Vector-Valued Modular Forms of Weight Two Associated With Jacobi-Like Forms

Min Ho Lee

Abstract. We construct vector-valued modular forms of weight 2 associated to Jacobi-like forms with respect to a symmetric tensor representation of Γ by using the method of Kuga and Shimura as well as the correspondence between Jacobi-like forms and sequences of modular forms. As an application, we obtain vector-valued modular forms determined by theta functions and by pseudodifferential operators.

1 Introduction

Jacobi-like forms are formal power series, whose coefficients are holomorphic functions defined on the Poincaré upper half plane, satisfying a certain functional equation with respect to an action of a discrete subgroup Γ of $S L(2, \mathbb{R})$. This functional equation is essentially one of the two equations that must be satisfied by Jacobi forms for Γ introduced systematically by Eichler and Zagier [4]. The same functional equation induces certain relations among the coefficients of a Jacobi-like form, which can be used to express each coefficient of a Jacobi-like form for Γ as a linear combination of derivatives of some modular forms for Γ. Thus each Jacobi-like form determines a certain family of modular forms. In fact, such modular forms can in turn be written in terms of derivatives of coefficients of the associated Jacobi-form, which allows us to establish a one-to-one correspondence between Jacobi-like forms and certain sequences of modular forms (see $[1,8]$).

Vector-valued modular forms for a discrete subgroup Γ of $S L(2, \mathbb{R})$ generalize usual modular forms for Γ and are defined by using a representation of Γ in a complex vector space. Such modular forms play an important role in number theory. For example, vector-valued modular forms associated to a symmetric tensor representation can be used to establish the Eichler-Shimura correspondence between modular forms and cohomology of $\Gamma, c f$. $[3,7]$. If ρ_{m} is a symmetric tensor representation of Γ of degree m, then certain types of vector-valued modular forms of weight 2 with respect to ρ_{m} correspond to usual modular forms for Γ of weight $m+2$. It was Kuga and Shimura [5] who constructed such vector-valued modular forms of weight 2 by using derivatives of a modular form.

In this paper we construct vector-valued modular forms of weight 2 associated to Jacobi-like forms with respect to a symmetric tensor representation of Γ by using the method of Kuga and Shimura as well as the correspondence between Jacobi-like

[^0]forms and sequences of modular forms. As an application we obtain vector-valued modular forms determined by theta functions and by pseudodifferential operators.

2 Vector-Valued Modular Forms

In this section we review the method of Kuga and Shimura [5] of constructing vectorvalued modular forms of weight two by using derivatives of a usual scalar-valued modular form.

Let $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ be the Poincaré upper half plane on which the group $S L(2, \mathbb{R})$ acts as usual by linear fractional transformations. Thus, if $z \in \mathcal{H}$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R})$, we have

$$
\gamma z=\frac{a z+b}{c z+d}
$$

For such z and γ, we set

$$
\begin{equation*}
J(\gamma, z)=c z+d \tag{2.1}
\end{equation*}
$$

so that the resulting map $J: S L(2, \mathbb{R}) \times \mathcal{H} \rightarrow \mathbb{C}$ is an automorphy factor satisfying the cocycle condition

$$
J\left(\gamma \gamma^{\prime}, z\right)=J\left(\gamma, \gamma^{\prime} z\right) J\left(\gamma^{\prime}, z\right)
$$

for all $z \in \mathcal{H}$ and $\gamma, \gamma^{\prime} \in S L(2, \mathbb{R})$.
Let Γ be a discrete subgroup of $S L(2, \mathbb{R})$, and let $\rho: \Gamma \rightarrow G L(\ell, \mathbb{C})$ be a representation of Γ in the complex vector space \mathbb{C}^{ℓ} for some positive integer ℓ. Given a nonnegative integer k, we now modify the usual definition of modular forms and vector-valued modular forms of weight k by suppressing the usual finiteness condition at the cusps.

