Data = Content + Structure

Before we delve into the practical challenges of data processing, let us
take a closer look at some core concepts we need throughout the book.
The concept of scientific “data” is obviously of key importance. We need
to clarify what we mean by it, and how information can be represented
digitally as data. We will also learn to separate the data content — which
refers to the actual information — from the logical structure in which this
information is contained. Tables are by far the most frequently used data
structure in the social sciences, which is why we spend a great deal of this
chapter discussing the tabular data representation and its limits. We also
review some basic functions of R: What are data frames, and how do we
use them to store information? As discussed at the beginning, the book
does not give a comprehensive introduction to R, but the examples below
will help you refresh your memory.

3.1 WHAT IS DATA?

In our research, we use scientific data, which is systematically coded infor-
mation about the real world.® Thus, we represent particular aspects of the
real world by using codes so that this information can be stored as part
of our dataset and later be processed by the researchers themselves, or by
computers. In most cases, we will use numbers as codes, which represent,
for example, the population of countries, or the vote counts of parties in

' Note that data is the plural of the Latin word datum. However, it is increasingly being
used also as a singular word. Throughout this book, we follow the same convention. See
also the blog post by Izzo (2012) about this.

23

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

24 3 Data = Content + Structure

an election. In other cases, we can use words as codes. For example, a list
of political parties will likely include the party name, encoded as text in a
particular language. Also, much simpler codes are possible, for example
if we represent the presence or absence (o/1) of a particular feature (for
instance, if a country is considered to be democratic or not).

Most scientific datasets are created to help us conduct comparisons
between different entities — countries, precincts, experimental subjects,
etc. This is why a dataset typically contains data about many different, yet
comparable, entities. A social science dataset can be generated in different
ways. In a survey, for example, we simply record the answers that subjects
give to the specific survey questions. Here, the coding is predetermined
by the way we design our survey and the questions we include. Other
datasets are created by human coders, for example most of the cross-
national datasets on political regimes or violent conflict. Yet another type
of dataset requires little to no additional coding; for example, if we are
interested in communication on social media, we can obtain a dataset of
tweets directly from the Twitter platform. Here, again, information about
each tweet will be encoded in a particular way, for example the date and
time it was sent, or the name of the Twitter handle it was sent from.

The process of assigning codes to represent particular characteristics
of real-world entities is sometimes simple (e.g., Twitter data comes with
a precise time stamp readily assigned to each tweet), while it is much
more difficult in other cases: For example, coding whether a country has
a democratic system is difficult and subject to a major debate in political
science. The challenges to coding and measurement in the social sciences
are typically characterized by the requirements of validity and reliability
that most readers will be familiar with; the former means that the coding
or the measurement in a dataset should correspond to the theoretical
concept we aim to capture, while the latter demands that the assignment
of codes in our data be transparent, replicable, and uniformly applied
across all the different entities we cover. These challenges arise at the data
collection stage, which is why they are not discussed in this book. What
matters for us is how data of particular types is represented and processed,
but not where this information comes from.

3.2 DATA CONTENT AND STRUCTURE

In the previous section, we defined data as systematically coded informa-
tion about the real world. For this data to be useful for scientific analysis,

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.2 Data Content and Structure 25

we need to make sure that it is kept in a format that can be stored, shared,
and analyzed. In other words, we need to find a good representation for
it. Consider the following example:*

sdb <-
"Switzerland is a country with 8.3 million inhabitants,
and its capital is Bern. Another country is Austria;
its capital is Vienna and the population is 8.7 million."

The simple object sdb is essentially a database; it contains information
about two countries, their capitals, and their population. This informa-
tion is what we call the content of the data. However, the information
contained in this text may be obvious and easy to extract for humans,
but it is much more difficult to process computationally. In other words,
this data comes without a clear structure; unless we understand human
language (which computers usually do not), we do not know what entities
are referred to in the text, nor is it straightforward to locate the informa-
tion about these entities. Now compare this example with the following
method to set up a database, where we use the same content but with a
given structure:

tdb <- data.frame(

country = c("Switzerland", "Austria"),
population = ¢(8.3, 8.7),
capital = c("Bern", "Vienna"))

In this example, we use R’s default data structure for tables, a data
frame, to create our database in a structured way. For each country con-
tained in our tabular database tdb, we have different types of informa-
tion, clearly labeled as such. In a table, each line typically refers to an
observation, while the columns contain the different variables we have
for the observations. This structure makes the second dataset much easier
to understand and process as compared to the simple database sdb above.
In short, while the two examples are the same in terms of content, they
differ significantly when it comes to their structure. Almost all data we
use in our work comes in tabular formats, and all statistical toolkits are
designed to process data in tables. Despite the omnipresence of tables, it
is, however, important to understand that a table is just one type of data
structure; it is one that is very convenient for social science applications,
but also has its limits, as we will see later.

