Small Prime Solutions to Cubic Diophantine Equations

Zhixin Liu

Abstract. Let a_{1}, \ldots, a_{9} be nonzero integers and n any integer. Suppose that $a_{1}+\cdots+a_{9} \equiv n(\bmod 2)$ and $\left(a_{i}, a_{j}\right)=1$ for $1 \leq i<j \leq 9$. In this paper we prove the following:
(i) If a_{j} are not all of the same sign, then the cubic equation $a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3}=n$ has prime solutions satisfying $p_{j} \ll|n|^{1 / 3}+\max \left\{\left|a_{j}\right|\right\}^{14+\varepsilon}$.
(ii) If all a_{j} are positive and $n \gg \max \left\{\left|a_{j}\right|\right\}^{43+\varepsilon}$, then $a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3}=n$ is solvable in primes p_{j}. These results are an extension of the linear and quadratic relative problems.

1 Introduction

For any integer n, we consider cubic equations in the form

$$
\begin{equation*}
a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3}=n \tag{1.1}
\end{equation*}
$$

where p_{j} are prime variables and the coefficients a_{j} are nonzero integers. A necessary condition for the solvability of (1.1) is

$$
\begin{equation*}
a_{1}+\cdots+a_{9} \equiv n(\bmod 2) \tag{1.2}
\end{equation*}
$$

We also suppose

$$
\begin{equation*}
\left(a_{i}, a_{j}\right)=1, \quad 1 \leq i<j \leq 9 \tag{1.3}
\end{equation*}
$$

and write $A=\max \left\{2,\left|a_{1}\right|, \ldots,\left|a_{9}\right|\right\}$. The main results in this paper are the following two theorems.

Theorem 1.1 Suppose (1.2) and (1.3) hold. If a_{1}, \ldots, a_{9} are not all of the same sign, then (1.1) has solutions in primes p_{j} satisfying

$$
p_{j} \ll|n|^{1 / 3}+A^{14+\varepsilon},
$$

where the implied constant depends only on ε.
Theorem 1.2 Suppose (1.2) and (1.3) hold. If a_{1}, \ldots, a_{9} are all positive, then (1.1) is solvable whenever

$$
n \gg A^{43+\varepsilon},
$$

where the implied constant depends only on ε.

[^0]Theorems 1.1 and 1.2 are proved by the circle method. Instead of the iterative argument, we use a new idea introduced by J. Y. Liu [16] (see Section 4 below) to enlarge the major arcs. In this process, we get the larger major arcs in the circle method.

Theorem 1.2 with $a_{1}=\cdots=a_{9}=1$ is a classical result of Hua [9] from 1938. Our investigation on (1.1) is also motivated by the following works.

In his well-known work [1], Baker first raised and investigated the problem of small prime solutions of the equation

$$
a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}=n
$$

satisfying

$$
\begin{equation*}
\left|a_{j}\right| p_{j} \ll|n|+A^{C} \tag{1.4}
\end{equation*}
$$

where a_{1}, a_{2}, a_{3}, n are nonzero integers satisfying some necessary conditions, and $A=\max \left\{2,\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$. This problem was later settled qualitatively by M. C. Liu and Tsang [14]. Choi [2] proved that $C=4190$ in (1.4), and M. C. Liu and Wang [15] improved this to $C=45$, and then Li [12] to $C=38$. Under the Generalized Riemann Hypothesis, Choi, M. C. Liu, and Tsang [7] reduced the constant to $C=$ $5+\varepsilon$. J. Y. Liu and Tsang [18] showed that when the necessary conditions in this problem are replaced by some more restrictive conditions, one can take $C=17 / 2$. With the same restrictive conditions as in [18], Choi and Kumchev [3] further reduced this to $C=20 / 3$.
M. C. Liu and Tsang [13] first studied the quadratic equation

$$
a_{1} p_{1}^{2}+\cdots+a_{5} p_{5}^{2}=n
$$

satisfying

$$
\begin{equation*}
p_{j} \ll|n|^{1 / 2}+A^{C} \tag{1.5}
\end{equation*}
$$

where a_{1}, \ldots, a_{5}, n are nonzero integers satisfying some necessary conditions, and $A=\max \left\{2,\left|a_{1}\right|, \ldots,\left|a_{5}\right|\right\}$. The first numerical result for C in (1.5) was $C=20+\varepsilon$, obtained by Choi and J. Y. Liu [6]. The number 20 was subsequently reduced to 25/2 by Choi and J. Y. Liu [5] and then to 8 by Choi and Kumchev [4]. The best result is due to Harman and Kumchev [8] who showed that $C=7$.

