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ABSTRACT

The majority of optimal Bonus-Malus Systems (BMS) presented up to now
in the actuarial literature assign to each policyholder a premium based on the
number of his accidents. In this way a policyholder who had an accident with
a small size of loss is penalized unfairly in the same way with a policyholder
who had an accident with a big size of loss. Motivated by this, we develop
in this paper, the design of optimal BMS with both a frequency and a severity
component. The optimal BMS designed are based both on the number of acci-
dents of each policyholder and on the size of loss (severity) for each accident
incurred. Optimality is obtained by minimizing the insurer's risk. Furthermore
we incorporate in the above design of optimal BMS the important a priori
information we have for each policyholder. Thus we propose a generalised BMS
that takes into consideration simultaneously the individual's characteristics,
the number of his accidents and the exact level of severity for each accident.
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1. INTRODUCTION

BMS penalize the policyholders responsible for one or more claims by a
premium surcharge (malus) and reward the policyholders who had a claim
free year by awarding discount of the premium (bonus). In this way BMS

* Department of Statistics, Athens University of Economics and Business, Patission 76, 10434, Athens,
Greece. E-mail for correspondence nef@aueb.gr and svrontos@aueb.gr
This work has been partially supported by 96SYN 3-19 on "Design of Optimal Bonus-Malus Sys-
tems in Automobile Insurance" and the General Secreteriat of Research and Technology of Greece.
The authors would like to thank the referees for their valuable comments.

ASTIN BULLETIN, Vol. 31, No. 1, 2001, pp. 5-26

https://doi.org/10.2143/AST.31.1.991 Published online by Cambridge University Press

https://doi.org/10.2143/AST.31.1.991


2 NICHOLAS E. FRANGOS AND SPYRIDON D. VRONTOS

encourage policyholders to drive carefully and estimate the unknown risk of
each policyholder to have an accident.

A BMS is called optimal if it is: 1. financially balanced for the insurer,
that is the total amount of bonuses is equal to the total amount of maluses.
2. Fair for the policyholder, that is each policyholder pays a premium propor-
tional to the risk that he imposes to the pool. Optimal BMS can be divided in
two categories: those based only on the a posteriori classification criteria and
those based both on the a priori and the a posteriori classification criteria. As
a posteriori classification criteria are considered the number of accidents of
the policyholder and the severity of each accident. As a priori classification
criteria are considered the variables whose their values are known before the
policyholder starts to drive, such as characteristics of the driver and the auto-
mobile. The majority of BMS designed is based on the number of accidents
disregarding their severity. Thus first let us consider the design of optimal
BMS based only on the a posteriori claim frequency component.

1.1. BMS based on the a posteriori claim frequency component

Lemaire (1995) developed the design of an optimal BMS based on the num-
ber of claims of each policyholder, following a game-theoretic framework
introduced by Bichsel (1964) and Buhlmann (1964). Each policyholder has to
pay a premium proportional to his own unknown claim frequency. The use
of the estimate of the claim frequency instead of the true unknown claim
frequency will incur a loss to the insurer. The optimal estimate of the policy-
holder's claim frequency is the one that minimizes the loss incurred. Lemaire
(1995) considered, among other BMS, the optimal BMS obtained using the
quadratic error loss function, the expected value premium calculation princi-
ple and the Negative Binomial as the claim frequency distribution. Tremblay
(1992) considered the design of an optimal BMS using the quadratic error
loss function, the zero-utility premium calculation principle and the Poisson-
Inverse Gaussian as the claim frequency distribution. Coene and Doray (1996)
developed a method of obtaining a financially balanced BMS by minimizing
a quadratic function of the difference between the premium for an optimal
BMS with an infinite number of classes, weighted by the stationary probability
of being in a certain class and by imposing various constraints on the sys-
tem. Walhin and Paris (1997) obtained an optimal BMS using as the claim
frequency distribution the Hofmann's distribution, which encompasses the
Negative Binomial and the Poisson-Inverse Gaussian, and also using as a
claim frequency distribution a finite Poisson mixture. As we see, all the BMS
mentioned above take under consideration only the number of claims of each
policyholder disregarding their severity.

1.2. BMS based on the a priori and the a posteriori claim frequency component

The models mentioned above are function of time and of past number of acci-
dents and do not take into consideration the characteristics of each individual.
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In this way as mentioned in Dionne and Vanasse (1989), the premiums do
not vary simultaneously with other variables that affect the claim frequency
distribution. The most interesting example is the age variable. Suppose that
age has a negative effect on the expected number of claims, it would imply
that insurance premiums should decrease with age. Premium tables derived
from BMS based only on the a posteriori criteria, even though are a function
of time, do not allow for a variation of age, even though age is a statistically
significant variable.

