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CONTINUOUS AND NUMERICAL ANALYSIS
OF A BOUNDARY SHOCK PROBLEM

RELJA VULANOVIC

A quasilinear singularly perturbed boundary value problem whose solution has a
shock layer is investigated. Estimates of the derivatives of the solution are derived.
Based -on these estimates, a new independent variable is introduced. Then the
transformed problem is solved numerically using finite - difference schemes. The
transformation corresponds to solving the original problem on a mesh which is
dense in the layer. The linear convergence uniform in the perturbation parameter
is proved in the discrete L1 norm. Numerical results show uniform pointwise
convergence too.

1. INTRODUCTION

The aim of the paper is to construct a uniform numerical method for solving
the following quasilinear boundary value problem with a small positive perturbation
parameter e:

(1) -eu" - ub(u)u' + uc(x, u) = 0, w(0) = 0, u(l) = B > 0.

Under appropriate conditions, which we shall state in the next Section, it follows that
there exists a unique solution, uc , to the problem (1). We are interested in the boundary
shock layer behaviour of uc, in the sense of [2]. In Section 2 we derive estimates of the
derivatives of uc. They are necessary to prove that our numerical method is uniform
in e.

The numerical method is given in Section 3. Essentially, it uses finite-difference
(upwind) schemes on a special non-equidistant mesh which is dense in the layer. How-
ever, the mesh is introduced indirectly: the problem (1) is transformed by changing
the independent variable and then the resulting problem is solved numerically on an
equidistant mesh. This approach can be found in [3], as well as in some earlier papers
of these authors, and in [10]. We use here the same transformation as in [10], where
the non-turning point case of a quasilinear singularly perturbed boundary value prob-
lem was considered. Our main result is the uniform (that is, uniform in e) first order
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convergence of the numerical solution towards the restriction of ue on the mesh, in the
discrete L1 norm. The result follows from the principle: uniform stability + uniform
consistency => uniform convergence. Uniform stability can be proved in the discrete
L1 norm (see [1, 4, 5, 6]) and this is the reason why this norm is used. But, on the
other hand, we are not able to prove uniform pointwise convergence, which is present,
as numerical examples in Section 4 show.

This paper might be regarded as a step towards uniform numerical methods
for more general problems whose solutions have interior shock layers, such as the
Lagerstrom—Cole model problem, see [2]. In these cases the problem of locating shocks
has to be resolved.

Singularly perturbed quasilinear problems have been solved numerically in [1, 7]
and [4, 5, 6] (the case e = 0), just to mention some of the papers. Note that none of
these papers deals with the proof of uniform convergence in the above sense.

2. ESTIMATES OF THE DERIVATIVES

Thus we shall consider the problem:

(2a) Tu = -eu" - ub(u)u' + uc(x, u) = 0, x £ I = [0, 1],

(2b) Ru = (ti(0), ii(l)) = (0, B), B>0,

where ' = d/dx, 0 < e ^ e* < 1 (usually e* « 1).

Let U = [0, B].

We assume

(3) bec2{U), cec2[ixu)

(4) c* > c(x, u) > c, > 0, x e I, ueU,

(5) b* > b{u) 2 K > 0, ueU.

Because of (4) 0 and B are lower and upper solutions to (2), thus the problem (2) has
a solution, ue G C"4(/), and

ue(x) £U,x£l.

Furthermore, from (4) we have 1 (̂2;) ^ 0 for x G / .

The following inequality will be of interest:

(6) B > Q = {b*c* + [b*c*{b*c* - 6,c.)]1/2}/(6*6.)-

We suppose that the conditions (3-6) hold throughout the section.

In this and the next Section we shall denote by M any (in the sense of 0(1))
positive constant which is independent of e. In particular, some of these constants will
be denoted by m, m', mo et cetera.
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LEMMA 1. u'c(0) ^ mi/e.

PROOF: First we show that

(7) »,(*) < «•(*) = (c,/6*)(x - 1) + B, x € I.

Let ze be the solution to the following special case of the problem (2):

fu = -eu" - b*uu + c»w = 0, Ru = (0, B).

Because of (4) and (5) we have

fue = (b(ue) - b*)u'e + (c, - c(x, ue))ue ^ 0 , x e I,

and since the operator f T, Rj is inverse monotone, we get

(8) u c { x ) ^ z e ( x ) , x £ l .