2 Population estimates for the following examples were obtained from the United Nations
Department of Economic and Social Affairs (2019) and rounded.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

26 3 Data = Content + Structure

3.3 TABLES, TABLES, TABLES

Tables (or so-called rectangular datasets) are the main type of data struc-
ture in the social sciences. They have rows and columns. In social science
terminology, each row represents a case or an observation, and each col-
umn a variable in our dataset. Let us take a look at how R deals with
tables, using again the data frame we created above. There are several
standard operations we can perform on a table.

3.3.1 Accessing Data

R gives us several easy ways to access the information in our table. For
example, we can access a single value by using the row and the column
index. For example, Switzerland’s (row 1) population (column 2) can be
retrieved with

tdb[1,2]

[1] 8.3

Alternatively, we can filter out the entire record for Switzerland by
omitting the column identifier, as in

tdb[1,]

country population capital
1 Switzerland 8.3 Bern

In general, the square brackets notation is used in R for subsetting.
Here, we apply it to data frames, but it can also be used for simple vec-
tors, matrices of numbers, etc. Note the comma in the expression, which
indicates that the given number is a row and not a column index. Selecting
particular columns can also be done by providing their indices (here, the
range from 1 to 2) as follows:

tdb[1:2]

country population
1 Switzerland 8.3
2 Austria 8.7

or simply by providing the name of the column:

tdb$population

[1] 8.3 8.7

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.3 Tables, Tables, Tables 27

The $ operator extracts a column from the table as a vector. It is
important to mention that R automatically keeps track of the kind of
information that is contained in the columns of a data frame. In other
words, it maintains types for the columns. In our above example, some
information in our dataset is coded as text, for example the capitals
of the two countries. These short pieces of text are also referred to as
strings in computer science. Other variables contain numbers, such as the
country populations. Let us check the types that R has assigned to our
dataset:

typeof (tdb$capital)
[1] "character"
typeof (tdb$population)

[1] "double"

As you can see, the names of the capitals are stored in a column of
type “character,” while the population estimates are of the type “double,”
which is the default type for numeric information. There are several other
data types for vectors in R (such as “logical” values that can be either TRUE
or FALSE, or the “integer” type used for storing integer numbers).

Oftentimes, we want to extract only a subset of the table that satisfies
a particular filtering criterion. For example, we can extract the records
for Switzerland (which, in our case, is only one) using;:

tdb[tdb$country == "Switzerland",]

country population capital
1 Switzerland 8.3 Bern

Here, the tdb$country == "Switzerland" expression internally calcu-
lates a set of indices for those rows where the country column contains
Switzerland. As above, we need to use the comma operator to tell R that
the filtering condition we apply (the specification of a particular country
name) applies to the rows of the table. If you think this expression is too
complicated, there is also a simpler way to subset tables using the subset)
function:

subset(tdb, country == "Switzerland")

country population capital
1 Switzerland 8.3 Bern

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

28 3 Data = Content + Structure

3.3.2 Updating Data

Updating the information in a table is also straightforward. We can use
the indexing notation again to update particular values in the table, for
example, Switzerland’s population:

tdb[1,2] <- 8.4

tdb

country population capital
1 Switzerland 8.4 Bern
2 Austria 8.7 Vienna

This, however, is not convenient, since we have to refer to a column
using the index and not the name. Instead, we can do the following:

tdb[1, "population"] <- 8.3

tdb

country population capital
1 Switzerland 8.3 Bern
2 Austria 8.7 Vienna

This is still not optimal, since we need to know Switzerland’s row
index. To identify the rows for Switzerland, we can again use the state-
ment we introduced above:

tdb[tdb$country == "Switzerland", "population"] <- 8.2
tdb
country population capital
1 Switzerland 8.2 Bern
2 Austria 8.7 Vienna

3.3.3 Adding Data

Adding new data to a table can be done by either (i) inserting new rows
or (i) adding new columns. The latter can be done by simply assigning
values to the new column:

tdb$area <- c(41, 83)

tdb

country population capital area
1 Switzerland 8.2 Bern 41
2 Austria 8.7 Vienna 83

Inserting rows to our table is done using the rbind() function, which
“binds” rows together. You can use it to combine two tables into one

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.3 Tables, Tables, Tables 29

(provided they have the same structure), but here we use it to add a
single line:

tdb <- rbind(tdb, c("Liechtenstein", 0.038 , "Vaduz", 0.16))

tdb

country population capital area
1 Switzerland 8.2 Bern 41
2 Austria 8.7 Vienna 83
3 Liechtenstein 0.038 Vaduz 0.16

Note that rbind() creates a new data frame from the inputs it gets.
Therefore, we need to store the newly created table again in the original
variable, which essentially deletes the old tdb.

