinates given by expx0;s. So our
statement reduces to the following lemma.

LEMMA 2.9.6. Let v = �ri=1vi(z)@=@zi be a holomorphic vector field on(some
domain of) Cr. Regardingv as an infinitesimal diffeomorphism(i.e., the tan-
gent to a family of diffeomorphismsg(s): Cr ! Cr, s 2 C, g(0) = Id), let
� 2 �(Cr;Hom(S2T; T )) be the corresponding infinitesimal variation of the con-
nections(induced by theg(s) from the Euclidean one). Then the components of�
are

�ijk(z) =
@2vi
@zj@zk

:

The proof of this lemma is straightforward from the standard formulas of dif-
ferential geometry.

3. Operadic interpretation

As we saw, for any sheafA of commutative algebras onX, the Atiyah class�TX 2
H1(X;Hom(S2T; T )) makes eachH��1(X;T 
 A), into a graded Lie algebra.
Each compositem-ary operation in this algebra (such as, e.g.,[[x1; x2]; [x3; x4]] for
m = 4) is represented by a certain class inHm�1(X;Hom(T
m; T )) composed
out of �TX . In this section we study these classes by themselves rather than by
using the operations onH��1(X;T 
A) represented by them. For this, we use the
language of operads and PROPs, see [Ad] [GiK], [GeK1-2] [KM].

3.1. REMINDER ON OPERADS, PROPS AND MODULES

Recall that an operadP is a collection of vector spacesP(n), n > 0, together with
the action ofSn, the symmetric group, onP(n) for eachn and composition maps

�i: P(m) 
P(n)! P(m+ n� 1); i = 1; : : : ;m

satisfying appropriate equivariance and associativity axioms. Informally, elements
of P(m) can be thought of asm-ary operations, theSm-action as permutation of
arguments in the operations, andp �i q as the operation

p(x1; : : : ; xi�1; q(xi; : : : ; xi+n�1); xi+n; : : : ; xm+n�1): (3.1.1)
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An algebra over an operadP is a vector spaceA together withSn-invariant
maps�n: P(n) 
 A
n ! A satisfying the associativity properties which mean
that the compositions�i in P indeed go, under the�n, into the substitution of one
operation inside another, as described in (3.1.1).

The concept of a PROP (see [Ad]) is slightly more general. While operads
describe algebrasA with operations of the formA
n ! A, PROPs allow for more
general operationsA
n ! A
m (which may or may not be deducible from the
former ones).

Thus a PROP� is a family of vector spaces�(n;m), n;m > 0, equipped with
a leftSn-action and a rightSm-action, commuting with each other, as well as the
following structures:

(3.1.2) Composition maps�(n; p) 
 �(m;n) ! �(m; p), making� into a
category with the set of objects[m];m 2 Z+ and Hom([n]; [m]) =
�(n;m).

(3.1.3) Juxtaposition maps�(n;m)
�(n0;m0)! �(n+n0;m+m0), making�
into a symmetric monoidal category with monoidal operation on objects
defined by[n]� [n0] = [n+ n0].

A (right) module over an operadP is (see [M]) a collectionM of Sn-modules
M(n), n > 0 and compositions

�i: M(m)
P(n)!M(m+ n� 1); i = 1; : : : ;m

satisfying the equivariance and associativity axioms obtained by polarizing those
of an operad.

EXAMPLE 3.1.4. (a) For any vector spaceV we have itsendomorphism operad
EV with componentsEV (n) = Hom(V 
n; V ) = (V �)
n 
 V . The spaceV is
canonically an algebra overEV . For any operadP a structure ofP-algebra on a
vector spaceA is the same as a morphism of operadsP ! EA.

Similarly, we have a PROP ENDV with ENDV (n;m) = Hom(V 
n; V 
m). An
algebra over a PROP� is a vector spaceA together with a morphism of PROPs
�! ENDA. For example, the class of Hopf algebras can be described by a PROP
but not an operad.

(b) Any operad is a module over itself. If� is a PROP, then the spacesP(n) =
�(n;1) form an operad. For everyk the spaces�a(n) = �(n; a) form a module
over this operad.

3.2. DG-OPERADS ANDPROPS

All the above constructions can be carried out in any symmetric monoidal cate-
gory. By a differential graded (dg-) operad we mean an operad in the symmetric
monoidal category of differential graded vector spaces, i.e., cochain complexes
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(in that category the symmetry isomorphisms are given by the Koszul sign rule).
For a dg-vector spaceV � we define its shiftsV �[m] by (V �[m])i = V m+i. For a
dg-operadP its suspension�(P) is a new dg-operad formed by the shifted spaces
�(P)(n) = P(n)[1� n] with the symmetric group action differing from that on
P(n) be tensoring with the sign representation, see [GeK1] for the explicit formu-
las for the compositions. IfA� is a differential gradedP-algebra, thenA[1] is a
�(P)-algebra. Forp 2 P(n) let �(p) be the corresponding element of�(P)(n).
The conventions for PROPs are similar. Thus, the suspension�� of a dg-PROP�
has��(n;m) = �(n;m)[m�n]. We will view graded vector spaces as dg-vector
spaces with zero differential.

3.3. A PROPFROM AN OPERAD

Let P be an operad. We define aP-moduleP(�;0) = fP(n;0)g called the
module of natural forms (onP-algebras). It is defined as theP-module generated
by symbols

tr(p) 2 P(n;0); p 2 P(n+ 1); (3.3.1)

subject to the following relations

tr(p�) = tr(p)�; � 2 Sn � Sn+1; (3.3.2)

tr(p �i q) = tr(p) �i q; p 2 P(a+ 1); q 2 P(b+ 1); i 6= a+ 1; (3.3.3)

tr(p �a+1 q) = tr(q �b+1 p)�;

� =

 
1 2 : : : a : : : a+ b

a+ 1 : : : a+ b 1 : : : a

!
; (3.3.4)

p 2 P(a+ 1); q 2 P(b+ 1):

Motivation: ifA is a finite-dimensionalP-algebra, then anyp 2 P(n+1) gives
a morphism�p: A
(n+1) ! A, and we can take its trace trn+1(�p): A
n ! C
with respect to the last contravariant argument and the only covariant argument.
The requirements on the tr(p) are the axiomatizations of the properties of these
traces.

We now define a PROP, denoted�P to be generated by formal juxtapositions
and permutations fromP(n;0) = �P(n;0) andP(n) � �P (n;1). In other words

�P(n;m) =
M

f1;:::;ng=
A1[���[Am[B1[���[Br

O
i

P(Ai)

O
j

P(Bj ;0); (3.3.5)
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whereP(A);#(A) = a, is the notation for the functor on the category ofa-element
sets and their bijections associated to theSa-moduleP(a).

PROPOSITION 3.3.6.If A is a finite-dimensionalP-algebra, then it is also a
�P -algebra.