Now introduce the linear operator:

Lu = —eu" — b*zcu'.

We have L(u* - zc) = 0, (u* - *,)(1) = 0,

and (6) implies u*(0) > 0.

Thus by the inverse monotonicity of (L, R) we get

z e { x ) < u * ( x ) , x G l ,

which together with (8) completes the proof of (7).

Now rewrite (2a) in the form:

(9a) -eu" - /(«)' + «<:(*, it) = 0,

(9b) /(«) = / " ab(a)ds,
Jo

and integrate (9a) from 0 to 1. Using u'c(l) ^ 0 we get

e«i(0) > f(B) - I ue(x)c(x, uc(x))dx >
Jo

f{B) -c* I u*(x)dx = {b./2)B2 - c'B + c*c./(2fc*) = m,.
Jo

We have mj > 0 because of (6). U
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REMARK. Condition (6) implies B > c*/b, which by Peano's theorem guarantees the
existence of a solution UR to the reduced problem

-ub{u)u' + uc(x, u) = 0,xEl, w(l) = B.

Moreover, uR(x) > 0 for x 6 / , and UR(0) > 0, hence ue has a layer at x — 0.

The condition (6) is artificial to some extent. Note, however, that in the constant
coefficient case (6 — b* — 6», c = c* = c») it reduces to

B > c/b,

which is the necessary condition for existence of a boundary layer at x = 0. If B < c/b,
the interior crossing phenomenon occurs, see [2].

Let F(x) = / ue{s)b{uc(s))ds.
Jo

We have:

LEMMA 2 . u'e(x) ^ M^+e'1 exp(-F(x)/e)),x e I.

PROOF: From (2a) it follows that

e(exP (F(x)/e)u'e(x))' = ue(x)c(x, ue(x)) exp (F(x)/e).

Expressing U J ( I ) by integration we get

g(t)ue(t)b(uc(t))exp(F(t)/e)dt + u'e(O)j exp(-F(x)/s)

= [g(0)(exp (F(x)/e) - 1) + <(0)]exp(-F(x)/e) ,

where g{x) = c(x, uc{x))/b{uc{x)), 6 6 (0, x). Thus:

(10) «!(«) = g(6)(l - exp (-F(x)/e)) + < (0 ) exp (-F(x)/e).

Now integrate (10) from 0 to 1 and express lij(O). It follows:

<(0) < M/J, J = I exp{-F{x)/e)dx.
J

Since J^ f exp(-b*Bx/e)dx = e(l - exp(-b*B/e))/(b*B),
Jo

we get u'c{0) < M/e,

which together with (10) gives the assertion. u
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LEMMA 3 .

(lla) F(x) ^ m2x
2/e for x G [0, e],

(lib) F{x) ̂  m3(x - e) for x 6 [e, 1].

PROOF: Let x G [0, e]. Then we use

(12) ue(x) = xu'e{a), <7G(0, e).

From (10) it follows that

u'e(a)>u'c(0)exp(-F{<r)/e)

^ mi exp(—b*B)/e = m^fe,

where we have used Lemma 1. Thus from (12) we get

uc(x) > rntx/e, x G [0, e],

and (lla) follows with m2 = 6»Tn3/2.

Now let x G [e, 1] • We have

uc{x) > ue{e) = eu'c{l), 7 e (0, e),

thus, using the above technique we get

(13) u e ( z )^m 4 .

Now F(x) ^ / ue(s)b(ue(s))da ^ 6,m4(z - e),
Jc

and ( l ib ) is proved with 7713 — 6,7714. u

LEMMA 4 . |«i'(*)| < M{\ +e-sxexp(-F{x)/e)), x G / .

PROOF: Differentiate (2a) and use the same technique as in the proof of Lemma
2 to obtain:

<(*) = e-1 exp (-F[x)/e) [' G(t) exp (F(t)/e)dt,
Jo

(note that u"(0) = 0 ) where from Lemma 2 it follows that

\G(t)\ ̂  M(l + e-1 exp(-F(t)/e) + e"2 exp (-2F(t)/e)).
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Thus: |<(x)| < Me"1 exp (-F{x)/e) Ae" 2 + «*P {F(i)/e)]dt,
Jo

and in order to prove the lemma we have to show that

(14) 5 = e-1 [' exp ((F(t) - F(x))/e)dt < M.
Jo

Let x 6 [0, e}. Then obviously 5 < 1. Now let x G [e, 1]. We have

(15) 5 ^ 1 + / exp((JP(<) - F{x))/e)dt.
J e

Since for e ^ < ^ x < 1 we have

F{t) - F(x) < 6,m4(* - x),

where 7714 is the same as in (13), from (15) we get (14).