Theorems 1.1 and 1.2 improve the results in [11] with the bounds $20+\varepsilon$ and $61+\varepsilon$ in place of $14+\varepsilon$ and $43+\varepsilon$, respectively.

In general, if we only assume $\left(a_{1}, a_{2}, \ldots, a_{9}\right)=1$, then the proof of the solvability result of (1.1) is complicated and relies on the explicit zero-free regions of Dirichlet L-functions and Deuring-Heilbronn phenomenon. This usually gives unsatisfactory results. In this paper, we assume the somewhat stricter condition $\left(a_{i}, a_{j}\right)=1$ for $1 \leq$ $i<j \leq 9$, and the proof will be much simplified and won't involve the explicit zerofree region and Deuring-Heilbronn phenomenon. In this process, some effective techniques (see Section 4 below, or [17]) for treating the major arcs can be used.

Notation As usual, $\varphi(n)$ stands for the function of Euler, and $d(n)$ is the divisor function. We use $\chi \bmod q$ and $\chi^{0} \bmod q$ to denote a Dirichlet character and the principal character modulo q, respectively. $r \sim R$ means $R<r \leq 2 R$. The letter c denotes an absolute positive constant that may vary at different places. The letter ε denotes a positive constant that is arbitrarily small. We also write $(a, \ldots, b)=\operatorname{gcd}(a, \ldots, b)$. For this paper, we set $N_{j}=\left(N / a_{j}\right)^{1 / 3}$.

2 Outline of the Method

Denote by $r(n)$ the weighted number of solutions of (1.1), i.e.,

$$
r(n)=\sum_{\substack{n=a_{1} p_{1}^{3}+\cdots+a_{9} p_{9}^{3} \\ M<\left|a_{j}\right| p_{j}^{3} \leq N}}\left(\log p_{1}\right) \cdots\left(\log p_{9}\right)
$$

where $M=N / 200$. We will investigate $r(n)$ by the circle method. To this end, we set

$$
\begin{equation*}
P=(N / A)^{3 / 13-\varepsilon}, \quad Q=N^{1-2 \varepsilon} P^{-1}, \quad \text { and } \quad L=\log N . \tag{2.1}
\end{equation*}
$$

By Dirichlet's lemma on rational approximation, each $\alpha \in[1 / Q, 1+1 / Q]$ may be written in the form

$$
\begin{equation*}
\alpha=a / q+\lambda, \quad|\lambda| \leq 1 /(q Q) \tag{2.2}
\end{equation*}
$$

for some integers a, q with $1 \leq a \leq q \leq Q$ and $(a, q)=1$. We denote by $\mathfrak{M}(a, q)$ the set of α satisfying (2.2), and define the major $\operatorname{arcs} \mathfrak{M}$ and the minor $\operatorname{arcs} \mathfrak{m}$ as follows:

$$
\begin{equation*}
\mathfrak{M}=\mathfrak{M}(P)=\bigcup_{q \leq P} \bigcup_{\substack{a=1 \\(a, q)=1}}^{q} \mathfrak{M}(a, q), \quad \mathfrak{m}=\left[\frac{1}{Q}, 1+\frac{1}{Q}\right] \backslash \mathfrak{M} . \tag{2.3}
\end{equation*}
$$

It follows from $2 P \leq Q$ that the major arcs $\mathfrak{M}(a, q)$ are mutually disjoint. Let

$$
S_{j}(\alpha)=\sum_{M<\left|a_{j}\right| p^{3} \leq N}(\log p) e\left(a_{j} p^{3} \alpha\right)
$$

Then we have

$$
r(n)=\int_{0}^{1} S_{1}(\alpha) \cdots S_{9}(\alpha) e(-n \alpha) d \alpha=\int_{\mathfrak{M}}+\int_{\mathfrak{m}}
$$