3.4. THE LIE OPERAD ANDPROP

We denote byLie the Lie operad, whose algebras are Lie algebras in the usual sense,
see [GeK1-2] [GiK]. Explicitly,Lie(n) is a subspace in the free Lie algebra on
generatorsx1; : : : ; xn spanned by Lie monomials containing eachxi exactly once.
ThusLie(2) is one-dimensional and spanned by[x1; x2] (which is anti-invariant
underS2), whileLie(3) is two-dimensional and spanned by three elements

[x1; [x2; x3]]; [x2; [x1; x3]]; [x3; [x1; x2]];

whose sum is zero (Jacobi identity). Given an arbitrary operadP and an element
p 2 P(2), we will say thatp is aLie element, if p is antisymmetric and satisfies the
Jacobi identity. In other words,p is a Lie element if there is a morphism of operads
Lie ! P which takes the generator[x; y] 2 Lie(2) into p. Such a morphism is
unique, if it exists.

We denote the PROP�Lie by LIE. The new generators in LIE (apart from the
bracket[x1; x2] 2 LIE(2;1)) form the space LIE(n;0) = Lie(n;0). An example
of an element of the latter space is given by

�n = tr([x1[x2 : : : [xn; xn+1] : : :]): (3.4.1)

Here[x1[x2 : : : [xn; xn+1] : : :] is regarded as an element ofLie(n+ 1). It follows
from (3.3.4) that�n is cyclically symmetric, i.e.,

�nt = �n; t = (12: : : n) 2 Zn � Sn: (3.4.2)

If g is a finite-dimensional Lie algebra, then�n gives thenth Killing form on g

x1
 � � � 
 xn 7! tr(ad(x1) : : : ad(xn)): (3.4.3)

PROPOSITION 3.4.4.The spaceLie(n;0) has dimension(n � 1)! and a basis
there is formed by the elements�n�, � 2 Sn=Zn.

Proof. This follows from the fact that a basis inLie(n+1) is formed by the Lie
monomials

[x�1[: : : [x�(n); xn+1] : : :]; � 2 Sn:
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3.5. THE ATIYAH CLASS AS A LIE ELEMENT

Let nowX be a complex manifold,T = TX its tangent bundle. We have a sheaf
of operadsET and a sheaf of PROPs ENDT onX defined by

ET (n) = Hom(T
n; T ); ENDT (n;m) = Hom(T
n; T
m):

By applying the functorH�(X;�) from sheaves to graded vector spaces, we get
a graded operadH�(X; ET ) an a graded PROPH�(X;ENDT ). Recall also (1.4)
that we have the ‘big Chern classes’ĉm(T ) 2 Hm(X;Cycm(
1)) of the tangent
bundle. Now, a more inclusive formulation of the properties of the Atiyah class is
by using the suspension of the above PROP and goes as follows.

THEOREM 3.5.1.The element��1�TX 2 ��1H�(X; ET )(2) is a Lie element.
Furthermore, the correspondence

[x1; x2] 2 LIE(2;1) 7! ��1�TX 2 ��1H�(X;ENDT )(2;1);

�n 2 LIE(n;0) 7! ��1ĉm(T ) 2 ��1H�(X;ENDT )(n;0)

defines a morphism of PROPs

LIE ! ��1H�(X;ENDT ) = H�(X;ENDT [�1]):

The proof follows readily from the cohomological Bianchi identity (1.2).

3.6. WEAK LIE OPERAD AND PROP

We denote byWLie the dg-operad governing weak Lie algebras (2.4). It is generat-
ed by elements�n 2 WLie(n), deg(�n) = 2�n, n > 2, which are antisymmetric
with respect toSn and satisfy the conditions obtained from Definition 2.4.1. Thus,
the cohomology operadH�d(WLie) is justLie.

The operadWLie can be also described as the cobar-construction of the com-
mutative operad [GiK]. Explicitly, this means that a basis inWLie(n) is formed
by certain trees. More precisely, by ann-tree we mean a connected oriented graph
� with no loops, equipped with structures satisfying the conditions listed below.

(1) Each vertex of� has valency at least 3. In addition,� hasn+1 legs, i.e., edges
bounded by a vertex from one side only.

(2) For every vertexv all edges incident tov, except exactly one, are oriented
towardsv. The set of such edges is denoted by In(v).

(3) It follows that all the legs of� except exactly one, are oriented towards�. The
set of such legs is denoted by In(�).

(4) The set In(�) is identified withf1;2; : : : ; ng.
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Let T (n) be the set of isomorphism classes ofn-trees. For� 2 T (n) set

det(�) =
O

v2Vert(�)

max̂

(CIn(v)): (3.6.1)

PROPOSITION 3.6.2.We have an identification of graded vector spaces

WLie(n) =
M

�2T (n)

det(�)�; deg(det(�)�) =
X

v2Vert(�)

(2� jIn(v)j);

with the differential being dual to the map given by contraction of edges, and the
operad structure given by the grafting of trees, see[GiK ].

Proof. The identification is obtained by associating to�n the uniquen-tree with
one vertex (‘corolla’) and to any composition of the�n the tree describing the
composition. The terms in the generalized Jacobi identity correspond, in geometric
language, to all possiblen-trees with exactly two vertices and one edge (so that the
corolla is obtained from such a tree by contracting this unique edge).

Let WLIE be the (dg-) PROP corresponding to the dg-operadWLie as described
in (3.3). It also has a natural graphical description. Namely, call an(n;m)-graph
a (not necessarily connected) oriented graph� with n +m legs, of whichn are
inputs and are labelled with numbers 1; : : : ; n, andm are outputs and are labelled
by 1; : : : ;m, and which satisfy the conditions (1)–(2) above. Each component of
an (n;m) graph is either a tree satisfying (1)–(3), or a graph with no output. Let
G(n;m) be the set of isomorphism classes of(n;m)-graphs. Retaining the same
notations Vert, In, det, as for trees, we easily conclude the following.

PROPOSITION 3.6.3.We have identifications

WLIE(n;m) =
M

�2G(n;m)

det(�)�; deg(det(�)�) =
X

v2Vert(�)

(2� jIn(v)j);

with the differential being dual to the map given by contraction of edges, compo-
sition maps given by grafting of graphs, and juxtaposition maps given by disjoint
union.

If P is any dg-operad, a family of elementspn 2 P(n), n > 2, is calleda
weak Lie family, if the correspondence�n 7! pn gives a morphism of dg-operads
WLie ! P. If (pn) is a weak Lie family, then the class ofp2 in H0(P(2)) is
a Lie element inH�(P). In this case thepn give also a morphism of PROPs
WLIE ! �P .

3.7. DIFFERENTIAL COVARIANTS AND THE WEAK LIE PROP

We now want to restate Theorem 2.6 (which describes the unraveling of the Jacobi
identity for the Atiyah class in the framework of Kähler geometry) in a more
universal form.
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Notice, first of all, that the structure we really used, was not the Kähler metric
itself but only its canonical (1, 0)-connectionr. So let us call asemiflat manifold
a pair(X;r) whereX is a complex manifold andr is a (1, 0)-connection inTX
such that[r;r] = 0. For such a connection we defineR = [�@;r] and all the
considerations of (2.6), 2.8 hold true.