Definition 2.1

(i) A modular form of weight k for Γ is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ satisfying

$$
f(\gamma z)=J(\gamma, z)^{k} f(z)
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.
(ii) A vector-valued modular form of weight k for Γ with respect to ρ is a holomorphic function $\Psi: \mathcal{H} \rightarrow \mathbb{C}^{\ell}$ satisfying

$$
\Psi(\gamma z)=J(\gamma, z)^{k} \rho(\gamma) \Psi(z)
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$.
We shall denote by $M_{k}(\Gamma)$ and $\mathbf{M}_{k}(\Gamma, \rho)$ the space of modular forms of weight k for Γ and the space of vector-valued modular forms of weight k for Γ with respect to ρ, respectively. Throughout this paper, we shall also use $(\cdot)^{T}$ to denote the transpose of the matrix (\cdot). In particular, if $x_{1}, \ldots, x_{\ell} \in \mathbb{C}$, the corresponding column vector belonging to \mathbb{C}^{ℓ} will be denoted by $\left(x_{1}, \ldots, x_{\ell}\right)^{T}$.

If m is a positive integer, we denote by $\rho_{m}: S L(2, \mathbb{R}) \rightarrow G L(m+1, \mathbb{C})$ the m-th symmetric tensor power of the standard representation of $S L(2, \mathbb{R})$ in \mathbb{C}^{2}. Thus, if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R})$, then we have

$$
\begin{aligned}
& \rho_{m}(\gamma)\left(u^{m}, u^{m-1} v, \ldots, u v^{m-1}, v^{m}\right)^{T} \\
& \quad=\left((a u+b v)^{m},(a u+b v)^{m-1}(c u+d v), \ldots,(a u+b v)(c u+d v)^{m-1},(c u+d v)^{m}\right)^{T}
\end{aligned}
$$

for all $\binom{u}{v} \in \mathbb{C}^{2}$. By restricting ρ_{m} to Γ we obtain a representation of Γ in \mathbb{C}^{m+1}, which we also denote by ρ_{m}.

Definition 2.2 We define the matrix-valued function $\widehat{\rho}_{m}: \mathcal{H} \rightarrow G L(m+1, \mathbb{C})$ on \mathcal{H} associated to ρ_{m} by

$$
\widehat{\rho}_{m}(z)=\rho_{m}\left(\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\right)
$$

for all $z \in \mathcal{H}$.
Let $\alpha, \beta \in \mathbb{Z}$ be even with $\alpha>0$ and

$$
\begin{equation*}
-(\alpha-2) \leq \beta \leq \alpha+2 \tag{2.2}
\end{equation*}
$$

and set

$$
\delta=\frac{\alpha+2-\beta}{2}
$$

For each nonnegative integer $k \leq \delta$ we denote by $\eta_{k, \alpha, \beta}$ the rational number defined by

$$
\eta_{k, \alpha, \beta}= \begin{cases}0 & \text { if } k<1-\beta \tag{2.3}\\ \frac{(k+\alpha-\delta)!}{k!(\beta+k-1)!} & \text { if } k \geq 1-\beta\end{cases}
$$

Given a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$, we use its derivatives as well as the numbers $\eta_{k, \alpha, \beta}$ to define the finite sequence $\left\{\phi_{\ell, \alpha, \beta}\right\}_{\ell=0}^{\alpha}$ of functions on \mathcal{H} by

$$
\phi_{\ell, \alpha, \beta}(z)= \begin{cases}0 & \text { if } \ell<\alpha-\delta \\ \eta_{\ell-\alpha+\delta, \alpha, \beta} f^{(\ell-\alpha+\delta)}(z) & \text { if } \ell \geq \alpha-\delta\end{cases}
$$

for $z \in \mathcal{H}$ and $0 \leq \ell \leq \alpha$.
Definition 2.3 We define the vector-valued function $\Phi_{f}: \mathcal{H} \rightarrow \mathbb{C}^{\alpha+1}$ associated to $f: \mathcal{H} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\Phi_{f}(z)=\widehat{\rho}_{\alpha}(z)\left(\phi_{0, \alpha, \beta}(z), \phi_{1, \alpha, \beta}(z), \ldots, \phi_{\alpha, \alpha, \beta}(z)\right)^{T} \tag{2.4}
\end{equation*}
$$

for all $z \in \mathcal{H}$.
Theorem 2.4 If $f \in M_{\beta}(\Gamma)$, then the associated $\mathbb{C}^{\alpha+1}$-valued function Φ_{f} given by (2.4) is a vector-valued modular form belonging to $\mathbf{M}_{2}\left(\Gamma, \rho_{\alpha}\right)$.