The integral on the major arcs \mathfrak{M} causes the main difficulty, which is solved by the following.
Theorem 2.1 Assume (1.3). Let \mathfrak{M} be as in (2.3) with P, Q determined by (2.1). Then we have

$$
\begin{equation*}
\int_{\mathfrak{M}} S_{1}(\alpha) \cdots S_{9}(\alpha) e(-n \alpha) d \alpha=\frac{1}{3^{9}} \mathfrak{S}(n, P) \mathfrak{J}(n)+O\left(\frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3} L}\right), \tag{2.4}
\end{equation*}
$$

where $\mathfrak{S}(n, P)$ and $\mathfrak{J}(n)$ are defined in (2.6) and (2.7) respectively.

The starting point of our proof of Theorem 2.1 is Lemma 2.2, which deals with major arcs of classical size. Let

$$
\begin{equation*}
P_{0}=N^{\varepsilon}, \quad Q_{0}=N^{1-2 \varepsilon} \tag{2.5}
\end{equation*}
$$

Define the major arcs $\mathfrak{M}_{0}=\mathfrak{M}\left(P_{0}\right)$ as in (2.3). The following lemma is now standard by the iterative method introduced by J. Y. Liu [17]. The proof of Lemma 2.2 for quadratics can be found in [5]. The size of major arcs of Theorem 3 in [5] is larger than that of Lemma 2.2 below, so we can enlarge major arcs of Lemma 2.2 by the method in [5], but our choice of the size of major arcs in Lemma 2.2 is strong enough. Thus, the proof of Lemma 2.2 is omitted.
Lemma 2.2 Let $B>0$ be sufficiently large, then

$$
\int_{\mathfrak{M}_{0}} S_{1}(\alpha) \cdots S_{9}(\alpha) e(-n \alpha) d \alpha=\frac{1}{3^{9}} \Im(n, P) \mathfrak{J}(n)+O\left(\frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3} L}\right)
$$

where $\mathfrak{S}(n, P)$ and $\mathfrak{I}(n)$ are the same as those in Theorem 2.1.
To derive Theorem 2.1, we need to bound $\mathfrak{S}(n, P)$ and $\mathfrak{J}(n)$ from below. For $\chi \bmod q$, we define

$$
C(\chi, a)=\sum_{h=1}^{q} \bar{\chi}(h) e\left(\frac{a h^{3}}{q}\right), \quad C(q, a)=C\left(\chi^{0}, a\right) .
$$

If $\chi_{1}, \ldots, \chi_{9}$ are characters $\bmod q$, then we write

$$
\begin{gathered}
B\left(n, q, \chi_{1}, \ldots, \chi_{9}\right)=\sum_{h=1(h, q)=1}^{q} e\left(-\frac{h n}{q}\right) C\left(\chi_{1}, a_{1} h\right) \cdots C\left(\chi_{9}, a_{9} h\right), \\
B(n, q)=B\left(n, q, \chi^{0}, \ldots, \chi^{0}\right), \quad A(n, q)=\frac{B(n, q)}{\varphi^{9}(q)}
\end{gathered}
$$

and

$$
\begin{equation*}
\mathfrak{S}(n, P)=\sum_{q \leq P} A(n, q) \tag{2.6}
\end{equation*}
$$

Lemma 2.3 Assuming (1.2), we have $\subseteq(n, P) \gg(\log \log A)^{-c}$ for some constant $c>0$.
Lemma 2.4 Suppose (1.3) and
(i) a_{1}, \ldots, a_{9} are not all of the same sign and $N \geq 27|n|$; or
(ii) a_{1}, \ldots, a_{9} are positive and $n=N$.

Then we have

$$
\begin{equation*}
\mathfrak{J}(n):=\sum_{\substack{a_{1} m_{1}+\cdots+a_{9} m_{9}=n \\ M<\left|a_{j}\right| m_{j} \leq N}}\left(m_{1} \cdots m_{9}\right)^{-2 / 3} \asymp \frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3}} . \tag{2.7}
\end{equation*}
$$

We remark that Lemma 2.3 and Lemma 2.4 can be treated mostly as the same as those in [6]. Thus the proofs are omitted, and therefore we may concentrate on (2.4) in the following sections.