Dionne and Vanasse (1989, 1992) presented a BMS that integrates a priori
and a posteriori information on an individual basis. This BMS is derived as
a function of the years that the policyholder is in the portfolio, of the num-
ber of accidents and of the individual characteristics which are significant for
the number of accidents. Picech (1994) and Sigalotti (1994) derived a BMS
that incorporates the a posteriori and the a priori classification criteria, with
the engine power as the single a priori rating variable. Sigalotti developed a
recursive procedure to compute the sequence of increasing equilibrium pre-
miums needed to balance out premiums income and expenditures compen-
sating for the premium decrease created by the BMS transition rules. Picech
developed a heuristic method to build a BMS that approximates the optimal
merit-rating system. Taylor (1997) developed the setting of a Bonus-Malus
scale where some rating factors are used to recognize the differentiation of
underlying claim frequency by experience, but only to the extent that this dif-
ferentiation is not recognized within base premiums. Pinquet (1998) developed
the design of optimal BMS from different types of claims, such as claims at
fault and claims not at fault.

1.3. Allowance for the severity in BMS

In the models briefly described above the size of loss that each accident
incurred is not considered in the design of the BMS. Policyholders with the
same number of accidents pay the same malus, irrespectively of the size of
loss of their accidents. In this sense the BMS designed in the above way are
unfair for the policyholders who had an accident with a small size of loss.
Actually as Lemaire (1995) is pointing out all BMS in force throughout the
world, with the exception of Korea, are penalizing the number of accidents
without taking the severity of such claims into account. In the BMS enforced
in Korea the policyholders who had a bodily injury claim pay higher maluses,
depending on how severe the accident was, than the policyholders who had
a property damage claim. The BMS designed to take severity into considera-
tion include those from Picard (1976) and Pinquet (1997). Picard generalized
the Negative Binomial model in order to take into account the subdivision of
claims into two categories, small and large losses. In order to separate large
from small losses, two options could be used: 1. The losses under a limiting
amount are regarded as small and the remainder as large. 2. Subdivision of
accidents in those that caused property damage and those that cause bodily
injury, penalizing more severely the policyholders who had a bodily injury
accident. Pinquet (1997) designed an optimal BMS which makes allowance
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for the severity of the claims in the following way: starting from a rating
model based on the analysis of number of claims and of costs of claims, two
heterogeneity components are added. They represent unobserved factors that
are relevant for the explanation of the severity variables. The costs of claims
are supposed to follow gamma or lognormal distribution. The rating factors,
as well as the heterogeneity components are included in the scale parameter
of the distribution. Considering that the heterogeneity also follows a gamma
or lognnormal distribution, a credibility expression is obtained which pro-
vides a predictor for the average cost of claim for the following period.

Our first contribution in this paper is the development of an optimal BMS
that takes into account the number of claims of each policyholder and the
exact size of loss that these claims incurred. We assumed that the number of
claims is distributed according the Negative Binomial distribution and the
losses of the claims are distributed according the Pareto distribution, and we
have expanded the frame that Lemaire (1995) used to design an optimal BMS
based on the number of claims. Applying Bayes' theorem we find the poste-
rior distribution of the mean claim frequency and the posterior distribution
of the mean claim size given the information we have about the claim frequency
history and the claim size history for each policyholder for the time period he
is in the portfolio. For more on this subject we refer to Vrontos (1998).

Our second contribution is the development of a generalized BMS that
integrates the a priori and the a posteriori information on a individual basis.
In this generalized BMS the premium will be a function of the years that the
policyholder is in the portfolio, of his number of accidents, of the size of loss
that each of these accidents incurred, and of the significant a priori rating
variables for the number of accidents and for the size of loss that each of
these claims incurred. We will do this by expanding the frame developed by
Dionne and Vanasse (1989, 1992).

Pinquet (1997) is starting from a rating model and then he is adding the het-
erogeneity components. We design first an optimal BMS based only on the a
posteriori classification criteria and then we generalize it in order to take under
consideration both the a priori and the a posteriori classification criteria.

2. DESIGN OF OPTIMAL BMS WITH A FREQUENCY AND A SEVERITY
COMPONENT BASED ON THE A POSTERIORI CRITERIA

It is assumed that the number of claims of each policyholder is independent
from the severity of each claim in order to deal with the frequency and the
severity component separately.

2.1. Frequency component

For the frequency component we will use the same structure used by Lemaire
(1995). The portfolio is considered to be heterogeneous and all policyholders
have constant but unequal underlying risks to have an accident. Consider that
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the number of claims k, given the parameter X, is distributed according to
Poisson (X),

k = 0,1,2,3,... and k > 0 and X is denoting the different underlying risk of
each policyholder to have an accident. Let us assume for the structure func-
tion that k ~ gamma(a, z) and k has a probability density function of the
form:

r ~ V ^ P ( ~ U ) , k>0,a>0,r>0

with mean E(k) = alt and variance Var(k) = ah2. Then it can be proved that
the unconditional distribution of the number of claims k will be Negative
Binomial (a,r), with probability density function

mean equal to E(k) = ah and variance equal to Var(k) = (a/r) (1 + 1/T). The
variance of the Negative Binomial exceeds its mean, a desirable property which
is common for all mixtures of Poisson distribution and allows us to deal with
data that present overdispersion.

