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Small Prime Solutions to Cubic
Diophantine Equations
Zhixin Liu

Abstract. Let a1, . . . , a9 be nonzero integers and n any integer. Suppose that a1 +· · ·+a9 ≡ n (mod 2)
and (ai , a j ) = 1 for 1 ≤ i < j ≤ 9. In this paper we prove the following:

(i) If a j are not all of the same sign, then the cubic equation a1 p3
1 + · · · + a9 p3

9 = n has prime solutions
satisfying p j � |n|1/3 + max{|a j |}14+ε.

(ii) If all a j are positive and n� max{|a j |}43+ε, then a1 p3
1 + · · · + a9 p3

9 = n is solvable in primes p j .

These results are an extension of the linear and quadratic relative problems.

1 Introduction

For any integer n, we consider cubic equations in the form

(1.1) a1 p3
1 + · · · + a9 p3

9 = n,

where p j are prime variables and the coefficients a j are nonzero integers. A necessary
condition for the solvability of (1.1) is

(1.2) a1 + · · · + a9 ≡ n (mod 2).

We also suppose

(1.3) (ai , a j) = 1, 1 ≤ i < j ≤ 9,

and write A = max{2, |a1|, . . . , |a9|}. The main results in this paper are the following
two theorems.

Theorem 1.1 Suppose (1.2) and (1.3) hold. If a1, . . . , a9 are not all of the same sign,
then (1.1) has solutions in primes p j satisfying

p j � |n|1/3 + A14+ε,

where the implied constant depends only on ε.

Theorem 1.2 Suppose (1.2) and (1.3) hold. If a1, . . . , a9 are all positive, then (1.1) is
solvable whenever

n� A43+ε,

where the implied constant depends only on ε.
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786 Z. Liu

Theorems 1.1 and 1.2 are proved by the circle method. Instead of the iterative
argument, we use a new idea introduced by J. Y. Liu [16] (see Section 4 below) to
enlarge the major arcs. In this process, we get the larger major arcs in the circle
method.

Theorem 1.2 with a1 = · · · = a9 = 1 is a classical result of Hua [9] from 1938.
Our investigation on (1.1) is also motivated by the following works.

In his well-known work [1], Baker first raised and investigated the problem of
small prime solutions of the equation

a1 p1 + a2 p2 + a3 p3 = n,

satisfying

(1.4) |a j |p j � |n| + AC ,

where a1, a2, a3, n are nonzero integers satisfying some necessary conditions, and
A = max{2, |a1|, |a2|, |a3|}. This problem was later settled qualitatively by M. C. Liu
and Tsang [14]. Choi [2] proved that C = 4190 in (1.4), and M. C. Liu and Wang [15]
improved this to C = 45, and then Li [12] to C = 38. Under the Generalized
Riemann Hypothesis, Choi, M. C. Liu, and Tsang [7] reduced the constant to C =
5+ε. J. Y. Liu and Tsang [18] showed that when the necessary conditions in this prob-
lem are replaced by some more restrictive conditions, one can take C = 17/2. With
the same restrictive conditions as in [18], Choi and Kumchev [3] further reduced this
to C = 20/3.

M. C. Liu and Tsang [13] first studied the quadratic equation

a1 p2
1 + · · · + a5 p2

5 = n,

satisfying

(1.5) p j � |n|1/2 + AC ,

where a1, . . . , a5, n are nonzero integers satisfying some necessary conditions, and
A = max{2, |a1|, . . . , |a5|}. The first numerical result for C in (1.5) was C = 20 + ε,
obtained by Choi and J. Y. Liu [6]. The number 20 was subsequently reduced to 25/2
by Choi and J. Y. Liu [5] and then to 8 by Choi and Kumchev [4]. The best result is
due to Harman and Kumchev [8] who showed that C = 7.

Theorems 1.1 and 1.2 improve the results in [11] with the bounds 20+ε and 61+ε
in place of 14 + ε and 43 + ε, respectively.

