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Abstract

The aim of this work is to prove the existence of a positive almost periodic solution to a multifinite time
delayed nonlinear differential equation that describes the so-called hematopoiesis model. The approach
uses the Hilbert projective metric in a cone. With some additional assumptions, we construct a fixed point
theorem to prove the desired existence and uniqueness of the solution.
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1. Introduction

To describe some physiological control systems in the classic study of population
dynamics, Mackey and Glass [8] proposed the following autonomous nonlinear delay
differential equation

ρ′(t) = −γρ(t) +
βρm(t − τ)

1 + ρn(t − τ)
, (1.1)

where γ, β, n ∈ (0,+∞), τ,m ∈ [0,+∞), ρ(t) denotes the density of mature blood cells
circulating in the bloodstream and γ is the rate of loss of blood cells from the
circulation. Here, f (ρ(t − τ)) = βρm(t − τ)/(1 + ρn(t − τ)) is the flux of blood cells
into the bloodstream from the stem cell compartment and depends on the delayed
density, ρ(t − τ), of mature cells in circulation, where τ is the time delay between the
production of the immature cells in the bone marrow and the release of the mature
cells into the bloodstream.

In [9, 13], the model (1.1) is extended to the following nonautonomous nonlinear
delay differential equation with time-varying coefficients and delays, which takes more
account of real phenomena, such as the important role played by variations in the
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environment: namely,

x′(t) = −a(t)x(t) +

k∑
i=1

bi(t)xm(t − τi(t))
1 + xn(t − τi(t))

, (1.2)

where 0 ≤ m < n, the functions a, bi, τi : R −→ (0, +∞) are continuous for i = 1,
2, . . . , k, x(t) is the density of mature blood cells circulating in the bloodstream and a(t)
is the rate of loss of blood cells from the circulation at time t. Now, f (x(t − τi(t))) =

bi(t)xm(t − τi(t))/(1 + xn(t − τi(t))) is the flux of blood cells into the bloodstream
from the ith stem cell compartment for i = 1, 2, . . . , k and τi(t) is the corresponding
time delay between the production of immature cells in the bone morrow in the ith
compartment and the release of the mature cells into the bloodstream. The model (1.1)
and its extension (1.2) are referred to as a model of hematopoiesis (cell production).

The existence of periodic and almost periodic solutions to the hematopoiesis model
has been investigated extensively (see, for example, [4, 7, 12, 14, 15] and references
therein). Some interesting results concerning the existence of almost periodic solutions
to the hematopoiesis model (1.2) were obtained by Zhang et al. using the contraction
mapping principle in the case m = 0 [14] and by using some additional conditions in
the cases m = 0 or m = 1 [12, 14, 15]. For 0 ≤ m ≤ 1 and assuming an a priori estimate
that controls the balance between the loss rate and the flux, Liu [7] proved the existence
of a positive almost periodic solution to (1.2). Recently, Diagana et al. [4] established
the existence of a positive almost periodic solution to (1.2) via a fixed-point theorem
in a cone.

Our purpose in this work is also to give criteria for the existence and uniqueness of
a positive almost periodic solution to (1.2). By contrast with Diagana et al. [4], we use
here the Hilbert projective metric in a cone, which allows the interior to accommodate
a complete metric space structure. We follow the development presented in [5].

This paper is organised as follows. In the next section, we present some
preliminaries that will be used to prove the main result. Section 3 deals with the main
result on the existence and uniqueness of a positive almost periodic solution to (1.2)
and the last section gives a concrete illustration of our result.

2. Preliminaries

We recall some definitions, notation and lemmas, which will be used later.

Definition 2.1 [2, 10]. Let X be a Banach space. A continuous function f : R→ X is
called almost periodic if, for each ε > 0, there exists l(ε) > 0 such that every interval
of length l(ε) contains a number τ with the property that ‖ f (t + τ) − f (t)‖ ≤ ε for each
t ∈ R. The number τ is called an ε-translation number of f (t). Denote the set of such
functions by AP(R).

Lemma 2.2. The intersection of two relatively dense subsets of R is relatively dense.
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Proof. Let T and T ′ be two relatively dense subsets of R and put T̃ = T ∩ T ′.
For all ε > 0, there exist L(T , ε) and L(T ′, ε) such that T ∩ [t, t + L(T , ε)] , ∅
and T ′ ∩ [t, t + L(T ′, ε)] , ∅ for all t ∈ R. If L(T̃ , ε) = max(L(T , ε), L(T ′, ε)), then
T̃ ∩ [t, t + L(T̃ , ε)] , ∅, which achieves the proof. �

2.1. Exponential dichotomy.

Definition 2.3 [6, 10]. Let x ∈ Rn and let A(t) be an n × n continuous matrix defined
on R. The linear system

x′(t) = A(t)x(t) (2.1)

admits an exponential dichotomy on R if there exist positive constants λ, k and a
projection P such that the fundamental solution matrix X(t) of (2.1) satisfies

‖X(t)PX−1(s)‖ ≤ λe−k(t−s) for t ≥ s, ‖X(t)(I − P)X−1(s)‖ ≤ λe−k(s−t) for t ≤ s.