t

Let us denote as K- ]£]&,• the total number of claims that a policyholder
1 = 1

had in t years, where kt is the number of claims that the policyholder had in
the year /, / = \,...,t. We apply the Bayes' theorem and we obtain the posterior
structure function of k for a policyholder or a group of policyholders with
claim history ku....kt, denoted as u(k\ku ...kt). It is that

\K+a 2 K+a-1 -(t+z)X

which is the probability density function of a gamma (a + K,t + T). Using the
quadratic error loss function the optimal choice of kt+l for a policyholder with
claim history kx,....kt will be the mean of the posterior structure function,
that is

f ) , where! = f. (1)

From the above it is clear that the occurrence of K accidents in t years just
necessitates an update of the parameters of gamma, from a and T to a + K
and t + T respectively and the gamma is said to have the important property
of the stability of the structure function as the gamma is a conjugate family
for the Poisson likelihood.
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2.2. Severity component

Let us consider now the severity component. Let x be the size of the claim of
each insured. We consider as y the mean claim size for each insured and we
assume that the conditional distribution of the size of each claim given the
mean claim size, x\y, for each policyholder is the one parameter exponential
distribution with parameter y, and has a probability density function given by

for x > 0 and y > 0. The mean of the exponential is E(x\y)-y and the vari-
ance is var(x\y) = y2. The mean claim size y is not the same for all the policy-
holders but it takes different values so it is natural our prior belief for y to be
expressed in the form of a distribution. Consider that the prior distribution of
the mean claim size y is Inverse Gamma with parameters s and m and proba-
bility density function, see for example Hogg and Klugman (1984) given by

g(y)= a r
The expected value of the mean claim size y will be:

The unconditional distribution of the claim size x will be equal to:

which is the probability density of the Pareto distribution with parameters s
and m. Thus, one way to generate the Pareto distribution is the following:
if it is for the size of each claim given the mean claim size x\y that x\y ~
Exponentially) and for the mean claim size y of each policyholder that y ~
Inverse Gamma (s,m) then it is for the unconditional distribution of the claim
size x in the portfolio that x ~ Pareto (s,m). In this way, the relatively tame
exponential distribution gets transformed in the heavy-tailed Pareto distribu-
tion and instead of using the exponential distribution which is often inappro-
priate for the modelling of claim severity we are using the Pareto distribution
which is often a good candidate for modelling the claim severity. Taking the
mean claim size y distributed according the Inverse Gamma, we incorporate
in the model the heterogeneity that characterizes the severity of the claims of
different policyholders. We should note here that such a generation of the
Pareto distribution does not appear for the first time in the actuarial literature.
Such a use can be found for example in Herzog (1996). To the best of our
knowledge it is the first time it is used in the design of an optimal BMS.
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In order to design an optimal BMS that will take into account the size of
loss of each claim, we have to find the posterior distribution of the mean
claim size y given the information we have about the claim size history for
each policyholder for the time period he is in the portfolio. Consider that the
policyholder is in the portfolio for t years and that the number of claims he

had in the year i is denoted with kt, by K= 2^< is denoted the total number of
1=1

claims he has, and by xk is denoted the claim amount for the k claim. Then
the information we have for his claim size history will be in the form of a vec-
tor xux2,...,xk and the total claim amount for the specific policyholder over

K

the t years that he is in the portfolio will be equal to ̂ xk. Applying Bayes'
k=l

theorem we find the posterior distribution of the mean claim size y given the
claims size history of the policyholder xh ...,xk and it is that:

g(y\xh...,xk) =
K

m + 2 * A

—±-.e—r-
(m +

which is the probability density function of the Inverse Gamma^ + K, m +

]£]**)• This means that the occurrence of K claims in t years with aggregate

claim amount equal to 2-** just necessitates for the distribution of the mean

claim size an update of the parameters of the Inverse Gamma from s and m
K

to s + K and m + ^xk respectively and the Inverse Gamma distribution is said
to have the important property of being conjugate with the exponential like-
lihood. The mean of the posterior distribution of the mean claim size will be:

and the predictive distribution of the size of the claim of each insured x will
be also a member of the Pareto family.

2.3. Calculation of the Premium according the Net Premium Principle

As shown, the expected number of claims Xt+X(kx,..., kt) for a policyholder or a
group of policyholders who in t years of observation have produced K claims

K

with total claim amount equal to ̂ xk is given by (1) and the expected claim sever-
k=\

ity yt+l(xu ..., xK) is given by (2).
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Thus, the net premium that must be paid from that specific group of pol-
icyholders will be equal to the product of h,+\{kx,..., kt) and y,+\(xi,..., xK), i.e.
it will be equal to

K

If (3)

In order to find the premium that must be paid we have to know:

1. the parameters of the Negative Binomial distribution a and r, (see Lemaire
(1995) for the estimation of the parameters of the Negative Binomial)

2. the parameters of the Pareto distribution s and m (see Hogg and Klugman
(1984) for the estimation of the parameters of the Pareto distribution)

3. the number of years t that the policyholder is under observation,
4. his number of claims K and

K

5. his total claim amount ^xk.
k=\

All of these can be obtained easily and taking under consideration that the
negative binomial is often used as a claim frequency distribution and the Pareto
as a claim severity distribution this enlarges the applicability of the model.