Proof This follows from [5, Theorem 3].
Remark 2.5 Let $\Psi: \mathcal{H} \rightarrow \mathbb{C}^{\alpha+1}$ be a vector-valued holomorphic function which can be written in the form

$$
\Psi(z)=f(z)\left(z^{2 n}, z^{2 n-1}, \ldots, z, 1\right)^{T}
$$

for all $z \in \mathcal{H}$, where f is a holomorphic function on \mathcal{H}. Then it can be easily shown that Ψ is a vector-valued modular form belonging to $\mathbf{M}_{2}\left(\Gamma, \rho_{\alpha}\right)$ if and only if f is a modular form belonging to $M_{\alpha+2}(\Gamma)$.

3 Jacobi-Like Forms

In this section we construct vector-valued modular forms of weight 2 associated with Jacobi-like forms. As an application we also obtain vector-valued modular forms that can be expressed in terms of derivatives of powers of a scalar-valued modular form.

Let R be the ring of holomorphic functions on the Poincaré upper half plane \mathcal{H}, and denote by $R[[X]]$ the space of formal power series in X with coefficients in R. Let Γ be a discrete subgroup of $S L(2, \mathbb{R})$ as in Section 2 . We now define Jacobi-like forms without the usual holomorphy conditions at the cusps.

Definition 3.1 Given a nonnegative integer ℓ, a formal power series $\Phi(z, X) \in$ $R[[X]]$ is a Jacobi-like form of weight ℓ for Γ if

$$
\begin{equation*}
\Phi\left(\gamma z, J(\gamma, z)^{-2} X\right)=J(\gamma, z)^{\ell} \exp \left(J(\gamma, z)^{-1} \gamma_{2,1} X\right) \Phi(z, X) \tag{3.1}
\end{equation*}
$$

for all $z \in \mathcal{H}$ and $\gamma \in \Gamma$, where $J(\gamma, z)$ is as in (2.1) and $\gamma_{2,1}$ denotes the (2,1)-entry of the matrix γ. We shall denote by $\mathcal{J}_{\ell}(\Gamma)$ the space of Jacobi-like forms of weight ℓ for Γ.

Proposition 3.2 Let $\Psi(z, X)=\sum_{k=1}^{\infty} \psi_{k}(z) X^{k}$ be a formal power series in $R[[X]]$.
(i) The power series $\Psi(z, X)$ is a Jacobi-like form belonging to $\mathcal{J}_{\ell}(\Gamma)$ if and only if

$$
\begin{equation*}
\psi_{k}=\sum_{r=0}^{k-1} \frac{1}{r!(2 k+\ell-r-1)!} h_{k-r}^{(r)} \tag{3.2}
\end{equation*}
$$

for all $k \geq 1$, where $h_{j} \in M_{2 j+\ell}(\Gamma)$ for each $j \geq 1$.
(ii) The system of relations (3.2) is equivalent to the condition

$$
\begin{equation*}
h_{j}=(2 j+\ell-1) \sum_{r=0}^{j-1}(-1)^{r} \frac{(2 j+\ell-r-2)!}{r!} \psi_{k-r}^{(r)} \tag{3.3}
\end{equation*}
$$

for all $j \geq 1$.
Proof The proposition follows from the results in [8, p. 62]. The case of weight zero is contained in [1, Proposition 2].