3 Some Lemmas

We derive estimates for the generating functions appearing in the proof from estimates for the exponential sum

$$
\begin{equation*}
S(\alpha)=\sum_{X<p \leq 2 X}(\log p) e\left(\alpha p^{3}\right) \tag{3.1}
\end{equation*}
$$

which are given in terms of the rational approximation

$$
\begin{equation*}
\alpha=\frac{a}{q}+\lambda, \quad \text { with } \quad 1 \leq a \leq q, \quad(a, q)=1 \tag{3.2}
\end{equation*}
$$

We start by quoting the results of Ren [19] and Kumchev [10].
Lemma 3.1 Let α satisfy (3.2). Then

$$
S(\alpha) \ll\left(X^{1 / 2} \sqrt{q\left(1+|\lambda| X^{3}\right)}+X^{4 / 5}+\frac{X}{\sqrt{q\left(1+|\lambda| X^{3}\right)}}\right) q^{\varepsilon} \log ^{c} X,
$$

where $\varepsilon>0$ is a constant arbitrarily small, and $c>0$ an absolute constant.
Lemma 3.2 Suppose that $\alpha \in \mathbb{R}$ and that exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying

$$
1 \leq q \leq Q, \quad(a, q)=1, \quad|q \alpha-a|<Q^{-1}
$$

with

$$
Q=X^{12 / 7} .
$$

Then, for any fixed $\varepsilon>0$,

$$
S(\alpha) \ll\left(X^{13 / 14+\varepsilon}+\frac{X^{1+\varepsilon}}{\sqrt{q\left(1+|\lambda| X^{3}\right)}}\right),
$$

where the implied constant depends at most on k and ε.
The next two lemmas generalize Lemma 3.1 and Lemma 3.2 to $S(b \alpha)$, with b a nonzero integer.

Lemma 3.3 Let b be a nonzero integer and let $S(\alpha)$ be defined by (3.1). Suppose that there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying

$$
\begin{equation*}
1 \leq q \leq P, \quad(a, q)=1, \quad|q \alpha-a|<P /\left(|b| X^{3}\right), \tag{3.3}
\end{equation*}
$$

with $P<X / 2$. Then, for any fixed $\varepsilon>0$, we have

$$
S(b \alpha) \ll\left(X^{1 / 2} \Phi(\alpha)^{1 / 2}+X^{4 / 5}+X \Phi(\alpha)^{-1 / 2}\right) q^{\varepsilon} \log ^{c} X,
$$

where $\Phi(\alpha)=q_{1}\left(1+|b| X^{3}|\alpha-a / q|\right)$ and $q_{1}=q /(b, q)$.

Proof By Dirichlet's theorem on diophantine approximation, there exist integers a_{1} and q_{1} satisfying

$$
\begin{equation*}
1 \leq q_{1} \leq X, \quad\left(a_{1}, q_{1}\right)=1, \quad\left|q_{1} b \alpha-a_{1}\right|<X^{-1} \tag{3.4}
\end{equation*}
$$

Combining (3.3) and (3.4), we obtain

$$
\left|q_{1} b a-q a_{1}\right| \leq q_{1}|b||q \alpha-a|+q\left|q_{1} b \alpha-a_{1}\right| \leq 2 P X^{-1}<1
$$

and hence

$$
\frac{a_{1}}{q_{1}}=\frac{a b}{q}, \quad \text { and } \quad q_{1}=\frac{q}{(q, b)}
$$

Thus

$$
\Phi(\alpha)=q_{1}+X^{3}\left|q_{1} b \alpha-a_{1}\right|
$$

and the lemma follows from Lemma 3.1 with $\alpha=b \alpha, q=q_{1}$, and $a=a_{1}$.
Lemma 3.4 Let b be a nonzero integer and let $S(\alpha)$ be defined by (3.1). Suppose that there exist $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfying

$$
\begin{equation*}
1 \leq q \leq|b| X^{3} P^{-1}, \quad(a, q)=1, \quad|q \alpha-a|<P /\left(|b| X^{3}\right) \tag{3.5}
\end{equation*}
$$