2.4. Properties of the Optimal BMS with a Frequency and a Severity Com-
ponent

1. The system is fair as each insured pays a premium proportional to his claim
frequency and his claim severity, taking into account, through the Bayes'
theorem, all the information available for the time that he is in our portfolio
both for the number of his claims and the loss that these claims incur. We
use the exact loss xk that is incurred from each claim in order to have a dif-
ferentiation in the premium for policyholders with the same number of claims,
not just a scaling with the average claim severity of the portfolio.

2. The system is financially balanced. Every single year the average of all pre-
miums collected from all policyholders remains constant and equal to

P = ( 4 )

In order to prove this it is enough to show, considering that the claim fre-
quency and the claim severity are independent components, that:

and that
m= E[E[y\xu...,xk]] =s-V

A proof of the first can be found in Lemaire (1995), and of the second in
Vrontos (1998).
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3. In the beginning all the policy holders are paying the same premium which
is equal to (4).

4. The more accidents caused and the more the size of loss that each claim
incurred the higher the premium.

5. The premium always decreases when no accidents are caused.
6. The drivers who had a claim with small loss will have one more reason to

report the claim as they will know that the size of the claim will be taken
into consideration and they will not have to pay the same premium with
somebody which had an accident with a big loss. In this way the phenom-
enon of bonus hunger will have a decrease and the estimate of the actual
claim frequency will be more accurate.

7. The severity component is introduced in the design of a BMS which from
a practical point of view is more crucial than the number of claims for the
insurer since it is the component that determines the expenses of the insurer
from the accidents and thus the premium that must be paid.

8. The estimator of the mean of severity may not be robust and therefore it is
prone to be affected by variation. For practical use a more robust estima-
tor could be used. (i.e. cutting of the data, M-estimator).

3. DESIGN OF OPTIMAL BMS WITH A FREQUENCY AND A SEVERITY COMPONENT
BASED BOTH ON THE A PRIORI AND THE A POSTERIORI CRITERIA

Dionne and Vanasse (1989, 1992) presented a BMS that integrates risk classi-
fication and experience rating based on the number of claims of each policy-
holder. This BMS is derived as a function of the years that the policyholder
is in the portfolio, of the number of accidents and of the significant - for
the number of accidents - individual characteristics. We extend this model
by introducing the severity component. We propose a generalized BMS that
integrates a priori and a posteriori information on an individual basis based
both on the frequency and the severity component. This generalized BMS
will be derived as a function of the years that the policyholder is in the
portfolio, of the number of accidents, of the exact size of loss that each one
of these accidents incurred, and of the significant individual characteristics
for the number of accidents and for the severity of the accidents. Some of the
a priori rating variables that could be used are the age, the sex and the place
of residence of the policyholder, the age, the type and the cubic capacity of
the car, etc. As already said one of the reasons for the development of a gen-
eralized model which integrates a priori and a posteriori information is that
premiums should vary simultaneously with the variables that affect the distri-
bution of the number of claims and the size of loss distribution.

The premiums of the generalized BMS will be derived using the following
multiplicative tariff formula:

Premium - GBMF * GBMS (5)

where GBMF denotes the generalized BMS obtained when only the frequency
component is used and GBMS denotes the generalized BMS obtained when
only the severity component is used.
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3.1. Frequency Component

The generalized BMS obtained with the frequency component GBMF will be
developed according to Dionne and Vanasse (1989, 1992). Consider an indi-
vidual i with an experience of t periods. Assume that the number of claims of
the individual i for period j , denoted as KJ, follows the Poisson distribution
with parameter k\, and K\ are independent. The expected number of claims of
the individual / for period y is then denoted by X\ and consider that it is a func-
tion of the vector of h individual's characteristics, denoted as c/= (c/,,..., c/A),
which represent different a priori rating variables. Specifically assume that
l/=exp(c//?;), where f}J is the vector of the coefficients. The non-negativity
of X\ is implied from the exponential function. The probability specification
becomes

-exp(c\ 7 oj \\k

, p ))

In this model we assume that the h individual characteristics provide enough
information for determining the expected number of claims. The vector of the
parameters /?; can be obtained by maximum likelihood methods, see Haus-
mann, Hall and Griliches (1984) for an application. However, if one assumes
that the a priori rating variables do not contain all the significant information
for the expected number of claims then a random variable e, has to be intro-
duced into the regression component. As Gourieroux, Montfort and Trognon
(1984a), (1984b) suggested, we can write

^ + £ , - ) = .