Theorem 3.3 Let n and σ be positive integers with $n \leq \sigma \leq 2 n$, and let $\Phi(z, X)=$ $\sum_{k=1}^{\infty} \phi_{k}(z) X^{k}$ be a Jacobi-like form belonging to $\mathcal{J}_{2 w}(\Gamma)$ for some positive integer w. Let $\Lambda_{\Phi}: \mathcal{H} \rightarrow \mathbb{C}^{2 n+1}$ be the vector-valued function defined by

$$
\Lambda_{\Phi}(z)=\widehat{\rho}_{2 n}(z)\left(\lambda_{0}(z), \lambda_{1}(z), \ldots, \lambda_{2 n}(z)\right)^{T}
$$

for all $z \in \mathcal{H}$, where

$$
\lambda_{\ell}(z)= \begin{cases}0 & \text { if } 0 \leq \ell<\sigma \\ \sum_{r=0}^{\sigma-n-w} \frac{(-1)^{r} \ell!(2 \sigma-2 n-r)!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!r!} \phi_{\sigma+1-n-w-r}^{(\ell-\sigma+r)}(z) & \text { if } \sigma \leq \ell \leq 2 n\end{cases}
$$

Then Λ_{Φ} is a vector-valued modular form belonging to $\mathbf{M}_{2}\left(\Gamma, \rho_{2 n}\right)$.
Proof Given a Jacobi-like form $\Phi(z, X)=\sum_{k=1}^{\infty} \phi_{k}(z) X^{k} \in \mathcal{J}_{2 w}(\Gamma)$ and an integer $j \geq 1$, using (3.3), we see that the function $f_{j}: \mathcal{H} \rightarrow \mathbb{C}$ defined by

$$
f_{j}=\sum_{r=0}^{j-1}(-1)^{r} \frac{(2 j+2 w-r-2)!}{r!} \phi_{j-r}^{(r)}
$$

is an element of $M_{2 j+2 w}(\Gamma)$. In particular, for $j=\sigma+1-n-w$, we obtain an element $f_{\sigma+1-n-w} \in M_{2 \sigma+2-2 n}(\Gamma)$ given by

$$
\begin{equation*}
f_{\sigma+1-n-w}=\sum_{r=0}^{\sigma-n-w}(-1)^{r} \frac{(2 \sigma-2 n-r)!}{r!} \phi_{\sigma+1-n-w-r}^{(r)} \tag{3.4}
\end{equation*}
$$

We now apply Theorem 2.4 for

$$
\alpha=2 n, \quad \beta=2 \sigma+2-\alpha=2 \sigma+2-2 n
$$

Then, from the condition $n \leq \sigma \leq 2 n$ we obtain

$$
2 \leq \beta \leq \alpha+2
$$

hence the integers α and β satisfy (2.2), and we can apply Theorem 2.4 by using

$$
\delta=(\alpha+2-\beta) / 2=\alpha-\sigma=2 n-\sigma
$$

Since $1-\beta=2 n-2 \sigma-1 \leq-1$, it follows from (2.3) that

$$
\begin{equation*}
\eta_{k, 2 n, 2 \sigma+2-2 n}=\frac{(k+\sigma)!}{k!(k+1+2 \sigma-2 n)!} \tag{3.5}
\end{equation*}
$$

for $0 \leq k \leq 2 n-\sigma$. Then from (3.4) and (3.5), we obtain

$$
\begin{gathered}
\eta_{\ell-\sigma, 2 n, 2 \sigma+2-2 n} f_{\sigma+1-n-w}^{(\ell-\sigma)}=\eta_{\ell-\sigma, 2 n, 2 \sigma+2-2 n} \sum_{r=0}^{\sigma-n-w}(-1)^{r} \frac{(2 \sigma-2 n-r)!}{r!} \phi_{\sigma+1-n-w-r}^{(\ell-\sigma+r)} \\
=\frac{\ell!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!} \sum_{r=0}^{\sigma-n-w}(-1)^{r} \frac{(2 \sigma-2 n-r)!}{r!} \phi_{\sigma+1-n-w-r}^{(\ell-\sigma+r)}
\end{gathered}
$$

Hence the theorem follows from this and Theorem 2.4.

As an application of Theorem 3.3 we now discuss vector-valued modular forms associated to a scalar-valued modular form. We shall express a vector-valued modular form in terms of derivatives of the given modular form.