THEOREM 1.

+ e-*exp(-mx/e)) ,

x € / , k = 1, 2, 3.

PROOF: The proof of the cases ft = 1, 2 follows immediately from Lemmas 2,

3 and 4, with apppropriate M and m. It remains to prove the case k = 3. First

differentiate (2a) and use Lemma 2 to get ui3)(0) < Me~s. Then diffenentiate (2a)

once more and obtain:

uis\x)\ ^ Mexp(-F(x)/e) Is'3 + e-1 [' [l + e"1 exp(-F(t)/e)
1 I Jo

+ e~2 exp{-2F{t)/e) + e"s exp {-3F{t)/c) + e~3texP (-F(t)/e)

+e~4< exp (-2F(t)/e)) exp (F(t)/e)dt}

^ Mexp(-JF(x)/e){e-3 + e"1 / ' [e"3 + e-4< + exp (F(t)/c)]dt}
Jo

< M(e~3 + e'Ax + e~5x2) exp (-F(x)/e) + S,

where 5 is the same as in (14), and the assertion follows because of Lemma 3. D
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3. T H E NUMERICAL METHOD

We shall give here the numerical method for the problem (2). Additionally, we
have to assume

(16) (uc{x, u))u >Cl>0,xeI,ueU.

{ u(t)=pet/{T-t),te[O,a]

TT(<) = S(t - a)3 + u"(a)(t - af/2

+w'(a)(< - a) + w(a), t G [a, 1]

where a G (0, 1) is given and 7 = a + e1/4. Obviously, A G C2(I) and A G C°°[0, a],
A G C°°\a, 1]. Coefficient 8 is determined from the condition TT(1) = 1, while coefficient
P is chosen to satisfy:

0 < /3c1/4 (7(1 - a)2 + e^fil - a) + cl'2a) < 1,

so that 6^0 and T"(<) is non-decreasing. From this we have

TT"(0 ^ 7r"(a) = w"(a) > 0, t G [a, 1],

hence n'(t) ^ 7r'(a) = w'(a) > 0, < G [a, 1],

and obviously w'(<) > 0 for t G [0, a].

Thus, the function A can be used to introduce a new independent variable t via x =
A(<). Let y(t) = u(\(i)). Then the transformed problem (9), (2b) reads:

(17a) Py = -e(^t)y')' - f(y)' + q(t, y) = 0,

(17b) Ry = (0, B),

where ' = d/dt,

q{t, y) = »c(A(0, y)A'(0-

The same function A was used in [10]. Its part w is a certain modification of the inverse
of the boundary layer function exp(—mx/e), see [8, 9, 3].

Let /fc be an equidistant mesh with points

U - i h , i = 0 , 1 , . . . , n , h = l / n , n G N ( n ̂  4 ) ,

and let ti+1/2 = U ±h/2, i = 1, 2, . . . , n - 1.
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We form the discrete problem corresponding to (17):

(18) Pkwh = 0,

where wh = [toi, w2, . . . , wn-i]
T € Rn-1 is a mesh function on Ih \ {0, 1} and

Ph: R""1 ^ R " - 1 is

PhWl = l - fi(t3/2)w2]

q(tu un),

1+1] - ^"M/C^i+i) - fiwi)]

Let H'llj denote the usual vector (matrix) norm in Rn - 1 (R""1 '""1). Let e^ =
[1,1, . . . . 1]T€ R""1 and let

Uh = {wh G R"-1 : Beh >wh> 0},

(the inequality sign in Rn~1 should be understood componentwise). We have:

THEOREM 2 . Let (3-5) and (16) hold. Then in Uh there exists a unique solution
v>e,h to the discrete problem (18). Moreover, for any w^, v^ 6 Uh the following stability
inequality holds

n-l

(19) '(<<) K - vi\ < c-1 \\Phwh -

PROOF: Let us prove (19). For w^, Vh € Uh we set Zi = io,A'(ti), 5,- = ViA'(ij),
t = 1, 2, . . . , n — 1, and introduce a new operator:

PhZi = Ph(zi/\'(ti)), i = 1, 2, . . . , n - 1.