= exp(c/

where «,- = exp(s,), yielding a random X\. If we assume that w, follows a gamma
distribution with 2?(wi) = l and Var{Ui)-\la, the probability specification becomes

e x p ( C / »
1 +

-(k+a)

which is a negative binomial distribution with parameters a and exp(c//?y).
It can be shown that the above parameterization does not affect the results if
there is a constant term in the regression. We choose £(w,)= 1 m order to have
£•(£,0=0. Then

and 1 +
exp(C/T)

The interesting reader can see for more on the Negative Binomial regression
Lawless (1987). The insurer needs to calculate the best estimator of the expected
number of accidents at period t + 1 using the information from past experience
for the claim frequency over / periods and of known individual characteristics

https://doi.org/10.2143/AST.31.1.991 Published online by Cambridge University Press

https://doi.org/10.2143/AST.31.1.991


DESIGN OF OPTIMAL BONUS-MALUS SYSTEMS 11

over the t+\ periods. Let us denote this estimator as X\+l (K],...,^;^,..., C('
+1).

Using the Bayes theorem one finds that the posterior structure function for a
policyholder with K.),..., K\ claim history and c),..., c'+1 characteristics is gamma

with updated parameters (a + ̂ KJ, ex °- - +t). Using the classical quadratic

loss function one can find that the optimal estimator given the observation of
K),..., K\ and C),..., C,'+1, is equal to:

where 2 K\ denotes the total number of claims of policyholder i in t periods.

When t = 0, X\ = exp(C,1/?y) which implies that only a priori rating is used
in the first period. Moreover when the regression component is limited to a
constant /?0, one obtains the well-known univariate without regression com-
ponent model, see Lemaire (1995), Ferreira (1974).

Now we will deal with the generalized bonus-malus factor obtained when
the severity component is used. It will be developed in the following way.

3.2. Severity Component

Consider an individual i with an experience of t periods. Assume that the
number of claims of the individual / for period j is denoted as K\, the total
number of claims of the individual i is denoted as K and by X'ik is denoted
the loss incurred from his claim k for the period j . Then, the information
we have for his claim size history will be in the form of a vector Xux, Xi>2, ...,
XiK, and the total claim amount for the specific policyholder over the t periods

K

that he is in the portfolio will be equal to ^]XiJc. We assume that X'ik follows

an exponential distribution with parameter yi. The parameter y\ denotes the
mean or the expected claim severity of a policyholder i in period/ As we have
already said, all policyholders do not have the same expected claim severity,
their cost for the insurer is different and thus it is fair each policyholder to
pay a premium proportional to his mean claim severity. Consider that the
expected claim severity, is a function of the vector of the h individual's char-
acteristics, denoted as d. = (dJ

iX,..., d{h\ which represent different a priori rating
variables. Specifically assume that yj=exp(d.yJ), where y is the vector of the
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•uoijounj [Bijuauodxa aqj UIOJJ paijduii si ft jo AJIAIJB§3U-UOU

SOXNO^A a NoaraAds QNV SOONVSH H SVIOHDIN Z\
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Xt3,,..., XiK and d\,..., d't
+\ is the mean of the posterior inverse gamma and thus

it is equal to

~ s + K-l

When t = 0, which implies that only a priori rating is used in the first period

3.3. Calculation of the premiums of the Generalized BMS

Now we are able to compute the premiums of the generalized optimal BMS
based both on the frequency and the severity component. As we said the pre-
miums of the generalized optimal BMS will be given from the product of the
generalized BMS based on the frequency component and of the generalized
BMS based on the severity component. Thus it will be

Premium = GBMF * GBM* =

(6)« + ,exP(c//0
7=1

j

exp(. , )

s + K-

' )

1

K
+ ZjA',k

k=\

3.4. Properties of the Generalized BMS

1. It is fair since it takes into account the number of claims, the significant
a priori rating variables for the number of claims, the claim severity and the
significant a priori rating variables for the claim severity for each policyholder.

2. It is financially balanced for the insurer. Each year the average premium will
be equal to

In order to prove the above equation and assuming that claim frequency and
the claim severity component are independent it is sufficient to show that
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and that

E[y. = exp(c,. y

3. All the properties we mentioned for generalized BMS without the a priori
rating variables hold for this BMS as well. In the beginning all the policy-
holders with the same characteristics are paying the same premium which
is equal to (7).

4. The more accidents are caused and the more the size of loss that each claim
incurred the higher is the premium.

5. The premium always decreases when no accidents are caused.
6. This generalized BMS could lead to a decrease of the phenomenon of bonus

hunger.
7. The severity component, which is more crucial than the number of claims

for the insurer, is introduced in the design of the generalized BMS.
8. The premiums vary simultaneously with the variables that affect the distri-

bution of the number of claims and the size of loss distribution.

3.5. Estimation

The premiums will be calculated according (6). We have to know the number
of the years t that the policyholder is in the portfolio, his total number of
accidents in t years and his aggregate claim amount in / years.

For the frequency component of the generalized BMS we have to estimate
the parameters of the negative binomial regression model, that is the disper-
sion parameter a and the vector /?. This can be done using the maximum like-
lihood method. For more on the negative binomial regression the interested
reader can see Lawless (1987), Gourieroux, Montfort and Trognon (1984a)
and Gourieroux, Montfort and Trognon (1984b).