Theorem 3.4 Let $f \in M_{2 w}(\Gamma)$ for some positive integer w, and set

$$
\Xi_{f}(z)=\widehat{\rho}_{2 n}(z)\left(\xi_{0}(z), \xi_{1}(z), \ldots, \xi_{2 n}(z)\right)^{T}
$$

for all $z \in \mathcal{H}$, where $\xi_{\ell}(z)=0$ for $0 \leq \ell<\sigma$ and

$$
\begin{aligned}
& \xi_{\ell}=\sum_{r=0}^{\sigma-n-w} \sum_{s=2}^{\lfloor(\sigma+1-n-r) / w\rfloor} \frac{(-1)^{r} \ell!(2 \sigma-2 n-r)!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!r!} \\
& \quad \times \frac{\left(f^{s-1}\right)^{(\ell+1-n-s w)}}{(\sigma+1-n-r-s w)!(\sigma-n-r+(s-2) w)!}
\end{aligned}
$$

for $\sigma \leq \ell \leq 2 n$; here $\lfloor k / w\rfloor$ denotes the largest integer less than or equal to the rational number k / w. Then Ξ_{f} is a vector-valued modular form belonging to $\mathbf{M}_{2}\left(\Gamma, \rho_{2 n}\right)$.

Proof Given $f \in M_{2 w}(\Gamma)$, since $f^{p} \in M_{2 p w}(\Gamma)$ for each $p \geq 1$, we have a sequence $\left(h_{j, w, f}\right)_{j=0}^{\infty}$ of modular forms for Γ with $h_{j, w, f} \in M_{2 j}(\Gamma)$ such that

$$
h_{j, w, f}= \begin{cases}f^{p} & \text { if } j=p w \text { for some } p \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Thus, using Proposition 3.2(i), we obtain a Jacobi-like form $\Phi(z, X)=\sum_{k=1}^{\infty} \psi_{k}(z) X^{k}$ belonging to $\mathscr{\partial}_{0}(\Gamma)$, where

$$
\psi_{k}=\sum_{p=1}^{\lfloor k / w\rfloor} \frac{1}{(k-p w)!(k+p w-1)!}\left(f^{p}\right)^{(k-p w)}
$$

for all $k \geq 1$. For $\sigma \leq \ell \leq 2 n$, we set

$$
\begin{aligned}
\xi_{\ell}= & \left.\sum_{r=0}^{\sigma-n-w} \frac{(-1)^{r} \ell!(2 \sigma-2 n-r)!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!r!} \psi_{\sigma+1-n-w-r}^{(\ell-\sigma+r}\right) \\
= & \sum_{r=0}^{\sigma-n-w\lfloor(\sigma+1-n-w-r) / w\rfloor} \frac{(-1)^{r} \ell!(2 \sigma-2 n-r)!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!r!} \\
& \times \frac{\left(f^{p}\right)^{(\ell+1-n-w-p w)}}{(\sigma+1-n-w-r-p w)!(\sigma-n-w-r+p w)!} \\
= & \sum_{r=0}^{\sigma-n-w\lfloor(\sigma+1-n-r) / w\rfloor} \sum_{s=2} \frac{(-1)^{r} \ell!(2 \sigma-2 n-r)!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!r!} \\
& \times \frac{\left(f^{s-1}\right)^{(\ell+1-n-s w)}}{(\sigma+1-n-r-s w)!(\sigma-n-r+(s-2) w)!} .
\end{aligned}
$$

Hence the theorem follows from this and Theorem 3.3.

4 Theta Functions

In this section we construct vector-valued modular forms of weight 2 by applying Theorem 3.3 to Jacobi-like forms associated to certain theta functions of the type studied by Dong and Mason [2].

We fix a positive integer w, an element v of $\mathbb{C}^{2 w}$, and a symmetric positive definite integral $2 w \times 2 w$ matrix A whose diagonal entries are even. For each nonnegative integer k, we define the theta function $\theta_{k}: \mathcal{H} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\theta_{k}(z)=\sum_{\ell \in \mathbb{Z}^{2 w}}\left(v^{T} A \ell\right)^{k} e^{\pi i\left(\ell^{T} A \ell\right) z} \tag{4.1}
\end{equation*}
$$

for all $z \in \mathcal{H}$. Given integers σ and ℓ with $n \leq \sigma \leq \ell \leq 2 n$, we set