with P subject to

$$
\begin{equation*}
2|b| X^{1 / 7}<P \leq X \tag{3.6}
\end{equation*}
$$

Then, for any fixed $\varepsilon>0$, we have

$$
\begin{equation*}
S(b \alpha) \ll X^{13 / 14+\varepsilon}+X^{1+\varepsilon} \Phi(\alpha)^{-1 / 2} \tag{3.7}
\end{equation*}
$$

where $\Phi(\alpha)=q_{1}\left(1+|b| X^{3}|\alpha-a / q|\right)$ and $q_{1}=q /(b, q)$.
Proof By Dirichlet's theorem, there exist integers a_{1} and q_{1} such that

$$
1 \leq q_{1} \leq X^{12 / 7}, \quad\left(a_{1}, q_{1}\right)=1, \quad\left|q_{1} b \alpha-a_{1}\right|<X^{-12 / 7}
$$

Hence, by Lemma 3.2 with $\alpha=b \alpha, q=q_{1}$, and $a=a_{1}$,

$$
\begin{equation*}
S(b \alpha) \ll X^{13 / 14+\varepsilon}+\frac{X^{1+\varepsilon}}{\sqrt{q_{1}+X^{3}\left|q_{1} b \alpha-a_{1}\right|}} \tag{3.8}
\end{equation*}
$$

If $q_{1}>X^{1 / 7}$ or $\left|q_{1} b \alpha-a_{1}\right|>X^{-20 / 7}$, the first term on the right side of (3.8) dominates the second and (3.7) follows. Otherwise, recalling (3.5) and (3.6), we get

$$
\left|q_{1} b a-a q_{1}\right| \leq q_{1}|b||q \alpha-a|+q\left|q_{1} b \alpha-a_{1}\right| \leq P X^{-20 / 7}+|b| X^{1 / 7} P^{-1}<1
$$

Thus

$$
\frac{a_{1}}{q_{1}}=\frac{a b}{q} \quad \text { and } \quad q_{1}=\frac{q}{(q, b)}
$$

and (3.8) turns into (3.7).

4 Enlarge the Major Arcs and the Proof of Theorem 2.1

To establish (2.4), we apply Lemma 2.2, which states that the integral on \mathfrak{M}_{0} already gives the desired asymptotic formula, and therefore it remains to show that the integral on $\mathfrak{M} \backslash \mathfrak{M}_{0}$ is small. To achieve this, we are going to apply Lemma 3.3 to each $S_{i}(\alpha)$ on $\mathfrak{M} \backslash \mathfrak{M}_{0}$, but before doing so, we must understand the structure of $\mathfrak{M} \backslash \mathfrak{M}_{0}$, which is best seen through dyadic divisions.

Denote by $E(K)$ the set of $\alpha \in[0,1]$ satisfying

$$
\alpha=\frac{a}{q}+\lambda, \quad(a, q)=1, \quad 1 \leq a \leq q \leq K, \quad|\lambda| \leq \frac{K}{q N} .
$$

Let P_{0} and P be as in (2.5) and (2.1) respectively, and write $P_{j}=2^{j} P_{0}$ for $j=1,2, \ldots$ so that

$$
P_{0}<P_{1}<\cdots<P_{h-1}<P \leq P_{h}
$$

for some $h \ll \log X$. We observe that every $\alpha \in \mathfrak{M}$ lies in $E\left(P_{h}\right)$, and

$$
\begin{equation*}
\mathfrak{M} \backslash \mathfrak{M}_{0} \subset \bigcup_{j=1}^{h}\left\{E\left(P_{j}\right) \backslash E\left(P_{j-1}\right)\right\} . \tag{4.1}
\end{equation*}
$$

By construction, every $\alpha \in E\left(P_{j}\right) \backslash E\left(P_{j-1}\right)$ has a Diophantine approximation $\alpha=$ $a / q+\lambda$ with

$$
q \leq P_{j}, \quad \frac{P_{j-1}}{q N}<|\lambda| \leq \frac{P_{j}}{q N}
$$

or

$$
P_{j-1}<q \leq P_{j}, \quad|\lambda| \leq \frac{P_{j}}{q N},
$$

and therefore

$$
P_{j-1}\left(q, a_{i}\right)^{-1} \ll q_{i}\left(1+\left|a_{i}\right||\lambda| N_{i}^{3}\right) \ll P_{j},
$$

where $q_{i}=q /\left(q, a_{i}\right)$. Hence Lemma 3.3 gives

$$
S_{i}(\alpha) \ll q^{\varepsilon} N_{i}\left\{P_{j}^{1 / 2} N_{i}^{-1 / 2}+N_{i}^{-1 / 5}+\left(q, a_{i}\right)^{1 / 2} P_{j}^{-1 / 2}\right\} \log ^{c} N_{i} .
$$