In general, if we only assume (a1, a2, . . . , a9) = 1, then the proof of the solvability
result of (1.1) is complicated and relies on the explicit zero-free regions of Dirichlet
L-functions and Deuring–Heilbronn phenomenon. This usually gives unsatisfactory
results. In this paper, we assume the somewhat stricter condition (ai , a j) = 1 for 1 ≤
i < j ≤ 9, and the proof will be much simplified and won’t involve the explicit zero-
free region and Deuring–Heilbronn phenomenon. In this process, some effective
techniques (see Section 4 below, or [17]) for treating the major arcs can be used.
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Notation As usual, ϕ(n) stands for the function of Euler, and d(n) is the divisor
function. We use χmod q and χ0 mod q to denote a Dirichlet character and the prin-
cipal character modulo q, respectively. r ∼ R means R < r ≤ 2R. The letter c denotes
an absolute positive constant that may vary at different places. The letter ε denotes a
positive constant that is arbitrarily small. We also write (a, . . . , b) = gcd(a, . . . , b).
For this paper, we set N j = (N/a j)1/3.

2 Outline of the Method

Denote by r(n) the weighted number of solutions of (1.1), i.e.,

r(n) =
∑

n=a1 p3
1+···+a9 p3

9

M<|a j |p3
j≤N

(log p1) · · · (log p9),

where M = N/200. We will investigate r(n) by the circle method. To this end, we set

(2.1) P = (N/A)3/13−ε, Q = N1−2εP−1, and L = log N.

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1 + 1/Q] may be
written in the form

(2.2) α = a/q + λ, |λ| ≤ 1/(qQ)

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by M(a, q) the
set of α satisfying (2.2), and define the major arcs M and the minor arcs m as follows:

(2.3) M = M(P) =
⋃
q≤P

q⋃
a=1

(a,q)=1

M(a, q), m =
[ 1

Q
, 1 +

1

Q

]
\M.

It follows from 2P ≤ Q that the major arcs M(a, q) are mutually disjoint. Let

S j(α) =
∑

M<|a j |p3≤N

(log p)e(a j p3α).

Then we have

r(n) =

∫ 1

0
S1(α) · · · S9(α)e(−nα) dα =

∫
M

+

∫
m

.

The integral on the major arcs M causes the main difficulty, which is solved by the
following.

Theorem 2.1 Assume (1.3). Let M be as in (2.3) with P, Q determined by (2.1). Then
we have

(2.4)

∫
M

S1(α) · · · S9(α)e(−nα) dα =
1

39
S(n, P)J(n) + O

( N2

|a1 · · · a9|1/3L

)
,

where S(n, P) and J(n) are defined in (2.6) and (2.7) respectively.
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The starting point of our proof of Theorem 2.1 is Lemma 2.2, which deals with
major arcs of classical size. Let

(2.5) P0 = Nε, Q0 = N1−2ε.

Define the major arcs M0 = M(P0) as in (2.3). The following lemma is now standard
by the iterative method introduced by J. Y. Liu [17]. The proof of Lemma 2.2 for
quadratics can be found in [5]. The size of major arcs of Theorem 3 in [5] is larger
than that of Lemma 2.2 below, so we can enlarge major arcs of Lemma 2.2 by the
method in [5], but our choice of the size of major arcs in Lemma 2.2 is strong enough.
Thus, the proof of Lemma 2.2 is omitted.

Lemma 2.2 Let B > 0 be sufficiently large, then∫
M0

S1(α) · · · S9(α)e(−nα) dα =
1

39
S(n, P)J(n) + O

( N2

|a1 · · · a9|1/3L

)
where S(n, P) and J(n) are the same as those in Theorem 2.1.

To derive Theorem 2.1, we need to bound S(n, P) and J(n) from below. For
χmod q, we define

C(χ, a) =

q∑
h=1

χ(h)e
( ah3

q

)
, C(q, a) = C(χ0, a).

If χ1, . . . , χ9 are characters mod q, then we write

B(n, q, χ1, . . . , χ9) =

q∑
h=1(h,q)=1

e
(
−hn

q

)
C(χ1, a1h) · · ·C(χ9, a9h),

B(n, q) = B(n, q, χ0, . . . , χ0), A(n, q) =
B(n, q)

ϕ9(q)
,

and

(2.6) S(n, P) =
∑
q≤P

A(n, q).

Lemma 2.3 Assuming (1.2), we have S(n, P) � (log log A)−c for some constant
c > 0.