Fix d; i;m; n and letCr be the sheaf of semiflat (0,1)-connections onCr. Follow-
ing Gilkey [Gil] and Epstein [E], introduce the spaceV i

r (n;m) of (not necessarily
linear) differential operators of finite orderC� ! 
0;i
Hom(T
n; T
m) defined
in some neighborhood of 0, and letU ir(n;m) � V i

r (n;m) be the subspace of
operators equivariant under the group of holomorphic diffeomorphisms. Elements
of the latter space will be called differential covariants of type(i; n;m) of r-
dimensional semiflat manifolds, since for each such manifold(X;r) they produce
natural tensors in
0;i(Hom(T
n; T
m)). In particular, they do so for each Kähler
manifold. In fact, we can say that elements ofU ir(n;m) are differential covariants
of Kähler manifolds which depend only on the canonical connection. The differ-
ential �@ makesU�r (n;m) into a complex; taken for alln;m, these complexes form
a dg-PROPU�r .

For example,Rn = rn�2R (the covariant derivative of the curvature) is an
element ofU1

r (n;1). Furthermore, let� be a(n;m)-graph withN vertices. For
every vector spaceW we have the contraction map

p�:
O

v2Vert(�)

Hom(SjIn(v)jW;W )! Hom(W
n;W
m): (3.7.1)

Applying this to the tensor product of theRjIn(v)j 2 
0;1(Hom(SjIn(v)jT; T )), we
get a covariant

R� = p�
�O

RjIn(v)j
�
2 UNr (n;m): (3.7.2)

Because of the symmetry of theRi, the desuspendedelement��1R� can be viewed
as a morphism

��1R�: det(�)� ! ��1U�r (n;m): (3.7.3)

THEOREM 3.7.4. (a)The maps��1R� define a morphism of dg-PROPs�: WLIE !
��1U�r .

(b) For any i; n;m the morphism of vector spaces�in;m: WLIEi(n;m) !
(��1Ur)

i(n;m) is surjective.
(c) If r� i;m; n, then the morphism�in;m is in fact bijective.

Part (c) means that the ‘stabilized’ PROP of differential covariants is just the
suspension of the weak Lie PROP.

Proof. (a) Follows from Theorem 2.6.
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(b) Covariants ofr can be viewed as covariants of the total connection~r =
r + �@. It is known classically that all covariants of an affine connection are
obtained from the covariant derivatives of the curvature (and torsion) by performing
‘tensorial contractions’. For example, the argument sketched in [E] exhibits the
Taylor expansion of the Christoffel symbols in the normal coordinates in such a
form, and this clearly suffices. In our case, the covariant derivatives of the curvature
of ~r all reduce to theRn, while a way to perform the contractions produces an
(n;m)-graph.

(c) This follows from the main theorem of invariant theory which implies that
for dim(W )� n1; : : : ; nN ; N , the space of all GL(W )-equivariant maps

NO
i=1

Hom(SniW;W )! Hom(W
n;W
m)

has as its basis, the mapsp� for various (n;m)-graphs� with N vertices of
valenciesni.

4. The weak lie operad in formal geometry and Gelfand–Fuks cohomology

4.1. THE COCHAINS

In this section we describe another way of unraveling the Jacobi identity for the
Atiyah class which uses ‘formal geometry’ (analysis in the space of infinite jets, see
[B] [GGL] [GKF]) instead of Kähler geometry. This approach has the advantage of
being purely holomorphic. Instead of Dolbeault cochains, we will use the following
lemma to represent necessary cohomology classes.

LEMMA 4.1.1. LetX be a complex manifold andp: A ! X be a locally trivial
fibration with fibers isomorphic toCN for someN . Then for any coherent sheafF
onX we have a natural morphism

� : �(A;
�A=X 
 p�F)! R�(X;F):

If A is a Stein manifold, then� is a quasi-isomorphism.

The first statement means that any closed relativei-form onA with values in
p�F gives rise to a class inHi(X;F). The second statement means that ifA is
Stein, then this correspondence is 1-to-1.

Proof. Follows from the quasiisomorphismOX ! p�

�
A=X (i.e., from the

acyclicity of the global holomorphic de Rham complex ofCN ).
It was proved by Jouanolou [J] that ifX is a quasi-projective algebraic manifold,

then there always exists anA as above which is an affine variety (therefore Stein).
We will be interested in some naturalCN -fibrations which, though not Stein in
general, still give the holomorphic cohomology classes we need.
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4.2. FORMAL EXPONENTIAL MAPS

Let X be a complex manifold. Consider the space�(n)(X)
pn! X of ‘nth order

exponential maps’, cf. [B]. By definition, forx 2 X the fiber�(n)
x (X) is the

space ofnth order jets of holomorphic maps�: TxX ! X such that�(0) = x,
d0� = Id. Thus�(2)(X) = �(X) is the affine fibration (2.2) defining torsion-free
connections. Thus we have a chain of projections

X  �(2)(X) �(3)(X) � � � : (4.2.1)

Each�(n+1) is an affine bundle over�(n) whose associated vector bundle is
p�nHom(Sn+1TX; TX). Thus each fiber of�(n)(X) is isomorphic toCN for some
N and Lemma 4.1.1 is applicable: every closed relative form on�(n)(X) gives a
holomorphic cohomology class onX.

EXAMPLE 4.2.2. Since the space�(X) = �(2)(X) is an affine bundle over
Hom(S2TX; TX), it carries a tautological 1-form�2 2 
1

�(X)=X
p�Hom(S2TX;

TX). This form is relatively closed and represents, via Lemma 4.1.1, the Atiyah
class�TX .

Let J (n)(TX) ! X be the group bundle whose fiber overx 2 X is the group
of nth jets of biholomorphisms : TxX ! TxX with  (0) = 0, d0 = Id. Then
�(n)(X) is a bundle ofJ (n)(TX)-torsors. Letj (n)(TX) be the bundle of Lie
algebras associated toJ (n)(TX). Note that we have a natural splitting

j (n)(TX) =
nM
i=2

Hom(SiTX; TX); (4.2.3)

induced by the action of GL(TX) on j (n)(TX).
Let now� := �(1)(X)

p! X be the inverse limit of the diagram (4.2.1), i.e.,
the space offormal exponential maps. It is a bundle ofJ (1)(X)-torsors, where
J (1)(TX) = lim J (n)(TX). The Lie algebra bundle of the bundle of proalgebraic
groupsJ (1)(TX) is just

j (1)(TX) =
Y
n>2

Hom(SnT; T ); T = TX: (4.2.4)

Denote byp(n): �! �(n)(X) the projection and set


��=X =
[
n

(p(n))�
��(n)(X)=X : (4.2.5)

As with any bundle of torsors, we have the tautological relative 1-form

! 2 
1
�=X 
 p�j (1)(TX): (4.2.6)
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Projecting! to thenth graded component in (4.2.4), we get thetautological form

�n 2 
1
�=X 
 p�Hom(SnT; T ): (4.2.7)

These forms are formal geometry analogs of the covariant derivatives of the curva-
ture in (2.5) and satisfy very similar identities, as we shall explain later.

For every coherent sheafF onX set

A�1(F) = �(�;
��=X 
 p�F):

This is a complex naturally mapping intoR�(X;F). Accordingly, for any coherent
sheaf of operadsP onX (i.e., an operad in the category of coherent sheaves) we
have a dg-operadA�1(P). Similarly for PROPs.