For the severity component of the generalized BMS we have to estimate
s and y1. We will achieve this using the quasi-likelihood and according to Ren-
shaw (1994). Renshaw is using the generalized linear models as a modelling
tool for the study of the claim process in the presence of covariates. He is
giving special attention to the variety of probability distributions that are
available and to the parameter estimation and model fitting techniques that
can be used for the claim frequency and the claim severity process based on
the concepts of quasi-likelihood and extended quasi-likelihood.

Following Renshaw (1994) consider the following scheme. The mean claim
severity is denoted by yh categorized over a set of units u. The data take the
form (u, ku, xu) where xu denotes the claim average in cell u based on nu claims.
Independence of nu and xu is assumed. The units u = (/,, i2,...) are a cross-
classified grid of cells defined for preselected levels of appropriate covariates,
often rating factors. Denoting the underlying expected claim severity in cell u
by pLu and assuming the independence of individual claim amounts, the cell
means are modelled as the responses of a GLM with E(xu) = fiu and Var(Xu) =
<pV(/iu)/nu. Covariates defined on {u} enter through a linear predictor, linked
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to the mean fiu. For those unfamiliar with the generalized linear models we
refer to the classical text of McCullagh and Nelder (1989). In McCullagh and
Nelder (1983, 1989) a re-analysis of the celebrated car insurance data of Bax-
ter, Coutts and Ross (1979), based on independent gamma distributed claim
amounts can be found.

Let us focus now on the Pareto distribution with parameters s and (s-\)
exp(c/ / ) and density

We have that

E(X[k) = exp(rf/yJ) and Var(X'ik) = ^ )

Introducing the reparameterisation:

H = e\p(dfyJ) and q> = J^J,

a 1:1 mapping (s,(s-1)exp(c.y')) — (w,<p) with domain R>2x R>0 and image set
R>2xR>i implies that we can construct a GLM based on independent Pareto
distributed claim amounts for which the mean responses, Xu, satisfy mean /uu
= E(XU), variance function V(juu) = fi2, scale parameter cp > 1 and weights nu so
that Var(Xu) = <pV(fiu)/nu. Apart from the mild extra constraint on the scale
parameter, these details are identical to those of the GLM based on indepen-
dent gamma responses and the two different modelling assumptions lead
to essentially identical GLMs. They differ only in the parameter estimation
method. In the case of gamma response we use maximum likelihood method
and in the case of Pareto response we use maximum quasi-likelihood.

4. APPLICATION

4.1. Description of the Data

The models discussed are applied in a data set that one Greek insurance com-
pany provided us. The data set consists of 46420 policyholders. The mean of
the claim frequency is 0.0808 and the variance is 0.10767. The a priori rating
variables were age and sex of the driver, BM class and the horsepower of the
car. The drivers were divided in three categories according their age. Those aged
between 28-45, those between 46-55 and those aged between 18-27 or higher
than 55. The drivers were also divided in three categories according the horse-
power of their car. Those who had a car with a horsepower between 0-33,
between 34-66 and between 67-99. The drivers were also divided in three cat-
egories according their BM class. The current Greek BMS has 16 classes,
from 5 to 20. The malus zone includes classes from 12 to 20, the bonus zone
includes classes 5 to 8 and the neutral zone includes classes from 9 to 11.
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We fitted the Negative Binomial distribution on the number of claims and
the Pareto distribution on the claim sizes. We will find the premiums deter-
mined from the optimal BMS based on the a posteriori frequency component,
the premiums determined from the optimal BMS based on the a posteriori
frequency and severity component and the premiums determined from the
optimal BMS with a frequency and a severity component based both on the
a priori and the a posteriori criteria.

4.2. Optimal BMS based on the a posteriori frequency component

We apply the Negative Binomial distribution. The maximum likelihood esti-
mators of the parameters are a = 0.228 and f = 2.825. We will find first the
optimal BMS based only on the frequency component following Lemaire
(1995). The BMS will be defined from (1) and is presented in Table 1. This
optimal BMS can be considered generous with good drivers and strict with
bad drivers. For example, the bonuses given for the first claim free year are 26%
of the basic premium. Drivers who have one accident over the first year will
have to pay a malus of 298% of the basic premium.

TABLE 1.