Lemma 2.4 [6, 10]. Let ci(t) be an almost periodic function on R and let

M[ci] = lim
T→∞

1
T

∫ t+T

t
ci(s) ds > 0 for i = 1, 2, . . . , n.

Then the linear system x′(t) = C(t)x(t) admits an exponential dichotomy on R, where
C(t) = diag (−c1(t),−c2(t), . . . ,−cn(t)).

Lemma 2.5 [1]. Let f be an almost periodic function. If the linear system (2.1) admits
an exponential dichotomy, then the almost periodic system

x′(t) = A(t)x(t) + f (t)

has a unique almost periodic solution x(t) and

x(t) =

∫ t

−∞

X(t)PX−1(s) f (s) ds −
∫ +∞

t
X(t)(I − P)X−1(s) f (s) ds,

where X(t) is the fundamental solution matrix of (2.1).

2.2. The Hilbert projective metric and fixed point theorem in a cone. Let X be a
real Banach space. A closed convex set P in X is called a convex cone if the following
conditions are satisfied:

(i) if x ∈ P, then λx ∈ P for all λ ≥ 0; and
(ii) if x ∈ P and −x ∈ P, then x = 0.

A partial ordering ≤ in X is induced by P : for all x, y ∈ X, x ≤ y if and only if y − x ∈ P.
Given u, v ∈ P, define the interval [u, v] := {x ∈ X : u ≤ x ≤ v}.

A cone P is called normal if there exists a constant k > 0 such that, for all
x, y ∈ P, 0 ≤ x ≤ y implies that ‖x‖ ≤ k‖y‖, where ‖ · ‖ is the norm on X.

If P is now a general cone in a Banach space X and x and y are elements of
P∗ = P − 0X , we say that x and y are comparable if there exist real numbers α > 0 and
β > 0 such that αx ≤ y ≤ βx. This defines an equivalence relation on P∗ and divides P∗
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into disjoint subsets which we call components of P. If x and y are comparable, then
we define the numbers m(y/x) and M(y/x) by

m(y/x) := sup{α > 0 : αx ≤ y} and M(y/x) := inf{β > 0 : y ≤ βx}.

Thompson [11] introduced a metric d defined as follows: if x and y in P∗ are
comparable, then

d(x, y) := max(log M(y/x), log M(x/y)) = max(log M(y/x),− log m(y/x)). (2.2)

If C is a component of P, it is easy to see that d gives a metric on C. Moreover,
Thompson proved the following results.

Theorem 2.6 [11]. Let P be a normal cone in a Banach space X and let C be a
component of P. Then C is a complete metric space with respect to the metric d.

Proposition 2.7 [11]. Let P be a normal cone in a Banach space X with nonempty
interior P◦. Then P◦ is a component of P.

Thus, the nonempty interior P◦ of a normal cone P, is a complete metric space with
respect to the metric d. We have the following theorem.

Theorem 2.8 [3]. Let E be a complete space with respect to the metric d. Suppose
there is a mapping f from E into E satisfying

d( f (x), f (y)) ≤ φ(d(x, y)) for all x and y in E,

where φ is a positive nondecreasing function continuous on [0,+∞[, such that φ(r) < r
for all r > 0 and φ(0) = 0. Then f has exactly one fixed point in E.

For a bounded continuous function h(t), we introduce the notation

h+ = sup
t∈R

h(t), h− = inf
t∈R

h(t). (2.3)

3. Positive almost periodic solutions

This section contains the proof of our main result on the existence and uniqueness
of a positive almost periodic solution of (1.2). The proof is based on a fixed point
theorem in a cone endowed with the Hilbert projective metric.

3.1. Assumptions and main result. For t ∈ R and x ∈ R+, put

F(t, x) =

k∑
i=1

bi(t) f [x(t − τi(t))] =

k∑
i=1

bi(t)xm(t − τi(t))
1 + xn(t − τi(t))

.

We make two sets of assumptions. The first gives some preliminary estimates and the
second deals with the behaviour of flux term. Here, a+, a−, b+ and b− are as in (2.3).