Let us consider, in particular, the sheaf of operadsET = fHom(T
n; T )g and
the sheaf of PROPs ENDT = fHom(T
n; T
m)g. The tautological form�n,
n > 2, gives an element ofA�1ET (n) � A�1ENDT (n;1), which is antisymmetric
and has degree 1. Consider the desuspended dg-PROP��1A�1ENDT . The shifted
tautological forms��1�n becomes antisymmetric of degree 2� n. Further, let�
be an(n;m)-graph (3.6) withl vertices. We denote by�� 2 Al1ENDT (n;m)
the composition of the tautological forms�jIn(v)j for all verticesv of �, by using
the contractions along the edges of�. Then, because of the antisymmetry of the
��1�n, we have that

��1�� 2 Hom(det(�)�;��1A�1ENDT (n;m)):

Now, a formal geometry version of Theorem 2.6 is as follows.

THEOREM 4.3.The elements��1�n 2 ��1A�1ET (n) form a weak Lie family.
Moreover, the maps

��1��: det(�)� ! ��1A�1ENDT (n;m); � 2 G(n;m);

define a morphism of PROPsWLIE ! ��1A�1ENDT . In particular, the complex
of sheavesp�


��1
�=X 
T onX (quasi-isomorphic toT [�1]) has a natural structure

of a weak Lie algebra.

To formulate the companion theorem for a vector bundleE, we can proceed in
a similar way, by working on the product� �X C, whereC is the fiber bundle
overX whose fiber atx consists of infinite jets of fiberwise linear isomorphisms
Ex �X ! E identical overx. We leave this to the reader.

We know three proofs of Theorem 4.3. The first two will be sketched, and the
third one given in more detail.
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First proof (sketch)(4.3.1). We can mimic all features of Kähler geometry but
on the space�. First of all, the bundle� ! X (like other infinite jet bundles,
see [GKF] [GGL]), carries a natural (non-linear) formally integrable connection
D. Its covariantly constant sections over a simply connectedU � X correspond
to affine structures onU , i.e., embeddings ofU into an affine space of the same
dimension, modulo affine equivalence. This decomposes the tangent spaceT�� at
every point into a direct sumT 1;0

� �+T 0;1
� �, whereT 0;1

� is the tangent space to the

fiber ofp passing through� andT 1;0
� is the horizontal subspace of the connection.

Accordingly, we have decompositions


m� '
M

a+b=m


a;b� ; 
a;b� = p�
aX 
 
b�=X ;

and the de Rham differential is decomposed as

d = d0 + d00; d00 = d�=X ; (d0)2 = (d00)2 = [d0; d00] = 0:

We can speak therefore about (0, 1) and (1, 0)-connections in fiber bundles on�.
Every bundle of the formp�E, lifted from X, has a canonical integrable (0, 1)-
connection. The bundlep�T has, in addition, a natural integrable (1, 0)-connection
r satisfying the identities

[d00;r] = �2; r�n = �n+1;

which imply our theorem in the same way as in the Kähler case.

Second proof (sketch)(4.3.2). In line with 2.8, we consider the odd derivation
D of the algebra


��=X 
 p�Ŝ(T �)

obtained by extendingd�=X +�n>2�
�
n. Then we have only to prove thatD2 = 0.

To do this, we consider, as in 2.8, the fiber bundles

�: X(1)
T ! X; �: X(1)

X�X ! X;

whereX(1)
T is the formal neighborhood of the zero section ofTX andX(1)

X�X is the

formal neighborhood of the diagonal inX �X. The algebrâS(T �) is justO
X
(1)
T

.

The pullback to� of the nonlinear bundle� possesses an integrable connection
along the fibers, which gives rise to an algebra differential� in 
��=X 
p�OX(1)

X�X
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satisfying�2 = 0. On the other hand, on� we have the tautological exponential
map which is a nonlinear isomorphism of fiber bundles

Exp: p�X(1)
T ! p�X

(1)
X�X ;

and one can verify that Exp is takingD into�, thereby proving the theorem.

4.4. TAUTOLOGICAL FORMS AND GELFAND–FUKS COHOMOLOGY

Another way of proof of Theorem 4.3 is to reduce it to known results about the
cohomology of the Lie algebra of formal vector fields, by making use of the general
relationship between this cohomology and tautological forms. Let us first recall
this relationship [B] [GKF].

Let r > 1 be fixed. Denote byG(n) the group ofnth jets of biholomorphisms
�: Cr ! Cr with �(0) = 0, and byJ (n) � G(n) the normal subgroup formed by
� with d0� = Id. So we have an exact sequence

1! J (n) ! G(n) ! GLr ! 1; (4.4.1)

which, moreover, canonically splits (by considering jets of linear transformations),
makingG(n) a semidirect product.

If X is anr-dimensional complex manifold andx 2 X, let F (n)
x (X) be the

space ofnth jets of biholomorphisms�: Cr ! X with �(0) = x. This is aG(n)-
torsor. These torsors unite into a principalG(n)-bundleF (n)(X)

qn�! X called the
bundle ofnth order frames. The quotientF (n)(X)=GLr is �(n)(X), the space of
nth jets of exponential maps from (4.2).

Letg= h�k be a Lie algebra split into a semidirect product of two subalgebras
of whichk is an ideal. LetM be anh-module. Because of the identificationg=k = h,
we can regardM as ag-module, and form the relative cochain complex

C�(g;h;M) = Hom(��(g=h);M)h:

Recall the following standard fact about this complex.

PROPOSITION 4.4.3.If g, h, k are the Lie algebras of connected Lie groups
G;H;K so thatG is a semidirect productHK, then for everyG-torsorP we have
a natural identification

C�(g;h;M) = �(P=H;
�P=H 
M)K :

Let us apply this toG = G(n);H = GLr;K = J (n). Letg(n) be the Lie algebra
of G(n). A representationM of GLd gives rise, in a standard way, to the functor
from the category ofr-dimensional vector spaces and their isomorphisms to the
category of vector spaces called the Schur functor and denoted byW 7! SM (W ).
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In particular, the vector bundleSM (TX) overX is defined. We denote byV the
standardr-dimensional representation of GLr. Take alsoP to be (fibers of) the
principalG(n)-bundleF (n)(X)! X. We obtain the following.

PROPOSITION 4.4.4.We have a natural identification of complexes of sheaves
onX

OX 
 C�(g(n);glr;M) ' pn�
�

��(n)(X)=X 
 q�n(SM (TX))

�J(n)(TX)
:

Note that the tautological forms from (4.2.7) give global sections of the complex
in (4.4.4). They correspond toM = Hom(Sn(V ); V ).

By passing to the limitn!1, we consider

Vect0r = lim
 

g(n) =
Y
n>1

Hom(SnV; V ); (4.4.5)

the Lie algebra of formal vector fields onCr vanishing at 0. This is a topological
Lie algebra and we will consider its continuous cohomology.