OPTIMAL BMS BASED ON THE A POSTERIORI FREQUENCY COMPONENT

Year

t

0
1
2
3
4
5
6
7

0

100
74
59
48
41
36
32
29

1

398
315
261
223
194
172
155

Number of claims

2

722
572
474
404
353
313
281

3

1046

829
687
586
511
453
407

4

1370

1086

899
768
669
594
533

5

1693

1342

1112

949
828
734
659

4.3. Optimal BMS based on the a posteriori frequency and severity component

Let us see the implementation of an optimal BMS based both on the fre-
quency and the severity component. We fit the Pareto distribution to the
claim sizes and we find the maximum likelihood estimates of s and m. It is
s = 2.382 and m = 493927.087. In order to find the premium that must be
paid we have to know the age of the policy, the number of claims he has done
in these years and the aggregate claim amount. The steps that must be fol-
lowed in order to find this optimal BMS are:

1. We find the age of the policy t.
2. We find the total number of claims k that the policyholder has done in t years.
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K

3. We find the aggregate claim amount for the policyholder, ^xk

4. We compute the premiums using (3). k=1

5. We go to the table with the specific total claim amount and we find the
premium that corresponds to k claims in t years of observation.

The Bonus-Malus System determined in the above way is presented in the
following tables. Here we will illustrate only the cases that the aggregate
claim amount of a policyholder is equal to 250000 drs, and 1000000 drs. It is
obvious that we can use the above formula with any value that the aggregate
claim amount can have. We use these values of the aggregate claim amount
for brevity. In the following tables we will use the actual values, the premiums
are not divided with the premium when t = 0, as it will be interesting to see
the variation of the premiums paid for various number of claims and claim
sizes in comparison not with the premium paid when t = 0 but with the spe-
cific claim sizes. This is the basic advantage of this BMS in comparison with
the one that takes under consideration only the frequency component, the
differentiation according the severity of the claim. Of course the percentage
change in the premium after on or more claims could be also interesting.

Let's see an example in order to understand better how such BMS work.
In Table 3 we can see the premiums that must be paid for various number of
claims when the age of the policy is up to 7 years. For example a policyholder
with one accident of claim size 250000 drs in the first year of observation will
pay 100259 drs (see Table 2). If the second year of observation he has an acci-
dent with claim size 750000 drs, then, a surcharge will be enforced and he will
have to pay 203964 drs, which is the premium for two accidents of aggregate
claim amount 1000000 drs in two years of observation (see Table 3). If in the
third year he does not have an accident, he will have a reduction in the premium
because he had a claim free year and he will pay 168947 drs, which is the premium
for two accidents of aggregate claim amount 1000000 drs in three years of
observation (see Table 3).

TABLE 2.

OPTIMAL BMS BASED ON THE A POSTERIORI FREQUENCY AND SEVERITY COMPONENT -
TOTAL CLAIM SIZE OF 250000.

Year

t

0
1
2
3
4
5
6
7

0

28841

21300

16886

13987

11937

10412

9232

8292

1

100259

79479

65834

56188

49007

43454

39031

Number of claims

2

128122

101567

84130

71803

62627

55530

49878

3

143269

113575

94076

80292

70031

62095

55775

4

152788

121121

100327

85626

74683

66220

59480

5

159323

126302

104618

89289

77878

69053

62025
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TABLE 3.

OPTIMAL BMS BASED ON THE A POSTERIORI FREQUENCY AND SEVERITY COMPONENT -
TOTAL CLAIM SIZE OF 1000000.

Year

t

0
1
2
3
4
5
6
7

0

28841

21300

16886

13987

11937

10412

9232

8292

1

201336

159607

132206

112834

98414

87262

78380

Number of claims

2

257290

203964

168947

144192

125765

111513

100163

3

287708

228077

188921

161239

140633

124697

112005

4

306823

243230

201472

171952

149976

132982

119446

5

319947

253634

210091

179307

156392

138670

124556

It is obvious that this optimal BMS allows the discrimination of the premium
with respect to the severity of the claims. Table 4 shows the premiums that
must be paid when the policyholder is observed for the first year of his presence
in the portfolio, his number of accidents range from 1 to 5 and the aggregate
claim amount of his accidents ranges from 250000 to 4000000 dr. A policy-
holder who had one claim with claim size 250000 will have to pay a premium
of 100259 drs, a policyholder who had one claim with claim size 500000 will
have to pay a premium of 133951 drs and a policyholder who had one claim
with claim size 1000000 will have to pay a premium of 201336 drs.

TABLE 4.

COMPARISON OF PREMIUMS FOR VARIOUS NUMBER OF CLAIMS AND CLAIM SIZES
IN THE FIRST YEAR OF OBSERVATION.

Claim Size

250000

500000

1000000

2000000

3000000

4000000

1

100259

133951

201336

336106

470876

605646

2

181903

243032

365291

609808

854326

1098843

Number of claims

3

263547

352113

529246

883511

1237775

1592040

4

345191

461194

693201

1157213

1621225

2085237

5

426835

570275

857155

1430915

2004675

2578434

For more on such a system the interesting reader can see Vrontos (1998).
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4.4. Generalized optimal BMS with a frequency and a severity component
based both on the a priori and the a posteriori classification criteria

Let us calculate now the premiums of the generalized optimal BMS based both
on the frequency and the severity component when both the a priori and the
a posteriori rating variables are used. As we said the premiums of the gener-
alized optimal BMS will be given from the product of the generalized BMS
based on the frequency component, GBMF, and of the generalized BMS based
on the severity component, GBMS.