Thus,

$$
S_{1}(\alpha) \cdots S_{9}(\alpha) \ll q^{\varepsilon} L^{c} N_{1} \cdots N_{9} \prod_{i=1}^{9}\left\{P_{j}^{1 / 2} N_{i}^{-1 / 2}+N_{i}^{-1 / 5}+\left(q, a_{i}\right)^{1 / 2} P_{j}^{-1 / 2}\right\}
$$

and hence

$$
\begin{aligned}
& \int_{E\left(P_{j}\right) \backslash E\left(P_{j}\right)}\left|S_{1}(\alpha) \cdots S_{9}(\alpha)\right| d \alpha \\
& \quad \ll N_{1} \cdots N_{9} L^{c} \sum_{q \leq P_{j}} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} \frac{P_{j}^{1+\varepsilon}}{q N} \prod_{i=1}^{9}\left\{P_{j}^{1 / 2} N_{i}^{-1 / 2}+N_{i}^{-1 / 5}+\left(q, a_{i}\right)^{1 / 2} P_{j}^{-1 / 2}\right\} \\
& \quad \ll \frac{N_{1} \cdots N_{9}}{N} L^{c} \sum_{q \leq P_{j}} P_{j}^{1+\varepsilon} \prod_{i=1}^{9}\left\{P_{j}^{1 / 2} N_{i}^{-1 / 2}+N_{i}^{-1 / 5}+\left(q, a_{i}\right)^{1 / 2} P_{j}^{-1 / 2}\right\}
\end{aligned}
$$

where we used that the measure of $E\left(P_{j}\right) \backslash E\left(P_{j-1}\right)$ does not exceed that of $E\left(P_{j}\right)$ and the measure of every interval of $E\left(P_{j}\right)$ is $P_{j} / q N$.

It therefore follows from (4.1) that

$$
\begin{aligned}
& \int_{\mathfrak{M} \backslash \mathfrak{M}_{0}}\left|S_{1}(\alpha) \cdots S_{9}(\alpha)\right| d \alpha \\
& \quad \ll \frac{N_{1} \cdots N_{9}}{N} L^{c} \sum_{j=1}^{h} \sum_{q \leq P_{j}} P_{j}^{1+\varepsilon} \prod_{i=1}^{9}\left\{P_{j}^{1 / 2} N_{i}^{-1 / 2}+N_{i}^{-1 / 5}+\left(q, a_{i}\right)^{1 / 2} P_{j}^{-1 / 2}\right\} \\
& \quad \ll \frac{N_{1} \cdots N_{9}}{N} L^{c} \sum_{j=1}^{h} \sum_{q \leq P_{j}} P_{j}^{1+\varepsilon}\left\{P_{j}^{9 / 2}\left(\frac{N}{A}\right)^{-3 / 2}+\left(\frac{N}{A}\right)^{-3 / 5}+\left(q, a_{1} \cdots a_{9}\right) P_{j}^{-9 / 2}\right\} \\
& \quad \ll \frac{N_{1} \cdots N_{9}}{N} L^{c} \sum_{j=1}^{h}\left\{P_{j}^{13 / 2+\varepsilon}\left(\frac{N}{A}\right)^{-3 / 2}+P_{j}^{2+\varepsilon}\left(\frac{N}{A}\right)^{-3 / 5}+P_{j}^{-5 / 2} \sum_{q \leq P_{j}}\left(q, a_{1} \cdots a_{9}\right)\right\} \\
& \quad \ll \frac{N_{1} \cdots N_{9}}{N} L^{c} h\left\{P^{13 / 2+\varepsilon}\left(\frac{N}{A}\right)^{-3 / 2}+P^{2+\varepsilon}\left(\frac{N}{A}\right)^{-3 / 5}+P_{0}^{-3 / 2} A^{\varepsilon}\right\} \\
& \quad \ll \frac{N_{1} \cdots N_{9}}{N L},
\end{aligned}
$$

where we used the symmetry of a_{1}, \ldots, a_{9}, the elementary estimate

$$
\sum_{q \leq x}(q, b) \ll x b^{\varepsilon}
$$

the definition of P and $h \ll L$, we see that

$$
\int_{\mathfrak{M} \backslash \mathfrak{M}_{0}}\left|S_{1}(\alpha) \cdots S_{9}(\alpha)\right| d \alpha \ll \frac{N_{1} \cdots N_{9}}{N L} .
$$