$$
\begin{align*}
& \lambda_{\ell}(z)=\sum_{r=0}^{\sigma-n-w} \sum_{j=0}^{\sigma+1-n-w-r \ell-\sigma+r} \sum_{s=0}\left(\frac{2 \pi i}{v^{T} A v}\right)^{\sigma+1-n-w-r} \tag{4.2}\\
& \quad \times \frac{(-1)^{r} \ell!(2 \sigma-2 n-r)!(\ell-\sigma+r)!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!r!!!(\ell-\sigma+r-s)!} \\
& \quad \times \frac{\theta_{2 j}^{(s)}(z) \theta_{2 \sigma+2-2 n-2 w-2 r-2 j}^{(\ell-\sigma+r-s)}(z)}{(2 j)!(2 \sigma+2-2 n-2 w-2 r-2 j)!}
\end{align*}
$$

for all $z \in \mathcal{H}$.
Let N be the smallest positive integer such that $N A^{-1}$ is an integral matrix with even diagonal entries, and let $\Gamma_{0}(N) \subset S L(2, \mathbb{Z})$ be the associated congruence subgroup given by

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

Theorem 4.1 Let $\Psi: \mathcal{H} \rightarrow \mathbb{C}^{2 n+1}$ be the vector-valued function on \mathcal{H} defined by

$$
\Psi(z)=\widehat{\rho}(z)\left(0, \ldots, 0, \lambda_{\sigma}(z), \ldots, \lambda_{2 n}(z)\right)^{T}
$$

where $\lambda_{\ell}(z)$ for $\sigma \leq \ell \leq 2 n$ is as in (4.2). Then Ψ is a vector-valued modular form belonging to $\mathbf{M}_{2}\left(\Gamma_{0}(N), \rho_{2 n}\right)$.

Proof Given a nonnegative integer k, we set

$$
\begin{equation*}
\phi_{k}(z)=\sum_{j=0}^{k}\left(\frac{2 \pi i}{v^{T} A v}\right)^{k} \frac{\theta_{2 j}(z) \theta_{2 k-2 j}(z)}{(2 j)!(2 k-2 j)!} \tag{4.3}
\end{equation*}
$$

for all $z \in \mathcal{H}$. Then by [6, Lemma 4.1] the formal power series

$$
\vartheta(z, X)=\sum_{k=1}^{\infty} \phi_{k}(z) X^{k}
$$

is an element of $\mathcal{J}_{2 w}\left(\Gamma_{0}(N)\right)$. From (4.3) we obtain

$$
\begin{aligned}
\phi_{\sigma+1-n-w-r}^{(\ell-\sigma+r)}= & \sum_{j=0}^{\sigma+1-n-w-r}\left(\frac{2 \pi i}{v^{T} A v}\right)^{\sigma+1-n-w-r} \frac{\left(\theta_{2 j} \theta_{2 \sigma+2-2 n-2 w-2 r-2 j}\right)^{(\ell-\sigma+r)}}{(2 j)!(2 \sigma+2-2 n-2 w-2 r-2 j)!} \\
= & \sum_{j=0}^{\sigma+1-n-w-r \ell-\sigma+r} \sum_{s=0}\left(\frac{2 \pi i}{v^{T} A v}\right)^{\sigma+1-n-w-r}\binom{\ell-\sigma+r}{s} \\
& \times \frac{\theta_{2 j}^{(s)} \theta_{2 \sigma+2-2 n-2 w-2 r-2 j}^{(\ell-\sigma+r-s)}}{(2 j)!(2 \sigma+2-2 n-2 w-2 r-2 j)!} .
\end{aligned}
$$

Hence the theorem follows from this and Theorem 3.3.

5 Pseudodifferential Operators

Jacobi-like forms for a discrete subgroup of $S L(2, \mathbb{R})$ are known to be in one-to-one correspondence with certain pseudodifferential operators that are invariant under the same discrete group (see $[1,8]$). In this section we combine this fact with the results in Section 3 to construct another type of vector-valued modular form.