Lemma 2.4 Suppose (1.3) and

(i) a1, . . . , a9 are not all of the same sign and N ≥ 27|n|; or
(ii) a1, . . . , a9 are positive and n = N.

Then we have

(2.7) J(n) :=
∑

a1m1+···+a9m9=n
M<|a j |m j≤N

(m1 · · ·m9)−2/3 � N2

|a1 · · · a9|1/3
.

We remark that Lemma 2.3 and Lemma 2.4 can be treated mostly as the same as
those in [6]. Thus the proofs are omitted, and therefore we may concentrate on (2.4)
in the following sections.
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3 Some Lemmas

We derive estimates for the generating functions appearing in the proof from esti-
mates for the exponential sum

(3.1) S(α) =
∑

X<p≤2X

(log p)e(αp3),

which are given in terms of the rational approximation

(3.2) α =
a

q
+ λ, with 1 ≤ a ≤ q, (a, q) = 1.

We start by quoting the results of Ren [19] and Kumchev [10].

Lemma 3.1 Let α satisfy (3.2). Then

S(α)�
(

X1/2
√

q(1 + |λ|X3) + X4/5 +
X√

q(1 + |λ|X3)

)
qε logc X,

where ε > 0 is a constant arbitrarily small, and c > 0 an absolute constant.

Lemma 3.2 Suppose that α ∈ R and that exist a ∈ Z and q ∈ N satisfying

1 ≤ q ≤ Q, (a, q) = 1, |qα− a| < Q−1

with
Q = X12/7.

Then, for any fixed ε > 0,

S(α)�
(

X13/14+ε +
X1+ε√

q(1 + |λ|X3)

)
,

where the implied constant depends at most on k and ε.

The next two lemmas generalize Lemma 3.1 and Lemma 3.2 to S(bα), with b a
nonzero integer.

Lemma 3.3 Let b be a nonzero integer and let S(α) be defined by (3.1). Suppose that
there exist a ∈ Z and q ∈ N satisfying

(3.3) 1 ≤ q ≤ P, (a, q) = 1, |qα− a| < P/(|b|X3),

with P < X/2. Then, for any fixed ε > 0, we have

S(bα)�
(

X1/2Φ(α)1/2 + X4/5 + XΦ(α)−1/2
)

qε logc X,

where Φ(α) = q1(1 + |b|X3|α− a/q|) and q1 = q/(b, q).
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Proof By Dirichlet’s theorem on diophantine approximation, there exist integers a1

and q1 satisfying

(3.4) 1 ≤ q1 ≤ X, (a1, q1) = 1, |q1bα− a1| < X−1.

Combining (3.3) and (3.4), we obtain

|q1ba− qa1| ≤ q1|b| |qα− a| + q|q1bα− a1| ≤ 2PX−1 < 1,

and hence
a1

q1
=

ab

q
, and q1 =

q

(q, b)
.

Thus
Φ(α) = q1 + X3|q1bα− a1|,

and the lemma follows from Lemma 3.1 with α = bα, q = q1, and a = a1.

Lemma 3.4 Let b be a nonzero integer and let S(α) be defined by (3.1). Suppose that
there exist a ∈ Z and q ∈ N satisfying

(3.5) 1 ≤ q ≤ |b|X3P−1, (a, q) = 1, |qα− a| < P/(|b|X3),

with P subject to

(3.6) 2|b|X1/7 < P ≤ X.

Then, for any fixed ε > 0, we have

(3.7) S(bα)� X13/14+ε + X1+εΦ(α)−1/2,

where Φ(α) = q1(1 + |b|X3|α− a/q|) and q1 = q/(b, q).

Proof By Dirichlet’s theorem, there exist integers a1 and q1 such that

1 ≤ q1 ≤ X12/7, (a1, q1) = 1, |q1bα− a1| < X−12/7.

Hence, by Lemma 3.2 with α = bα, q = q1, and a = a1,

(3.8) S(bα)� X13/14+ε +
X1+ε√

q1 + X3|q1bα− a1|
.

If q1 > X1/7 or |q1bα − a1| > X−20/7, the first term on the right side of (3.8) domi-
nates the second and (3.7) follows. Otherwise, recalling (3.5) and (3.6), we get

|q1ba− aq1| ≤ q1|b| |qα− a| + q|q1bα− a1| ≤ PX−20/7 + |b|X1/7P−1 < 1.