3.3.4 Deleting Data

Finally, we also need to demonstrate how to remove data from our
table. Again, there are two possible operation for deletions, namely, those
affecting the columns and those affecting the rows of the table. Deleting
columns is simple:

tdb$area <- NULL

tdb

country population capital
1 Switzerland 8.2 Bern
2 Austria 8.7 Vienna
3 Liechtenstein 0.038 Vaduz

The deletion of rows from an R data frame may not be completely
intuitive, as you need to create a subset of the rows you would like to
keep, and overwrite the old data frame. This can be done, for example,
using the subset() function we have described above:

tdb <- subset(tdb, country != "Liechtenstein")
tdb

country population capital
1 Switzerland 8.2 Bern
2 Austria 8.7 Vienna

In this statement, we subset our data frame to those rows where the
country column does 7ot equal Liechtenstein, and store the result in the
tdb variable.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

30 3 Data = Content + Structure

3.4 THE STRUCTURE OF TABLES MATTERS

Before we start digging into actual data using different tools, let us spend
some more time thinking about tables and their structure. While for many
applications, it is entirely obvious what columns you need in your table,
in some cases finding a good structure for your table is not as straight-
forward as it seems. This is why we will take a closer look at a few more
toy examples, so as to better understand why and how the structure of
tables matters. The recommendations here constitute the traditional way
to organize data, which applies to most applications and projects we deal
with in the social sciences.

3.4.1 Tables Should Grow Down, Not Sideways

A general rule of thumb you should observe when defining a tabular
structure is that the columns — that is, the variables in the table — should
be independent from the observations it eventually contains. That is, you
need to select columns that capture all the important aspects of your
data, regardless of how many cases/rows you later add to the table. A
common mistake we oftentimes see is the use of case-specific information
in the column names rather than in the individual cells of the table. This
happens frequently in cross-sectional time series data, which is data about
different entities (e.g., countries) that are observed at multiple time points
(e.g., years). Consider our example from above, now revised to record the
country population in different years:

bad_table <- data.frame(
country = c("Switzerland", "Austria"),
pop1950 = c(4.7, 6.9),
popl960 = c(5.3, 7.1),
pop1970 = c(6.2, 7.5))

bad_table

country popl950 popl960 popl970
1 Switzerland 4.7 5.3 6.2
2 Austria 6.9 7.1 7.5

This format is called a “wide” table. The setup of the table may be
convenient for human readers, but it causes many issues when processing
the data computationally. It obviously violates our requirement that the
variables we record in the dataset (which constitute the columns in the
table) should be independent from the set of entities we record these char-
acteristics for. In the above example, when adding population estimates

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.4 The Structure of Tables Matters 3T

for more recent years, we would have to add more columns, rather than
rows, to the table. This is not an issue in itself, but this structure is difficult
to work with if we want to perform simple calculations on our table.
For example, suppose we want to compute the average population across
different observations in our table. This is easy to do by year:

mean (bad_table$pop1950)
[1] 5.8
mean (bad_table$pop1960)
[1] 6.2
mean(bad_table$pop1970)

[1] 6.85

However, what if we are interested in the average across all countries
and years? With the table above, this is more difficult:

mean (c(
mean (bad_table$pop1950),
mean (bad_table$pop1960),
mean (bad_table$pop1970)))

[1] 6.283333

This still looks acceptable, but now imagine that we are adding obser-
vations for more years to our dataset. This will make the table grow
sideways, not down. If we compute the average population from the table,
the statement becomes longer and longer. And, even more problematic, we
need to update the calculation of the average population every time we
add a new year to our table, which is not very convenient. How, then, is it
possible to fix this? Can we design a better table structure for time series
data? Consider this example:

good_table <- data.frame(
country = c(rep("Switzerland", 3), rep("Austria", 3)),
year = c(rep(c(1950, 1960, 1970), 2)),
population = c(4.7, 5.3, 6.2, 6.9, 7.1, 7.5))
good_table

country year population
1 Switzerland 1950 4.
2 Switzerland 1960
3 Switzerland 1970
4 Austria 1950
5 Austria 1960
6 Austria 1970