Then the Frechet derivative of Ph satisfies:

see [5, 6]. Indeed, Ph(zh) is an L-matrix and

T

It foUows that \zh - ef1
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and (19) is immediate. The inequalities

Ph(Beh) >0

complete the proof.

Let us now introduce the norm:

where hi = (xi+i - x;_i)/2, i — 1, 2, . . . , n - 1,

x{ = X(ti),i = O, 1, . . . , n .

This is the standard L1 discrete norm, see [1]. Let wCih be as in Theorem 2 and let

Moreover, in this section we let the constants M be independent of h as well. Then

we have:

THEOREM 4 . Let (3-6) and (16) hold and let the function X be given with a=tj

for some j £ (1 , 2, . . . , n — 1) . Then:

(20) \\uCth-wCih\\h^Mh.

PROOF: From (19) we have

(21)

where rh = Phue<h.

The components of the consistency-error-vector r^ are:

Ti - Phy,(ti) ~ (^y«)(*i). * = 1, 2, . . . , n - 1,

where ye(<) = ue(A(<)). The following estimates are proved in [10]:

e | / i ( i ) ( 0 | < M , Jfc = 0, l, 2,
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where t G (U-i, U), i = 1, 2, ..., n, (note that these derivatives exist in (f»_i, U))- It
follows that

(22a) |r,-| < Mh, i = 1, 2, .. . ,n - 1.

Furthermore, it is easy to prove that

(22b) \hX'(U)-hi\^Mhs, t = l, 2, . . . , n - l ,

and, obviously:

(22c) ^ ( x O - ^ . i l < M , * = 1,2, . . . , n - l .

Now multiply (21) by h and use (22) to obtain (20). D

4. NUMERICAL RESULTS

Let us consider the problem

-eu" - uu' + u = p(x), w(0) = 0, u(l) « 2,

where p(x) is given in such a way that the solution is

ue(x) — x + 1 — exp (—x/e).

Although this problem is more general than the problem (2), we shall use it to compare
the numerical solution obtained by the method from this Section with the exact one.
Note that ue behaves in the way described by Theorem 1.

Let Eoo = max \ue(x{) — toei,|
1^t^n—1

and Eh = \\uCih - weth\\h .

In Table 1 we present the results of our method. The function A is taken with a = 0.5
and /3 = 1. For e — 10~2 this gives about 40% of the points X{ in the interval [0, e]
representing the layer. The percentage changes as e does: for e = 10~3 it is about
33%, for e = 10~6 - about 26%, and for e = 10~9 - about 25%. By changing a and
(3 one can change the density of the points xi in the layer and a prescribed percentage
can be achieved, see [9, 10].

Table 1 confirms our theoretical results, but it shows the uniform pointwise conver-
gence as well. This is the advantage of our method in comparison with the numerical
solution obtained on equidistant meshes without transforming the original problem.
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These results are given in Table 2 and they also show the uniform convergence in the
norm ||-||fc = /i ||-||^ (and even more than that). However, the uniform pointwise con-
vergence is absent.

Table 1

n

50

100

200

e

Ex

Eh

Ex

Eh

E^

Eh

1.-2

6.41 - 2

3.30 - 2

3,30-2

1.69-2

1.68 - 2

8.55 - 3

1.-3

7.44 - 2

3.48 - 2

3.82 - 2

1.78 - 2

1.94-2

9.02 - 3

1.-6

7.86 - 2

3.53 - 2

4.03 - 2

1.81-2

2.04 - 2

9.17-3

1.-9

7.88 - 2

3.54 - 2

4.03 - 2

1.81-2

2.04 - 2

9.19-3

Table 2

n

50

100

200

e

Eoc

Ek

Ex

Eh

Ex

Eh

1 . - 2

0.200

8.78 - 3

0.106

4.66 - 3

5.22 - 2

2.20 - 3

1 . - 3

4.02 - 2

3.60 - 3

8.97 - 2

2.38 - 3

0.170

1.74 - 3
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