4.5. THE LIE OPERAD INGELFAND–FUKS COHOMOLOGY. RESULTS OF FUKS

Taking, for everyn;m > 0, the relative cochain complex

C�(Vect0r;glr;Hom(V 
n; V 
m)) = ��r(n;m); (4.5.1)

we get a dg-PROP��r. LetH�r be the graded PROP formed by the cohomology
of ��r . By the above, an element ofHir(n) gives, for eachr-dimensional complex
manifoldX, a class inHi(X;Hom(T
n; T
m)). Let

an 2 C1(Vect0r;glr;Hom(V 
n; V )); n > 2;

be the tautological cochain which associates to a formal vector field its degreen
homogeneous component (lying in Hom(SnV; V )). For any(n;m)-graph� with
N vertices let

a� 2 CN (Vect0r;glr;Hom(V 
n; V 
m))

be the cochain obtained by contracting the cup product of theajIn(v)j, v 2 Vert(�)
along the edges of�, cf. 4.2. Now, Theorem 4.3 can be reformulated as follows.

THEOREM 4.5.2.Let the maps

��1a�: det(�)� ! �Nr (n;m)

define a morphism of PROPsWLIE ! ��1��r.
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In this formulation the theorem follows at once from results of D. B. Fuks [Fuk]
who studied stable cohomology of��r(m;n) (whenr is big compared tom;n and
the number of the cohomology) and identified it with the cohomology of a certain
graph complex. Translated into our language, his results immediately imply the
relation with LIE and WLIE. More precisely, we deduce the following fact.

THEOREM 4.5.3.As r ! 1, each term of the complex��r(m;n) stabilizes, so
that we have a limit complex��(m;n). Taken for allm;n, these complexes form
a dg-PROP, which is isomorphic to��1(WLIE).

Proof. The existence of the stabilization and its identification with a graph
complex is completely explicit in [Fuk]. Namely, the space�Nr (n;m) consists of
GLr-invariant antisymmetric continuous maps

N̂
0@Y
i> 2

Hom(SiV; V )

1A! Hom(V 
n; V 
m): (4.5.4)

Thus

�Nr (n;m)

=
M

(Ni2Z+)i> 2P
Ni=N

Hom

0@O
i> 2

Nî

Hom(SiV; V ); Hom(V 
n; V 
m)

1AGLr

: (4.5.5)

Let� be an(n;m)-graph (3.1) withN vertices. Then we have a natural contraction
map

p�:
O

v2Vert(�)

Hom(SjIn(v)j(V ); V )! Hom(V 
n; V 
m); (4.5.6)

which is obviously invariant. Moreover, whenr� 0, then by the main theorem of
invariant theory such contraction maps for various� provide a basis in the space
of all invariant maps. This implies the stabilization of the��r(n;m). LetNi(�) be
the number ofv 2 Vert(�) with jIn(v)j = i, and let

t(�):
O
i>2

Ni(�)^
Hom(SiV; V )! Hom(V 
n; V 
m) (4.5.7)

be the antisymmetrization ofp�. Then

t: det(�)� 7! t(�)
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is the desired isomorphism of complexes WLIE(n;m) ! ��(n;m) of degree
m� n. To finish the proof, it remains to identify the composition structure in��

with that in��1(WLIE), which is straightforward.

4.6. GENERALIZATION TO OTHER OPERADS

Theorem 4.5.3 can be straightforwardly generalized to any quadratic Koszul operad
Q in the sense of [GiK]. Namely, let Vect0

r(Q) be the Lie algebra of derivations of
FQ(r), the freeQ-algebra onr generators.

THEOREM 4.6.1.Set

A�r;Q(m;n) = C�(Vect0r(Q);glr;Hom(V 
n; V 
m):

Then, asr ! 1, each term ofA�r;Q(m;n) stabilizes, and the stable complexes
A�Q(m;n) form a dg-PROPA�Q. This PROP is isomorphic to�D(Q), the PROP
associated(2:10) to the dg-operadD(Q), the cobar-construction ofQ. In particu-
lar, the graded PROP formed by the cohomology ofA�Q is isomorphic to��1�Q!

whereQ! is the Koszul dual quadratic operad.

This statement provides a non-symplectic analog of the result of M. Kontsevich
[K1] describing the stable cohomology of the algebra of hamiltonial vector fields.
Theorem 4.5.3 corresponds to the case whenQ = Com, the operad describing
commutative algebras.

4.7. EXAMPLE: NONCOMMUTATIVIZATION

As we could see before, all the properties of the Atiyah class, including the detailed
unraveling of the Jacobi identity, can be deduced from the careful study of the
non-linear fiber bundle onX whose fiber overx is the formal neighborhood
of x, i.e., the spectrum of the completed local algebraÔX;x. This algebra is
free, i.e., isomorphic toC[[t1; : : : ; td]], d = dim(X), but there is no canonical
identification, the Atiyah class being an obstruction to choosing such identifications
for all x in a holomorphic way. Taken for allx 2 X, the algebraŝOX;x arrange
themselves into a sheaf of complete commutativeOX -algebrasO

X
(1)
X�X

(functions

on the formal neighborhood of the diagonal), which is locally onX isomorphic to
OX [[t1; : : : ; td]].

For any commutative ringR letRhht1; : : : ; tdii be the algebra of non-commuta-
tive formal power series int1; : : : ; td, with coefficients inR, i.e., the completion of
the free associative algebra on thexi. Now let us make the following definition.

DEFINITION 4.7.1. LetX be ad-dimensional complex manifold. A noncommuta-
tive structure onX is a sheaf of complete associativeOX -algebrasO onX which
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locally onX is isomorphic toOXhht1; : : : ; tdii, together with an isomorphism
O=[O;O]! O

X
(1)
X�X

.

In other words, such a structure gives, for everyx 2 X a ‘non-commutative
formal neighborhood’ whose ring of functions isOx, the fiber ofO at x. These
rings are noncanonically isomorphic toChht1; : : : ; tdii.

EXAMPLE 4.7.2. A natural class of examples of manifolds and, more generally,
stacks with noncommutative structure is provided by the moduli spaces of vector
bundles (as opposed to more general principalG-bundles). Namely, ifE is a vector
bundle on an algebraic varietyZ. Suppose thatH0(X;Hom(E;E)) = C. Let
M be Kuranishi deformation space ofE, so that we have a distinguished point
[E] 2M. Then, by the general principles of deformation theory [GM], the formal
neighborhood of[E] inM is the spectrum ofH0

Lie(R�(Z;End(E))), the zeroth Lie
algebra hypercohomology of the dg-Lie algebraR�(Z;End(E)). Here we regard
End(E) as a sheaf of Lie algebras with respect to the bracket[a; b] = ab � ba,
thereby ignoring a richer structure of an associative algebra. If we do not ignore this
structure, we get an associative dg-algebra structure onR�(Z;End(E)). Therefore,
the associative algebra hypercohomology

H0
Ass(R�(Z;End(E)));

(to be precise, here we mean the Hochshild cohomology withC coefficients and the
algebra should be modified so as to get rid of the unity), will give us an associative
algebra whose quotient by the commutant maps naturally into the Lie algebra
cohomology, i.e., into the completed local ring ofM at [E], and under suitable
conditions (when the bundle is simple and unobstructed) this is an isomorphism.