Let R be the ring of holomorphic functions on \mathcal{H} as in Section 3, and denote by ∂ the differential operator $d / d z$ acting on R. Then a pseudodifferential operator over R is a formal series of the form

$$
\psi(z)=\sum_{k=-\infty}^{k_{0}} \xi_{k}(z) \partial^{k}
$$

with $z \in \mathcal{H}$ for some $k_{0} \in \mathbb{Z}$, where $\xi_{k} \in R$ for all $k \leq k_{0}$. Let $\Psi D O$ denote the set of all pseudodifferential operators over R. Then $\Psi D O$ is an algebra over R whose multiplication is given by

$$
\left(\sum_{k=-\infty}^{k_{0}} \xi_{k}(z) \partial^{k}\right)\left(\sum_{m=-\infty}^{m_{0}} \eta_{m}(z) \partial^{m}\right)=\sum_{k=-\infty}^{k_{0}} \sum_{m=-\infty}^{m_{0}} \sum_{r=0}^{\infty}\binom{k}{r} \xi_{k}(z) \eta^{(r)}(z) \partial^{k+m-r}
$$

where $\eta^{(r)}$ denotes the derivative of η of order $r,\binom{k}{0}=1$, and

$$
\binom{k}{r}=\frac{k(k-1) \cdots(k-r+1)}{r!}
$$

for $k \in \mathbb{Z}$ and $r \geq 1$.
If $\Xi=\sum_{k=-\infty}^{k_{0}} \xi_{k}(z) \partial^{k}$ is an element of $\Psi D O$, we define $\Xi \cdot \gamma$ to be the element of $\Psi D O$ that is obtained from Ξ by the coordinate change $z \mapsto \gamma z$. Thus we have

$$
\begin{aligned}
\Xi \cdot \gamma & =\sum_{k=-\infty}^{k_{0}} \xi_{k}(\gamma z) \partial_{\gamma z}^{k}=\sum_{k=-\infty}^{k_{0}} \xi_{k}(\gamma z)\left(\frac{d}{d(\gamma z)}\right)^{k} \\
& =\sum_{k=-\infty}^{k_{0}} \xi_{k}(\gamma z)\left(\left(\frac{d(\gamma z)}{d z}\right)^{-1} \partial\right)^{k}
\end{aligned}
$$

for all $\Xi=\sum_{k} \xi_{k}(z) \partial^{k} \in \Psi D O$ and $\gamma \in S L(2, \mathbb{R})$. In fact, it can be shown that

$$
\begin{equation*}
\Xi \cdot \gamma=\sum_{k=-\infty}^{k_{0}} \sum_{m=0}^{\infty} m!\binom{k}{m}\binom{k-1}{m} \gamma_{2,1}^{m} J(\gamma, z)^{2 k-m} \xi_{k}(\gamma z) \partial^{k-m} \tag{5.1}
\end{equation*}
$$

for $\gamma \in S L(2, \mathbb{R})$ and that (5.1) determines a right action of $S L(2, \mathbb{R})$ on $\Psi D O$. Let $\Psi \mathrm{DO}^{\Gamma}$ denote the set of elements of $\Psi \mathrm{DO}$ that are invariant under the Γ-action given by (5.1), that is,

$$
\Psi \mathrm{DO}^{\Gamma}=\{\Xi \in \Psi \mathrm{DO} \mid \Xi \cdot \gamma=\Xi \text { for all } \gamma \in \Gamma\}
$$

We consider a pseudodifferential operator of the form

$$
\begin{equation*}
\Xi=\sum_{k=-\infty}^{-1} \xi_{k}(z) \partial^{k} \in \Psi \mathrm{DO} \tag{5.2}
\end{equation*}
$$

and set

$$
\begin{equation*}
\xi_{j}^{*}(z)=\frac{(-1)^{j} \xi_{-j}(z)}{j!(j-1)!} \tag{5.3}
\end{equation*}
$$

for each $j \geq 1$.

Lemma 5.1 Let $\Xi \in \Psi \mathrm{DO}$ be as in (5.2), and let $\Phi(z, X)$ be the formal power series given by

$$
\Phi(z, X)=\sum_{j=1}^{\infty} \xi_{j}^{*}(z) X^{j}
$$

where $\xi_{j}^{*}(z)$ is as in (5.3). Then $\Xi \in \Psi \mathrm{DO}^{\Gamma}$ if and only if $\Phi(z, X) \in \mathcal{J}_{0}(\Gamma)$.