(H1) a− > 0, b−i > 0, τi ≥ 0 for i = 1, 2, . . . ,m.
(H2) (

∑k
i=1 b+

i )/a− ≤ (n/(n − m))(m/(n − m))(1−m)/n.
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(H3) (
∑k

i=1 b−i )/a+ > 1, that is, the flux is always greater then the loss of blood cells
in circulation.

(H4) τi and bi for i = 1, 2, . . . , k are almost periodic.

Define

f (x) =


xm

1 + xn for 0 ≤ x ≤
( m
n − m

)1/n
,

n − m
n

( m
n − m

)m/n
for x >

( m
n − m

)1/n
.

(3.1)

The following theorem is our main result.

Theorem 3.1. Suppose that (H1)–(H4) hold. Then (1.2) has exactly one positive
almost periodic solution.

3.2. Proof of the main result.

Lemma 3.2. Suppose that ϕ and σ are in AP(R). Then the function t 7→ ϕ(t − σ(t)) is
also in AP(R).

Proof. Let ε > 0 and let τ be a common almost period for ϕ and σ: that is τ ∈
T̃ (ϕ, σ, ε) = T̃ (ϕ, ε) ∩ T̃ (σ, ε), where T̃ (ϕ, ε) and T̃ (σ, ε) are the sets of ε-almost
periods associated, respectively, to ϕ and σ. Note that T̃ (ϕ, σ, ε) = T̃ (ϕ, ε) ∩ T̃ (σ, ε)
is relatively dense in R, by Lemma 2.2. Consider

|ϕ(t − σ(t)) − ϕ(t + τ − σ(t + τ))| ≤ |ϕ(t − σ(t)) − ϕ(t − σ(t) + τ)|
+ |ϕ(t + τ − σ(t)) − ϕ(t + τ − σ(t + τ))|.

Let ε̃ > 0. By the uniform continuity of ϕ, there exists ε > 0 such that, for all t ∈ R,
|σ(t) − σ(t + τ)| ≤ ε implies that |ϕ(t + τ − σ(t)) − ϕ(t + τ − σ(t + τ))| ≤ ε̃. By the
almost periodicity of ϕ, also |ϕ(t − σ(t)) − ϕ(t − σ(t) + τ)| ≤ ε. Thus we deduce the
almost periodicity of t 7→ ϕ(t − σ(t)). �

Lemma 3.3. Suppose (H1), (H2) and (H4) hold. Then (1.2) has a nonnegative almost
periodic solution x which is given for t ∈ R by

x(t) =

∫ t

−∞

g(s)
k∑

i=1

bi(s) f (x(s − τi(s))) ds where g(s) = exp
(
−

∫ t

−s
a(r) dr

)
. (3.2)

In fact, every nonnegative almost periodic solution ϕ of (1.2) is also a nonnegative
almost periodic solution of (3.2) and vice versa.

Proof. If ϕ is a positive almost periodic solution of (1.2), then, by hypothesis (H4)
and Lemma 3.2, ϕ(· − τi(·)) is almost periodic for i = 1, 2, . . . , k. Therefore, the
function

∑k
i=1 bi(·)ϕm(· − τi(·))/(1 + ϕn(· − τi(·))) ∈ AP(R). Since a− > 0, from (H1),

Lemmas 2.4 and 2.5 yield

ϕ(t) =

∫ t

−∞

g(s)
k∑

i=1

bi(s)ϕm(s − τi(s))
1 + ϕn(s − τi(s))

ds for t ∈ R.
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Note that

sup
x≥0

xm

1 + xn =
n − m

n

( m
n − m

)m/n
.

So, by (H2),

ϕ(t)≤
∫ t

−∞

e−a−(t−s)
( k∑

i=1

b+
i

n − m
n

( m
n − m

)m/n)
ds

=

∑k
i=1 b+

i

a−
n − m

n

( m
n − m

)m/n
≤

( m
n − m

)1/n
.

By (3.1), f (s − τ − i(s)) = ϕm(s − τi(s))/(1 + ϕn(s − τi(s)) for s ∈ R and i = 1, 2, . . . , k.
Thus,

ϕ(t) =

∫ t

−∞

g(s)
k∑

i=1

bi(s) f (ϕ(s − τi(s))) ds for t ∈ R

is an almost periodic solution of (3.2).
Similarly, we can show that every nonnegative almost periodic solution ϕ of (3.2)

is also an almost periodic solution of (1.2). �

In the subsequent work, Q = {x ∈ AP(R) : x(t) ≥ 0, for all t ∈ R} denotes the normal
solid cone in AP(R) and Q◦ = {x ∈ AP(R) : there is ε > 0 such that x(t) > ε, for all
t ∈ R} denotes its interior. Let T be an operator on Q◦ defined by

T (x)(t) =

∫ t

−∞

g(s)
k∑

i=1

bi(s) f [x(s − τi(s))] ds for t ∈ R,

where g(s) = exp
(
−

∫ t

−s
a(r) dr

)
. (3.3)

Proposition 3.4. T maps Q◦ into itself.