A more down-to earth explanation of this phenomenon can be obtained as
follows. The moduli space ofG-bundles for anyG gives rise to a representable
functor (stack) which is a contravariant functor on the category of affine schemes, or,
what is the same, a covariant functor on the category of commutative algebras. In the
case whenG = GLr, i.e., we are dealing with rankr vector bundles, this functor
can be naturally extended to all associative algebras, i.e., we can meaningfully
speak about families of rankr vector bundles parametrized by ‘Spec(A)’ whereA
is any associative algebra. Such a family is just given, in a�Cech coveringfUig,
by transition functions�ij which are sections of GLr(OX 
A) overUi \ Uj . For
example, ifA = Matn(C), then a ‘family’ of rankr bundles parametrized byA is
just a rankrn bundle onX.

Remark. As M. Kontsevich communicated to the author upon reading the man-
uscript, he also has had the idea equivalent to Definition 4.7.1 and was aware of
Example 4.7.2.

The considerations of this and the earlier sections revolve, as it is clear from
contemplating Theorem 4.5.3, around the Koszul dual pair of operads(Com;Lie):
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manifolds are described by commutative algebras of functions, while the curvature
data lead to Lie algebras. So they can be generalized to manifolds with a noncom-
mutative structure, if we consider instead the dual pair(Ass;Ass), whereAss is
the (self-dual) operad governing associative algebras, see [GiK]. Let us summarize
briefly this generalization.

THEOREM 4.7.3.LetX be a complex manifold with a noncommutative structure,
T = TX is its usual tangent bundle. Then:

(a) The second-order obstruction to global trivialization of the noncommuta-
tive formal neighborhoods is a certain class�X 2 H1(X;T 
 T ) (the non-
commutative Atiyah class), whose symmetrization is the usual Atiyah
class�TX .

(b) The desuspension��1�X , regarded as an element of the operad
��1H�(X; ET ), is an associative element, i.e., it defines a morphism of
operadsAss ! ��1H�(X; ET ). In particular, for any sheafA of com-
mutativeOX -algebras the shifted cohomologyH��1(X;T 
 A) has a
natural structure of an associative algebra, given by�X .

(c) The graded Lie algebra structure onH��1(X;T 
 A) defined by the usual
Atiyah class, is obtained from the associative structure in(b) by the standard
formula [a; b] = ab � ba. In particular, if A = OX , then the structure of an
associative algebra onH��1(X;T ) is in fact commutative.

5. The symplectic Atiyah class

5.1. SYMMETRY OF THE ATIYAH CLASS

Let nowX be a complex manifold equipped with a holomorphic symplectic struc-
ture. Let! 2 �(X;
2) be the symplectic form. We will identify the tangent bundle
T = TX with its dualT � by means of!. After this identification, we can view the
Atiyah class�TX as an element ofH1(X;S2(T )
 T ).

PROPOSITION 5.1.1.The element�TX is totally symmetric, i.e., it lies in the
summandH1(X;S3(T )).

Proof. Let Symp(X) be the sheaf of connections inTX preserving the sym-
plectic form !. Since for a symplectic vector spaceV the Lie algebra sp(V )
of infinitesimal symplectic transformations is identified withS2(V ), the sheaf
Symp(X) is, by 1.5, a torsor over
1 
 sp(T ) ' 
1 
 S2(T ) ' T 
 S2(T ).
This shows that�TX is symmetric with respect to the permutation of the second
and third argument. Since it is already symmetric in the first two arguments, the
assertion follows.

Remarks5.1.2. One can right away exhibit anS3(T )-torsor from which�TX
is obtained by change of scalars. This is the torsor Symptf (X) of torsion-free
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symplectic connections. As in (2.2), it can be materialized as the sheaf of sections
of the fiber bundle	(X)! X whose fiber	x(X) forx 2 X is the space of second
jets of holomorphic symplectomorphisms�: TxX ! X such�(0) = x; do� = Id.
Clearly,	x(X) is an affine space overS3(TxX), and sections of	 are the same
as torsion-free symplectic connections.

5.2. THE IHX RELATION FOR THEATIYAH CLASS

Let V be a finite-dimensional symplectic vector space whose symplectic form
is denoted by!. ThenV � is also a symplectic vector space, with respect to the
inverse form!�1. Let � be a finite 3-valent graph with possibly several legs
(non-compact edges bound by a vertex from one side only, cf. [GeK]). Denote by
Vert(�);Ed(�);Leg(�) the sets of vertices, (compact) edges and legs of�. Let
also Flag(�) be the set of all flags consisting of a vertex and an incident half-edge
(including a leg) of�. For a vertexv let Flag(v) be the 3-element set of flags having
v as a vertex. We will distinguish between arbitrary automorphisms of� and strict
automorphisms (i.e., those fixing each leg).

For a finite-dimensional vector spaceW we will denote by det(W ) the top
exterior power ofW . If I is a finite set, then det(CI) will be abbreviated to det(I).
Note that det(I)
2 is canonically (i.e., Aut(I)-equivariantly) isomorphic toC. For
an edgee of � we denote by OR(e) the orientation line ofe, i.e., OR(e) = det(@e)
where@e � Flag(�) is the set formed by the two flags with edgee.

With these notations, note that we have a natural Sp(V )-equivariant projection

p�: (S3(V ))
Vert(�) ! (V 
Leg(�))

O

e2Ed(�)

OR(e); (5.2.1)

obtained by applying the form!: V 
V ! C to any edge of�. The factors OR(e)
appear because of the antisymmetry of!.

For example, there is a unique, up to scalar, Sp(V )-equivariant antisymmetric
map

pIHX : S3(V )
 S3(V )! S4(V ); pIHX(a
 b) = fa; bg; (5.2.2)

the Poisson bracket ofa andb considered as cubic polynomial functions onV �. By
working out the definition of the Poisson bracket, we find that the composition of
pIHX with the embeddingS4(V ) ,! V 
4 can be represented as the sum of three
projections

pIHX = pI + pH + pX : S3(V )
 S3(V )! V 
4; (5.2.3)

whereI ;H;X are the three possible (up to strict isomorphism) trivalent graphs with
two vertices and the set of legs identified withf1;2;3;4g.
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Now the Bianchi identity (1.2.2) gives, after the symmetrization, that the Atiyah
class�TX 2 H1(X;S3(T )) satisfies the so-called IHX relation

pIHX(�TX [ �TX) = f�TX ; �TXg = 0 in H2(X;S4(T )): (5.2.4)

Of course, this can be understood from the point of view of the Lie operad, as in
(3.5–6), the graphsI ;H;X corresponding to the three terms in the Jacobi identity.

5.3. ROZANSKY–WITTEN CLASSES

Let now� be a trivalent graph without legs havingl vertices. Then the projectionp�
from (5.2.1) takes values inC. By applying it to(�TX)l 2 H l(X; (S3(T ))
Vert(�))
we get elements

c�(X) 2 H l(X;O)
 det(Vert(�))

O
e

OR(e): (5.3.1)

The factor det(Vert(�) appears because of the anticommutativity of the multipli-
cation in the cohomology, while the origin of the OR(e) was explained in 5.2.
The following lemma shows that the sign factor in (5.3.1) is the same as the one
considered by Rozansky–Witten [RW] and Kontsevich [K1].