NN o o wv
Vi =k O N W

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

32 3 Data = Content + Structure

This format is called a long table. The main difference between the
bad_table and the good_table is obvious: Rather than using table columns
for different years, we now introduce a new column year to link pop-
ulation values not just to the respective country, but also to the year
they refer to. This makes working with our table much easier: Adding
observations for more years is simple in this table structure; we can just
append more rows to the table. Also, computing the average population
over all observations is now a simple operation:

mean(good_table$population)

[1] 6.283333

You will never have to change this statement, regardless of how many
observations and years you are adding to the data frame. Readers may
now wonder how we get the annual average out of this table, which was
easy in the bad_table above. For the good_table, we do this by letting R
compute averages over groups of data, rather than the entire set of obser-
vations. This is called aggregation. One way to perform an aggregation
in R is by using the summaryBy () function in the doBy package:

library(doBy)
summaryBy (population

year, data = good_table, FUN = mean)

year population.mean

1 1950 5.80
2 1960 6.20
3 1970 6.85

In the statement above, we need to specify which variable we would
like to aggregate over (population), and which variable(s) we would like
to use for grouping (year). Also, we need to tell the function what the data
frame is for the aggregation (good_table), as well as the summary function
we would like to use (mean). The function then combines all observations
with the same values in the grouping variable, and applies the summary
function to each of these groups. This is exactly what we need, and it
returns the annual averages from our dataset. So overall, the structure
in our good_table seems to be much easier to handle, at least when we
process our data computationally. You still see many examples similar to
the bad_table, which may be due to the fact that they can be easier to
understand for human readers. As we will see later, spreadsheets such as
Excel are useful when humans interact manually with data, but not when
we try to push the automation of data processing for maximum efficiency
and transparency, which is our aim in this book.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.4 The Structure of Tables Matters 33

3.4.2 One or Multiple Tables?

The above example showed us that there are good and bad ways to struc-
ture individual tables. We now turn to the question of how many tables
we need for a good representation of our data. Again, let us consider
the good_table. Let us assume that, in addition to the yearly population
estimates, we would like to store information about national capitals, like
we did in the examples above. The simplest way to do this is to add the
names of the capitals in a new column:

good_table2 <- good_table
good_table2$capital <- c(rep("Bern", 3), rep("Vienna", 3))
good_table2

country year population capital

1 Switzerland 1950 4.7 Bern
2 Switzerland 1960 5.3 Bern
3 Switzerland 1970 6.2 Bern
4 Austria 1950 6.9 Vienna
5 Austria 1960 7.1 Vienna
6 Austria 1970 7.5 Vienna

Since national capitals rarely change, the information in the capitals
column is essentially constant over the years in our dataset, and we need
to repeat it for every single year in the dataset. From a data representation
point of view, this is clearly not optimal, as we have redundant informa-
tion in our dataset. This makes data maintenance more difficult and error-
prone. First, inserting the information in the first place is cumbersome,
since we have to copy and paste the name of the capital of a given country
for each year this country is listed in the dataset. This may be easy in our
toy example, but quickly becomes infeasible when we deal with a much
longer time series. Also, updating the data is equally difficult, for example,
if we decide to refer to the capitals not in English, but in the respective
national language (which would require us to replace Vienna with Wien).
Redundant information also means that we can have inconsistencies in
our data; for instance, if we forget to update all instances of Vienna, we
may end up with a dataset that sometimes refers to the capital of Austria
as Wien, while in other cases it uses the English name.

The problem of data redundancy always comes up if we store informa-
tion about different entities that refer to each other in a single table. In our
example, we have two types of entities: the countries (each of which has a
capital), and the country-years (each of which has a population estimate).
This data structure should better be stored in two tables that link to each
other. For example, rather than adding a new column to good_table, we

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

34 3 Data = Content + Structure

could add a new table that contains only the information on the national
capitals:

populations <- data.frame(
country=c(rep("Switzerland", 3), rep("Austria", 3)),
year=c(rep(c(1950, 1960, 1970), 2)),
population=c(4.7, 5.3, 6.2, 6.9, 7.1, 7.5))
populations

country year population
1 Switzerland 1950 4.
2 Switzerland 1960
3 Switzerland 1970
4 Austria 1950
5 Austria 1960
6 Austria 1970