Proof. Let x be in Q◦. By Lemma 3.3, T (x) is an almost periodic function. In addition,
there exists ε0 > 0 such that x(t) ≥ ε0 for all t ∈ R. Thus

T (x)(t)≥
∫ t

−∞

e−a+(t−s)
k∑

i=1

b−i ·min
{ εm

0

1 + εn
0
,

n − m
n

( m
n − m

)m/n}
ds

=

∑k
i=1 b−i
a+

·min
{ εm

0

1 + εn
0
,

n − m
n

( m
n − m

)m/n}
=

∑k
i=1 b−i
a+

·
εm

0

1 + εn
0
.

By (H3), T (x)(t) > 0 for all t ∈ R, which implies that T (x) ∈ Q◦. �

Next, we will prove the fixed point theorem for the operator T .

Proposition 3.5. T is a nondecreasing operator on Q◦.
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Proof. Choose x and y in Q◦ such that x(t) ≥ y(t) for all t ∈ R and define g(s) as in
(3.3). Then, for all t ∈ R,

T (x)(t) − T (y)(t) =

∫ t

−∞

g(s)
k∑

i=1

bi(s)( f [x(s − τi(s))] − f [y(s − τi(s))]) ds.

From (3.1), f is nondecreasing on [0, (m/(n − m))1/n] and remains constant on
[(m/(n − m))1/n,∞). Therefore, T (x)(t) − T (y)(t) ≥ 0 for all t ∈ R. �

Proposition 3.6. Define the metric d as in (2.2). There exists a positive nondecreasing
function φ defined on R+, satisfying

φ(0) = 0, φ(r) < r for r > 0 and d(T (x),T (y)) ≤ φ(d(x, y)) for x, y ∈ Q◦.

Proof. Let x and y be two comparable functions in Q◦ and let α = m(y/x), β = M(y/x).
Then αx ≤ y ≤ βx and, from (2.2), d(x, y) = max(log(β),− log(α)). By Proposition 3.5,
the operator T is nondecreasing and so

T (αx) ≤ T (y) ≤ T (βx). (3.4)

Thus, we have the following cases.

Case 1. β ∈ (0, 1). Then α ∈ (0, 1) and f (αx) ≥ αn f (x). Therefore, T (αx) ≥ αmT (x)
and the left-hand side of (3.4) gives ϕ(α)T (x) ≤ T (y), where ϕ(α) = αm. For the right-
hand side (3.4), consider the nondecreasing function

χ(x) =
xn

1 + βnxn for 0 < x ≤
( m
n − m

)1/n
,

which attains its maximum ψ(β) = [(n/m)(1 − βn) − 1]−1 when x = (m/(n − m))1/n.
Then,

f (βx)
f (x)

= βm 1 + xn

1 + βnxn ≤ β
m[1 + χ(x)] ≤ ψ(β)

and we conclude that T (y) ≤ ψ(β)T (x), Therefore, αx ≤ y ≤ βx implies that

ϕ(α)T (x) ≤ T (y) ≤ ψ(β)T (x). (3.5)

Note from (3.5) that, for all α, β ∈ (0, 1) with α ≤ β, ϕ(α) ≤ ψ(β). To compute the
metric, note that M(T (x),T (y)) ≤ ψ(β) and m(T (x),T (y)) ≥ ϕ(α), and hence

d(T (x),T (y)) ≤ max(log(Ψ(β)),− log(ϕ(α))).

Define the function φ by φ(0) = 0 and, for u > 0,

φ(u) = max[− log(ϕ(e−u)), log(ψ(eu))]. (3.6)

Then φ is a nondecreasing function and we obtain

φ(− log(α)) = max[− log(ϕ(e−(− logα))), log(ψ(e− logα))]
= max[− log(ϕ(α)), log(ψ(α−1))]
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and

φ(log(β)) = max[− log(ϕ(e− log β)), log(ψ(elog β))]
= max[− log(ϕ(β−1)), log(ψ(β))].

Thus,
d(T (x),T (y)) ≤ φ(d(x, y)).