LEMMA 5.3.2.For a trivalent graph� without edge-loops there is a natural(i.e.,
Aut(�)-equivariant) identification of1-dimensional vector spaces

det(Vert(�)) 

O

e2Ed(�)

OR(e) ' det(Ed(�))
 det(H1(�;C))

'
O

v2Vert(�)

det(Flag(v)):

Proof. We start with the first isomorphism. Note that

det(Ed(�)) 

O

e2Ed(�)

OR(e) ' det

0@ M
e2Ed(�)

OR(e)

1A ;
while the consideration of the chain complex of�M

e2Ed(�)

OR(e)! CVert(�);

gives

det(
M

OR(e)) ' det(CVert(�))
 det(H1(�;C)):
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This implies that the tensor product of the left and the right-hand sides of the first
proposed isomorphism in (3.3.2), is canonically trivial. Because det(I)
2 ' C for
any finite setI, we get the first isomorphism.

To establish the second isomorphism, consider the projections

Vert(�)
� � Flag(�)

 �! Ed(�):

The consideration of fibers of gives

det(Flag(�)) = det

 
Ed(�)�

M
e

OR(e)

!

= det(Ed(�))
 det(Vert(�))
 det(H1(�;C));

and the consideration of fibers of� gives that

det(Flag(�)) = det(Vert(�))

O

v2Vert(�)

det(Flag(v));

whence the statement.
For a 3-element setI a choice of direction of the real line det(RI) is the same

as a cyclic order onI. Thus the classesc�(X) can be seen as being elements of
H l(X;O) but defined on graphs with cyclic orders on each Flag(v) and changing
the sign under the changing of the cyclic order. Further, it follows from (5.2.3) that
thec� thus understood satisfy the IHX relation in the sense of [RW]. So we get the
first part of the following statement.

THEOREM 5.4.For any holomorphic symplectic manifoldX the classesc�(X)
defined before, give rise to invariants of3-manifolds with values inH l(X;O). If
X is compact and hyper-K̈ahler, then thec� coincide with the coefficients defined
by Rozansky and Witten.

The second part just follows from the fact that the curvature represents the
Atiyah class (Proposition 1.3.1).

It is convenient to consider as in [RW], numerical invariants constructed from
thec�(X). Namely, let us put

�c�(X) = !l=2c�(X) 2 H l(X;
l): (5.4.1)

Here! 2 H0(X;
2) is the symplectic form andl is the (necessarily even) number
of vertices of the 3-valent graph�. Further, ifX is compact andL is a line bundle
onX, we define the number

b�(X;L) =

Z
X
�c�(X) � c1(L)

dim(X)�l 2 C: (5.4.2)
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PROPOSITION 5.4.3.The classes�c�(X) and the numbersb�(X;L) remain
unchanged if the symplectic form! onX is replaced by�!, � 2 C�.

Proof. The class�TM 2 H1(X;S2T � 
 T ) does not depend on! at all. When
we write it in the totally symmetric form, we in fact apply the isomorphism

�!: S2T � 
 T ! S2T 
 T;

which is homogeneous in! of degree(�2). Since every pairing corresponding to
an edge of� is homogeneous in! of degree+1, we find thatc�(X) is homogeneous
of degree

�jVert(�)j+ jEd(�)j = �(1=2)jVert(�)j = �l=2;

where we used the fact that� is 3-valent. Therefore�c�(X) is homogeneous of
degree 0.

5.5. CALCULATION OF THE c� VIA NON-SYMPLECTIC CONNECTIONS

Note that the Atiyah class�TX used to construct thec�, is defined in terms of the
tangent bundleTX alone, without any symplectic structure. Provided such structure
! is given,�TX just happens to betotally symmetric in all three arguments (if
we identifyT ' T � by means of!). This means that a Dolbeault representative
of �TX in 
0;1 
 S3(TX) can be found by forcibly symmetrizing the (1, 1)-part
of the curvature of any (1, 0)-connection inTX. In particular, we can take any
Kähler (not necessarily hyper-Kähler) metric, write its curvature as a section of

0;1
(
1;0

1;0
T ), identifyT with
1;0 via the symplectic form and then just
symmetrize with respect to the last 3 arguments. Denoting byR the corresponding
(0;1)-form with values inS3(T ), we find:

THEOREM 5.5.1.The classc� is represented by the(0; l)-formp�(R
Vert(�)).

5.6. REMINDER ON MODULAR OPERADS AND GRAPH COMPLEXES

We are now going to upgrade the operadic analysis of the properties of the Atiyah
class and the curvature for general complex manifolds to the symplectic case. For
this, we need the concept of a modular operad [GeK2]. Let us briefly recall this
concept.

A stable((g; n))-graph is a connected graph�with the following structures and
properties:

(5.6.1) The set of legs of� is identified withf1; : : : ; ng.
(5.6.2) A functiong: Vert(�) ! Z+ is given such that 2(g(v) � 1) + jvj > 0

for each vertexv.

(5.6.3.) dim(H1(�;C)) + �vg(v) = g.
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Let I((g; n)) be the set of isomorphism classes of stable((g; n))-graphs, and
~I((g; n)) be the similar set in which we allow disconnected graphs as well.

In [GeK2], several versions of modular operads were introduced, differing by
the sign conventions (‘cocycles’) entering the definition. In the present paper we
are going to use only one of them. Namely, for a stable((g; n))-graph� we set

<(�) =
O

e2Ed(�)

OR(e): (5.6.4)

The spaces<(�) define a cocycle< on the category of graphs in the sense of
[GeK2], Section 4. By a modular operad we will in the sequel always mean a
<-modular operad. Explicitly, this is an ordinary operadP with the following
additional structures:

(5.6.5) Symmetry between the inputs and the output, i.e., aSn+1-action onP(n).
To emphasize this symmetry, we writeP((n+ 1)) for P(n).

(5.6.6) A decompositionP((n)) =L2g�2+n>0P((g; n)) intoSn-invariant sub-
spaces. TheSn-moduleP((g; n)) defines, in a standard way, a functor
on the category ofn-element sets and bijections, whose value on a setJ
will be denote ofP((g; J)).

(5.6.7) Graphical composition maps

<(�)

O

v2Vert(�)

P((g(v);Leg(v) ))! P((g; n)):

These structures are required to satisfy the compatibility properties given in
[GeK2], n. 4.2.

EXAMPLES 5.7. (a) IfV is a vector space with a skew-symmetric inner productB,
then we have theendomorphism modular operadE [V ] with E [V ]((g; n)) = V 
n

for all g, theSn-action being the standard one and the compositions defined by
contracting with help ofB. Accordingly, for a holomorphic symplectic manifold
X we have a graded modular operadH�(X; E [T ]) = fH�(X;T
n)g.