This proves Theorem 2.1.

5 The Proof of Main Theorems

Let N be a parameter with $N \geq A^{43+\varepsilon}$ that also satisfies hypothesis (i) or (ii) of Lemma 2.4 according as a_{1}, \ldots, a_{9} are all positive or not. In Section 4, we gave the asymptotic formula of the major arcs, and now we turn to the estimation of $\int_{\mathfrak{m}}$.

When $\alpha \in \mathfrak{m}$, there exist integers a and q satisfying (3.5) with $b=b_{9}$ and $X=N_{9}$ and such that $q+N|q \alpha-a| \geq P$. Obviously, P satisfies

$$
2|b| N_{9}^{1 / 7}<P \leq N_{9}
$$

We can apply Lemma 3.4 to get

$$
\sup _{\alpha \in \mathfrak{m}}\left|S_{9}(\alpha)\right| \ll N_{9}^{13 / 14+\varepsilon}+N_{9}^{1+\varepsilon}\left|a_{9}\right|^{1 / 2} P^{-1 / 2} \ll N_{9}^{13 / 14+\varepsilon}
$$

We have the following mean-value estimate for $S_{j}(\alpha)$:

$$
\int_{0}^{1}\left|S_{j}(\alpha)\right|^{8} d \alpha \ll L^{8} \sum_{\substack{m_{1}^{3}+\cdots+m_{4}^{3}=m_{5}^{3}+\cdots+m_{8}^{3} \\ m_{v} \leq N_{j}, v=1, \ldots, 8}} 1 \ll N_{j}^{5 / 3+\varepsilon}
$$

which in combination with Hölder's inequality gives

$$
\int_{0}^{1}\left|S_{1}(\alpha) \cdots S_{8}(\alpha)\right| d \alpha \ll \frac{N^{5 / 3+\varepsilon}}{\left|a_{1} \cdots a_{8}\right|^{5 / 24}}
$$

Therefore,

$$
\int_{\mathfrak{m}}\left|S_{1}(\alpha) \cdots S_{9}(\alpha)\right| d \alpha \ll \frac{N_{9}^{13 / 14+\varepsilon} \cdot N^{5 / 3+\varepsilon}}{\left|a_{1} \cdots a_{8}\right|^{5 / 24}} \ll \frac{N^{83 / 42+\varepsilon}}{\left|a_{1} \cdots a_{8}\right|^{5 / 24}\left|a_{9}\right|^{13 / 42}}
$$

Thus,

$$
r(n)=\frac{1}{3^{9}} \Subset(n, P) \Im(n)+O\left(\frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3} L}\right)+O\left(\frac{N^{83 / 42+\varepsilon}}{\left|a_{1} \cdots a_{8}\right|^{5 / 24}\left|a_{9}\right|^{13 / 42}}\right)
$$

If $n=N$ and all of a_{1}, \ldots, a_{9} are positive, then

$$
\frac{N^{83 / 42+\varepsilon}}{\left|a_{1} \cdots a_{8}\right|^{5 / 24}\left|a_{9}\right|^{13 / 42}} \ll \frac{N^{2}}{\left|a_{1} \cdots a_{9}\right|^{1 / 3} L}
$$

provided that $N \gg A^{43+\varepsilon}$.
Thus,

$$
r(n) \gg\left|a_{1} \cdots a_{9}\right|^{-1 / 3} N^{2}(\log \log N)^{-c}
$$

On the other hand, if not all of a_{1}, \ldots, a_{9} are the same sign and $N \geq 27|n|$, then

$$
a_{1} p_{1}^{3} \leq|n|+\left|a_{2}\right| p_{2}^{3}+\cdots+\left|a_{9}\right| p_{9}^{3} \leq|n|+8 N
$$

or

$$
a_{1} p_{1}^{3} \ll|n|+A^{43+\varepsilon} .
$$

Therefore, without any loss of generality, for all $1 \leq j \leq 9$, we have

$$
p_{j} \ll|n|^{1 / 3}+A^{14+\varepsilon} .
$$

This proves Theorems 1.1 and 1.2.
Acknowledgements The author would like to express his thanks to the referee for many useful suggestions and comments on the manuscript.