Case 2. α > 1. Rewrite αx ≤ y ≤ βx as β−1y ≤ x ≤ α−1y and apply Case 1. This yields

ψ−1(α−1)T (x) ≤ T (y) ≤ ϕ−1(β−1)T (x).

Next, M(T (x),T (y)) ≤ ϕ−1(β−1) and m(T (x),T (y)) ≥ ψ−1(α−1), so that

d(T (x),T (y)) ≤ max(log(ϕ−1(β−1)),− log(ψ−1(α−1))).

Define the function φ as in (3.6). Then

φ(− log(α)) = max[− log(ϕ(e−(− logα))), log(ψ(e− logα)))]
= max[− log(ϕ(α)), log(ψ(α−1)] = max[log(ϕ−1(α)),− log(ψ−1(α−1))]

and

φ(log(β)) = max[− log(ϕ(e− log β)), log(ψ(elog β))]
= max[− log(ϕ(β−1)), log(ψ(β))] = max[log(ϕ−1(β−1)),− log(ψ−1(β))].

Thus,
d(T (x),T (y)) ≤ φ(d(x, y)).

Case 3. α ≤ 1 and β ≥ 1. This case is easily deduced from the previous cases giving

ϕ(α)T (x) ≤ T (y) ≤ ϕ−1(β−1)T (x).

Here, M(T (x),T (y)) ≤ ϕ−1(β−1) and m(T (x),T (y)) ≥ ϕ(α). Thus,

d(T (x),T (y)) ≤ max(log(ϕ−1(β−1)),− log(ϕ(α))).

Define the function φ by φ(u) = − log(ϕ(e−u)) for u > 0, and φ(0) = 0. Then
− log(ϕ(α)) = φ(− log(α)) and log(ϕ−1(β−1)) = φ(log(β)) and, by the monotonicity of
φ, we conclude that

d(T (x),T (y)) ≤ φ(d(x, y)).

This completes the proof of the proposition. �

Proof of Theorem 3.1. By Proposition 3.6, the operator T satisfies all assumptions of
Theorem 2.8 and so it has exactly one fixed point z ∈ Q◦. By Lemma 3.3, this gives
the unique almost periodic solution of (1.2). �
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4. Application

The following example illustrates our results. Consider the hematopoiesis model

x′(t) =−
1
2

(
1 +

1
2

cos t
)

x(t) +
1
2

(
2 +

1
2
| cos

√
2t|

) x1/4(t − 2esin2 t)

1 + x1/2(t − 2esin2 t)

+
1
2

(
2 +

1
2
| sin
√

3t|
) x1/4(t − 2esin2 t)

1 + x1/2(t − 2esin2 t)
. (4.1)

The first term on the right-hand side, a(t) = 1
2 (1 + 1

2 cos t), represents the loss rate
from the circulation, the flux rate is F(t, x) = (b1(t) + b2(t))xm/(1 + xn), where m = 1

4 ,
n = 1

2 , b1(t) = 1
2 (2 + 1

2 | cos
√

2t|) and b2(t) = 1
2 (2 + 1

2 | sin
√

3t|), and the delays are
τ1(t) = τ2(t) = 2esin2 t. It follows that

lim
T→∞

1
T

∫ t+T

t
a(s) ds =

1
2
,

which implies that the equation

x′(t) = −
1
2

(
1 +

1
2

cos t
)

x(t) t ∈ R,

has an exponential dichotomy. We know that a+ = 3
4 , a− = 1

4 and, for i = 1, 2,
b−1 = b−2 = 1 and τi ≥ 0, so hypothesis (H1) holds. Also, b+

1 = b+
2 = 5

4 , so hypotheses
(H2) and (H3) hold as well. For i = 1, 2, bi and τi are almost periodic, so hypothesis
(H4) holds. In addition, from (3.1), F(t, x) is a nondecreasing function in x and, since
m = 1

4 < n = 1
2 , the density of cells in the blood is always less than one (that is, x ≤ 1).

Consequently, we can apply Theorem 3.1 to this example.

Theorem 4.1. The Hematopoiesis model (4.1) has a unique nonnegative almost
periodic solution.
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Zrig, 6072, Gabès, Tunisia
e-mail: hechmi.hattab@lamsin.rnu.tn

https://doi.org/10.1017/S0004972716000629 Published online by Cambridge University Press

mailto:hechmi.hattab@lamsin.rnu.tn
https://doi.org/10.1017/S0004972716000629

	Introduction
	Preliminaries
	Exponential dichotomy
	The Hilbert projective metric and fixed point theorem in a cone

	Positive almost periodic solutions
	Assumptions and main result
	Proof of the main result

	Application
	References