(b) The suspendedLie operad�Lie is a modular operad with�Lie((g; n)) = 0
for g > 0 and�Lie(n � 1) (i.e., the spaceLie(n � 1) placed in degreen � 2)
for g = 0, and with theSn-action described in [K1], [GeK1-2]. This action arises
naturally from the consideration of Lie algebras with an invariant inner product. In
the same way,�WLie is a modular dg-operad.

(c) The graph complexes of Kontsevich [K1], once generalized to allow graphs
with legs, form a modular operad. More precisely, letG((g; n)) � I((g; n)) be the
set of� for which all the numbersg(v) are 0. Then the condition (5.6.2) just means
jvj > 3 for all v, and (5.6.3) means that the number of loops in� is g. Set

F((g; n)) =
M

�2G((g;n))

�(�)); (5.7.2)
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�(�) = det(Ed(�))� 
 det(H1(�;C))�; deg(�(�)) = jVert(�)j: (5.7.2)

Then theF((g; n)) form a modular dg-operadF with compositions given by
grafting of graphs and the differential dual to the one contracting edges. In fact,
F is a certain twist ofFCom, the Feynman transform of the commutative operad
defined in [GeK2]. We chose the present version to avoid dealing in this paper with
twists and suspensions of modular operads and the resulting sign issues.

Note that the tree part ofF is

F((0; n)) = �WLie((n)) = �WLie(n� 1): (5.7.3)

Further,F((1; n)) (the part formed by 1-loop graphs) can be expressed in terms
of the weak Lie PROP, namely it is the subcomplex in�WLIE(n;1) formed by
connected graphs. The legless partF((g;0)) is the graph complex defined by
Kontsevich in [K1].

(d) Let ~G((g; n)) be the subset of~I((g; n)), see 5.6 formed by graphs with all
g(v) = 0. Let ~F((g; n)) be the space defined similarly to (5.7.1) but by summing
over ~G((g; n)). They form a modular dg-operad~F .

5.8. OPERADIC INTERPRETATION OF THEJACOBI IDENTITY: THE LEVEL OF
COHOMOLOGY

Let (X;!) be a holomorphic symplectic manifold. Then we have a graded modular
operadH�(X; E [T ]), see the example 5.7(a). The Atiyah class�TX can be regarded
as an element of a modular operad

�TX 2 H�(X; E [T ])((0;3)):
THEOREM 5.8.1.The correspondence

�([x1; x2]) 2 �Lie(2) = �Lie((0;3)) 7! �TX ;

(with�meaning the suspension) defines a morphism of modular operads�Lie!
H�(X; E [T ]).

Proof. The only new property here, as compared to Theorem 3.5.1, is that
we have a morphism of modular operads, i.e., that it is invariant with respect to
the action of larger symmetric groups. But this follows from the total symmetry
of �TX .

5.9. OPERADIC INTERPRETATION: DOLBEAULT FORMS

We now look at the modular dg-operad
0;�(E [T ]) = f
0;�(T
n)g. Assume that
X is equipped with a hyper-K̈ahler metrich . Then the canonical (0,1)-connection
r of h, see 2.5, preserves the symplectic structure. The covariant derivatives of the
curvature, which we denotedRn; n > 2, are also totally symmetric

Rn 2 
0;1(Sn+1T ): (5.9.1)
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For a graph� 2 ~G((g; n)) and a symplectic vector spaceW let

P�:
O

v2Vert(�)

SjvjW !W
n (5.9.2)

be the natural contraction map. Let

R� = p�

0@ O
v2Vert(�)

Rjvj�1

1A 2 
0;n(T
n); N = jVert(�)j: (5.9.3)

ThenR� can be regarded as a morphism

R�: �(�)! 
0;�(T
n): (5.9.4)

THEOREM 5.9.5.The morphismsR� extend to a morphism of modular dg-operads

~F ! 
0;�(E [T ]):

In particular, for connected graphs with no legs the tensorsRi define a morphism
fromF((g;0)) (Kontsevich’s graph complex) into the Dolbeault complex
0;�.

Proof. This follows from Theorem 2.6, once we take into account the additional
symmetries of theRi.

5.10. OPERADIC INTERPRETATION: FORMAL GEOMETRY

Similarly to 4.2, letp: 	 ! X be the fiber bundle whose fiber atx consists
of all formal symplecticexponential mapsTxX ! X. This bundle carries the
tautological forms

��n 2 
1
	=X 
 p�Sn+1T; (5.10.1)

from which we construct the forms

��� 2 
N	=X 
 p�T
n; � 2 eG((g; n)); jVert(�)j = N; (5.10.2)

similarly to (5.9.3).

THEOREM 5.10.3.The forms��� give rise to a morphism of modular dg-operads

~F ! H0(X; (p�

�
	=X)
 E [T ]):

In particular, for connected graphs with no legs these form define a map ofF((g;0))
into p�
�	=X .
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The proof can be obtained by embeddinge: 	 ,! � where� is the space of
all formal exponential maps from 4.2 and noticing that��n = e��n, where�n is
the tautological form from (4.2.7). Our statement, which amounts to calculating
d	=X ��n, follows from Theorem 4.3.

5.11. OPERADIC INTERPRETATION: LIE ALGEBRA COHOMOLOGY

The construction of 5.10 comes close to the original approach of [K2]: even though
we do not use the�@-foliation onX and its universal characteristic classes, the
formal geometry framework can be regarded as a holomorphic replacement of the
�@-theory. In particular, the cohomology of the Lie algebra of formal Hamiltonian
vector fields has direct interpretation in both frameworks. The role of Fuks’ theorem
(4.5.3) from the non-symplectic case is played here by the result of Kontsevich
[K1]. Let us formulate it in a more general form, allowing graphs with legs so that
the operadic formalism is applicable.

Let r be an even integer andV = Cr be the standard symplectic vector space
of dimensionr. Let

Ham0
r =

Y
n>2

SnV (5.11.1)

be the Lie algebra of formal Hamiltonian vector fields onV with trivial constant
term. Its degree 2 part isS2V = spr, the Lie algebra of linear symplectomorphisms.
As in 4.4, any relative cochain of(Ham0

r; spr) with coefficients in some tensor
power of V gives rise to a natural relative form on	=X with values in the
corresponding tensor power ofp�TX. In particular, the tautological cochain

�an 2 C1(Ham0
r; spr; S

n+1V ); (5.11.2)

associating to a vector field its degreen+ 1 part, corresponds to the form��n. For
any graph� 2 G((g; n)) define

�a� 2 CN (Ham0
r; spr; S

n+1V ); (5.11.3)

as in 5.8.1. Furthermore, the complexes

P �r ((g; n)) := C�(Ham0
r; spr; S

nV ) (5.11.4)

define a modular dg-operadP �r . The symplectic analog of Theorem 4.5.2 is as
follows.

THEOREM 5.11.5. (a)The maps

�a
 : �(�)! P �r ((g; n)); � 2 ~G((g; n))
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define a morphism of modular operads� : ~F ! P �r .
(b) If r� g; n; i, then the map of vector spaces

� : ~F i((g; n))! P ir((g; n))

is an isomorphism.

This is proved in the same way as the result in [K1] (Theorem 1.1, which
concerns graphs without legs, i.e., cohomology with trivial coefficients) or [Fuk].
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