Implementing the negative binomial regression model we estimate the dis-
persion parameter a and the vector /? of the significant a priori rating vari-
ables for the number of claims. We found that many a priori rating variables
are significant for the number of claims. These are the BM class, the age and
the sex of the driver and the interaction between age and sex. In the multi-
variate model a - 47.96 is larger, than in the univariate negative binomial
model where we had a = 0.228. This result indicates that part of the variance
is explained by the a priori rating variables in the multivariate model. The
estimates of the vector /? can be found in the appendix. The parameters of
GBMS, that is the parameter of the Pareto s, and the vector parameter y of
the significant for the claim severity a priori rating variables d\, are found
using the quasi-likelihood method. The significant a priori characteristics for
the claim severity are the age and the sex of the driver, the BM class, the horse-
power of the car, the interaction between age and sex and the interaction
between age and class. The premiums are calculated using (6). Below we can
see the premiums for different categories of policyholders.

Let us examine two groups of policyholders which have the following com-
mon characteristics. They belong in the malus zone, their car's horsepower is
between 67 and 99, and their age is between 28 and 45. If the policyholder is
a man he will have to pay the following premiums after one or more accidents
of total claim amount 500000 in the first year.

TABLE 5.

MEN, AGE 28-45, MALUS-ZONE, HORSEPOWER 67-99.

Year

t

0
1
2
3
4
5
6
7

0

100413

39609

24670

17914

14063

11574

9834

8549

1

279852

174304

126568

99358

81777

69482

60401

Number

2

357626

222745

161743

126970

104503

88792

77187

of claims

3

399906

249079

180865

141981

116858

99289

86313

4

426474

265627

192881

151414

124622

105886

92047

5

444718

276990

201132

157891

129953

110415

95985
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If the policyholder is a woman with the above characteristics she will have to
pay the following premiums after one or more accidents of total claim amount
500000 in the first year.

TABLE 6.

WOMEN, AGE 28-45, MALUS-ZONE, HORSEPOWER 67-99.

Year

t

0
1
2
3
4
5
6
7

0

75096

28632

17688

12797

10024

8240

6994

6076

1

248946

153791

111263

87160

71641

60813

52828

Number of claims

2

318131

196531

142184

111383

91551

77713

67510

3

355742

219766

158994

124551

102374

86901

75491

4

379376

234367

169557

132826

109176

92674

80506

5

395605

244392

176810

138508

113846

96639

83950

We notice that men have to pay higher premiums than women. We saw an
example of premiums obtained with generalized optimal BMS with a frequency
and a severity component based both on the a priori and the a posteriori
classification criteria. Other combinations of a priori characteristics could be
used and also higher total claim amounts.

It is interesting to compare this BMS with the one obtained when the only
the a posteriori frequency and severity component are used. Using this BMS
we saw from Table 4 that a policyholder with one accident with claim size of
500000 drs in one year has to pay 133951 drs. Using the generalized optimal
BMS with a frequency and a severity component based both on the a priori
and the a posteriori classification criteria, a man, age 28-45, who belongs to
the malus zone, with a car with horsepower between 67-99 for one accident of
claim size 500000 drs in one year will has to pay 279852 drs, while a woman,
age 28-45, who belongs to the malus zone, with a car with horsepower between
67-99 for one accident of claim size 500000 drs in one year will has to pay
248946 drs. This system is more fair since it considers all the important a priori
and a posteriori information for each policyholder both for the frequency
and the severity component in order to estimate his risk to have an accident
and thus it permits the differentiation of the premiums for various number of
claims and for various claim amounts based on the expected claim frequency
and expected claim severity of each policyholder as these are estimated both
from the a priori and the a posteriori classification criteria.
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5. CONCLUSIONS

We developed in this paper the design of an optimal BMS based both on the
a posteriori frequency and the a posteriori severity component. We did this by
fitting the Negative Binomial distribution in the claim frequency and the
Pareto distribution on the claim severity, extending the - classical in the BMS
literature - model of Lemaire (1995) which used the Negative Binomial dis-
tribution. The optimal BMS obtained has all the attractive properties of the
optimal BMS designed by Lemaire, furthermore it allows the differentiation
of the premiums according to the claim severity and in this way it is more fair
for the policyholders and it is obtained in a very natural context according to
our opinion.

Moreover, we developed the design of a generalized optimal BMS with a
frequency and a severity component based both on the a priori and the a pos-
teriori classification criteria extending the model developed by Dionne and
Vanasse (1989, 1992) which was based only on the frequency component. The
BMS obtained has all the attractive properties of the one obtained-by Dionne
and Vanasse (1989, 1992) and furthermore it allows the differentiation of the
premiums utilizing the severity component in a very natural context. This gen-
eralized BMS takes into consideration simultaneously the important individual's
characteristics for the claim frequency, the important individual's characteris-
tics for the claim severity, the claim frequency and the claim severity of each
accident for each policyholder.

An interesting topic for further research could be the extension of the two
above BMS for different claim frequency and claim severity distributions.
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