NN o owv
Uik O N WS

capitals <- data.frame(
country=c("Switzerland", "Austria"),
capital=c("Bern", "Vienna"))
capitals

country capital
1 Switzerland Bern
2 Austria Vienna

As a result, our database now consists of two tables: a capitals table
with country-level information (in our case, only the capitals) and a
populations table with information at the country-year level (in our case,
population estimates). In this setup, each piece of information is contained
only once in the dataset; in other words, we have eliminated redundant
data. This makes data maintenance extremely easy. For example, if we
want to adjust the name of the Swiss capital, we do this in exactly one
place:

capitals[capitals$country == "Switzerland", "capital"] <- "Berne"
capitals

country capital
1 Switzerland Berne
2 Austria Vienna

The split of data into several tables is clearly something that may
be desirable from a data management point of view, as it reduces (and,
ideally, eliminates) redundancies in our data. At the same time, it is likely
not a good way to interface with software for statistical analysis, most of
which requires the data to be nicely arranged in a single rectangular table.
What can we do about it? The solution to this is what we alluded to in

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

3.5 Summary and Outlook 35

Chapter 1: the need to separate (i) data processing and management and
(ii) data analysis into different stages of our workflow, potentially using
different software tools supporting these stages. Recall that in Chapter
1, I recommended that you create “analysis datasets,” which are tailored
to the respective analysis and the software you use at the analysis stage.
For our example, if we need information from the populations and the
capitals tables in a single, rectangular format, we can simply merge the
two tables:

merge(populations, capitals, by = "country")

country year population capital

1 Austria 1950 6.9 Vienna
2 Austria 1960 7.1 Vienna
3 Austria 1970 7.5 Vienna
4 Switzerland 1950 4.7 Berne
5 Switzerland 1960 5.3 Berne
6 Switzerland 1970 6.2 Berne

Of course, we would only do this once we have finished the processing
of our data, since we introduce redundancy in the merged dataset. Later
in this book, we will deal with relational databases, which are designed
to work with many tables at the same time, thus providing a suitable way
to manage even complex datasets.

3.5 SUMMARY AND OUTLOOK

In this chapter, our main focus was the distinction between the content
and the structure of data. Data without structure (such as human speech,
for example) can be difficult to process computationally, since it is difficult
for computers to locate the important bits of information. In the social
sciences, research data is usually collected and stored in tabular data struc-
tures. Tables are omnipresent, and they constitute the main way in which
most statistical packages import and process data. In its simplest form, a
tabular data structure is very easy to handle. It only requires us to specify

o A set of columns and their names (which correspond to the variables
in our dataset)
o The types of each of these columns (a number, or a string of text)

We can then insert rows into the table, which represent the different
observations in our dataset. Of course, these rows need to conform with
the table definition, such that the columns contain the correct type of
information. Note that while most software toolkits (such as R) keep

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

36 3 Data = Content + Structure

track of the type of information stored in the columns of a table, they
cannot check for other sorts of errors. For example, if you record the age
of respondents in a numeric column and mistakenly enter the value 200,
R will not complain. Therefore, it is up to you to identify semantic errors
in your data and correct them.

Because of the importance of data structure, working with research
data usually requires us to think about data content and structure. Before
we can populate a dataset with information about survey responses,
country-level indicators, or conflict events, we need to define what our
dataset should look like, or, in other words, what its structure should be.
This is usually referred to as data definition. Once we have a structure for
our data, we can fill it with new information, update existing information,
or delete parts of it. Together, these operations are referred to as data
manipulation. Last, we use our dataset for scientific analyses, which is
why eventually we need to output it in some way that is suitable for
processing with other tools. This is called data extraction.

In this chapter, we also took a closer look at the structure of tables. In
particular, I showed that it is beneficial to choose a table structure that
lets your table grow down, not sideways, as you add more data. Also, I
demonstrated that you may be better off splitting your data into separate
tables, in particular if you deal with different types of entities. You may
wonder why we spend so much time thinking about table structure, as
this question is entirely straightforward to solve for many applications.
This is true, but table structure matters a lot as soon as we deal with
more complex scenarios. In particular, as soon as our observations vary
along more than one dimension (e.g., countries and years), choosing a sub-
optimal table structure can make your life difficult. By introducing some
important considerations about tables and their design, we pave the way
for later topics we cover in this book, in particular relational databases.
In short, it pays off to think about the table structure before you start
collecting your data. If you rely on existing data, you may benefit from
transforming a given table to a more suitable design, such that you can
optimize your research workflow down the road.

Now that we have completed a basic introduction using some toy
examples, it is time to do some real work. In the next chapter, we will
start with several tools that rely on file-based data storage. This means
that your data is contained in files; you temporarily open these to process
your data, and later the save the result again to a file. In later parts of the
book, we discuss an alternative approach, where your data is stored in a
database.

https://doi.org/10.1017/9781108990424.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.005