Proof This follows from [1, Proposition 2].

Given integers σ and ℓ with $n \leq \sigma \leq \ell \leq 2 n$, we set

$$
\begin{align*}
& \widetilde{\lambda}_{\ell}(z)=\sum_{r=0}^{\sigma-n-w} \frac{(-1)^{\sigma+1-n-w} \ell!(2 \sigma-2 n-r)!}{(\ell-\sigma)!(\ell+\sigma+1-2 n)!} \tag{5.4}\\
& \quad \times \frac{\xi_{n+w+r-\sigma-1}^{(\ell-\sigma+r)}(z)}{r!(\sigma+1-n-w-r)!(\sigma-n-w-r)!}
\end{align*}
$$

for all $z \in \mathcal{H}$.

Theorem 5.2 Let $\Xi \in \Psi D O$ be the pseudodifferential operator in (5.2), and let $\Psi: \mathcal{H} \rightarrow \mathbb{C}^{2 n+1}$ be the vector-valued function on \mathcal{H} defined by

$$
\Psi(z)=\widehat{\rho}(z)\left(0, \ldots, 0, \widetilde{\lambda}_{\sigma}(z), \ldots, \widetilde{\lambda}_{2 n}(z)\right)^{T}
$$

where $\lambda_{\ell}(z)$ for $\sigma \leq \ell \leq 2 n$ is as in (5.4). If Ξ is Γ-invariant, then Ψ is a vector-valued modular form belonging to $\mathbf{M}_{2}\left(\Gamma, \rho_{2 n}\right)$.

Proof Since $\Xi \in \Psi D O$ is Γ-invariant, by Lemma 5.1 the formal power series

$$
\Phi(x, X)=\sum_{k=1}^{\infty} \xi_{k}^{*}(z) X^{k}=\sum_{k=1}^{\infty} \frac{(-1)^{k} \xi_{-k}(z)}{k!(k-1)!} X^{k}
$$

is a Jacobi-like form belonging to $\mathscr{J}_{0}(\Gamma)$. Thus the theorem follows from Theorem 3.3 and the relation

$$
\left(\xi_{\sigma+1-n-w-r}^{*}\right)^{(\ell-\sigma+r)}=\frac{(-1)^{\sigma+1-n-w-r} \xi_{n+w+r-\sigma-1}^{(\ell-\sigma+r)}}{(\sigma+1-n-w-r)!(\sigma-n-w-r)!}
$$

for $0 \leq r \leq \sigma-n-w$.

References

[1] P. Cohen, Y. Manin, and D. Zagier, Automorphic pseudodifferential operators. In: Algebraic Aspects of Nonlinear Systems, Progr. Nonlinear Differential Equations Appl. 26, Birkhäuser, Boston, 1997, pp. 17-47.
[2] C. Dong and G. Mason, Transformation laws for theta functions. In: Proceedings on Moonshine and Related Topics, CRM Proc. Lecture Notes 30, American Mathematical Society, Providence, RI, 2001, pp. 15-26.
[3] M. Eichler, Eine Verallgemeinerung der Abelschen Integrals. Math. Z. 67(1957), 267-298.
[4] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics 55, Birkhäuser, Boston, 1985.
[5] M. Kuga and G. Shimura, On vector differential forms attached to automorphic forms. J. Math. Soc. Japan 12(1960), 258-270.
[6] M. H. Lee, Modular forms associated to theta functions. Canad. Math. Bull. 45(2002), no. 2, 257-264.
[7] G. Shimura, Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan 11(1959), 291-311.
[8] D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104(1994), no. 1, 57-75.

Department of Mathematics
University of Northern Iowa
Cedar Falls, IA 50614
U.S.A.
e-mail: lee@math.uni.edu

[^0]: Received by the editors September 16, 2004; revised November 4, 2004.
 This research was supported in part by a 2004 UNI Summer Fellowship.
 AMS subject classification: 11F11, 11F50.
 (C)Canadian Mathematical Society 2006.