References

[1] A. Baker, On some diophantine inequalities involving primes. J. Reine Angew. Math. 228(1967), 166-181.
[2] K. K. Choi, A numerical bound for Baker's constant—some explicit estimates for small prime solutions of linear equations. Bull. Hong Kong Math. Soc. 1(1997), 1-19.
[3] K. K. Choi and A. V. Kumchev, Mean values of Dirichlet polynomials and applications to linear equations with prime variables. Acta Arith. 123(2006), 125-142. http://dx.doi.org/10.4064/aa123-2-2
[4] , Quadratic equations with five prime unknowns. J. Number Theory 107(2004), 357-367. http://dx.doi.org/10.1016/j.jnt.2004.03.007
[5] K. K. Choi and J. Y. Liu, Small prime solutions of quadratic equations II. Proc. Amer. Math. Soc. 133(2005), 945-951. http://dx.doi.org/10.1090/S0002-9939-04-07784-6
[6] Small prime solutions of quadratic equations. Canad. J. Math. 54(2002), 71-91. http://dx.doi.org/10.4153/CJM-2002-004-4
[7] K. K. Choi, M. C. Liu, and K. M. Tsang, Conditional bounds for small prime solutions of linear equations. Manuscripta Math. 74(1992), 321-340. http://dx.doi.org/10.1007/BF02567674
[8] G. Harman and A. V. Kumchev, On sums of squares of primes. Math. Proc. Cambridge Philos. Soc. 140(2006), 1-13. http://dx.doi.org/10.1017/S0305004105008819
[9] L. K. Hua, Some results in the additive prime number theory. Quart. J. Math. (Oxford) 9(1938), 68-80.
[10] A. V. Kumchev, On Weyl sums over primes and almost primes. Michigan Math. J. 54(2006), 243-268. http://dx.doi.org/10.1307/mmj/1156345592
[11] D. Leung, Small prime solutions to cubic Diophantine equations. Master's thesis, Simon Fraser University, 2006.
[12] H. Z. Li, Small prime solutions of some ternary linear equations. Acta Arith. 98(2001), 293-309. http://dx.doi.org/10.4064/aa98-3-6
[13] M. C. Liu and K. M. Tsang, Small prime solutions of some additive equations. Monatsh. Math. 111(1991), 147-169. http://dx.doi.org/10.1007/BF01332353
[14] Small prime solutions of linear equations. In: Théorie des nombres (Québec, PQ, 1987), de Gruyter, Berlin, 1989, 595-624.
[15] M. C. Liu and T. Z. Wang, A numerical bound for small prime solutions of some ternary linear equations. Acta Arith. 86(1998), 343-383.
[16] J. Y. Liu, Enlarged major arcs in additive problems, II. Proc. Steklov Inst. Math. 276(2012), 176-192.
[17] , On Lagrange's theorem with prime variables. Quart. J. Math. (Oxford) 54(2003), 453-462. http://dx.doi.org/10.1093/qmath/hag028
[18] J. Y. Liu and K. M. Tsang, Small prime solutions of ternary linear equations. Acta Arith. 118(2005), 79-100. http://dx.doi.org/10.4064/aa118-1-5
[19] X. M. Ren, On exponential sums over primes and application in Waring-Goldbach problem. Sci. China Ser. A 48(2005), 785-797. http://dx.doi.org/10.1360/03ys0341
Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P. R. China
e-mail: zhixinliu@tju.edu.cn

[^0]: Received by the editors December 18, 2011; revised May 4, 2012.
 Published electronically August 27, 2012.
 AMS subject classification: 11P32, 11P05, 11P55.
 Keywords: small prime, Waring-Goldbach problem, circle method.