Thus
a1

q1
=

ab

q
and q1 =

q

(q, b)
,

and (3.8) turns into (3.7).
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4 Enlarge the Major Arcs and the Proof of Theorem 2.1

To establish (2.4), we apply Lemma 2.2, which states that the integral on M0 already
gives the desired asymptotic formula, and therefore it remains to show that the inte-
gral on M \M0 is small. To achieve this, we are going to apply Lemma 3.3 to each
Si(α) on M \M0, but before doing so, we must understand the structure of M \M0,
which is best seen through dyadic divisions.

Denote by E(K) the set of α ∈ [0, 1] satisfying

α =
a

q
+ λ, (a, q) = 1, 1 ≤ a ≤ q ≤ K, |λ| ≤ K

qN
.

Let P0 and P be as in (2.5) and (2.1) respectively, and write P j = 2 jP0 for j = 1, 2, . . .
so that

P0 < P1 < · · · < Ph−1 < P ≤ Ph

for some h� log X. We observe that every α ∈M lies in E(Ph), and

(4.1) M \M0 ⊂
h⋃

j=1
{E(P j) \ E(P j−1)}.

By construction, every α ∈ E(P j) \ E(P j−1) has a Diophantine approximation α =
a/q + λ with

q ≤ P j ,
P j−1

qN
< |λ| ≤

P j

qN
or

P j−1 < q ≤ P j , |λ| ≤
P j

qN
,

and therefore
P j−1(q, ai)

−1 � qi(1 + |ai | |λ|N3
i )� P j ,

where qi = q/(q, ai). Hence Lemma 3.3 gives

Si(α)� qεNi{P1/2
j N−1/2

i + N−1/5
i + (q, ai)

1/2P−1/2
j } logc Ni .

Thus,

S1(α) · · · S9(α)� qεLcN1 · · ·N9

9∏
i=1
{P1/2

j N−1/2
i + N−1/5

i + (q, ai)
1/2P−1/2

j },

and hence∫
E(P j )\E(P j )

|S1(α) · · · S9(α)| dα

� N1 · · ·N9Lc
∑
q≤P j

q∑
a=1

(a,q)=1

P1+ε
j

qN

9∏
i=1
{P1/2

j N−1/2
i + N−1/5

i + (q, ai)
1/2P−1/2

j }

� N1 · · ·N9

N
Lc
∑
q≤P j

P1+ε
j

9∏
i=1
{P1/2

j N−1/2
i + N−1/5

i + (q, ai)
1/2P−1/2

j },

https://doi.org/10.4153/CMB-2012-025-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-025-0


792 Z. Liu

where we used that the measure of E(P j) \ E(P j−1) does not exceed that of E(P j) and
the measure of every interval of E(P j) is P j/qN.

It therefore follows from (4.1) that∫
M\M0

|S1(α) · · · S9(α)| dα

� N1 · · ·N9

N
Lc

h∑
j=1

∑
q≤P j

P1+ε
j

9∏
i=1

{P1/2
j N−1/2

i + N−1/5
i + (q, ai)

1/2P−1/2
j }

� N1 · · ·N9

N
Lc

h∑
j=1

∑
q≤P j

P1+ε
j

{
P9/2

j

( N

A

)−3/2
+
( N

A

)−3/5
+ (q, a1 · · · a9)P−9/2

j

}

� N1 · · ·N9

N
Lc

h∑
j=1

{
P13/2+ε

j

( N

A

)−3/2
+ P2+ε

j

( N

A

)−3/5
+ P−5/2

j

∑
q≤P j

(q, a1 · · · a9)
}

� N1 · · ·N9

N
Lch
{

P13/2+ε
( N

A

)−3/2
+ P2+ε

( N

A

)−3/5
+ P−3/2

0 Aε
}

� N1 · · ·N9

NL
,

where we used the symmetry of a1, . . . , a9, the elementary estimate∑
q≤x

(q, b)� xbε,

the definition of P and h� L, we see that∫
M\M0

|S1(α) · · · S9(α)| dα� N1 · · ·N9

NL
.

This proves Theorem 2.1.

5 The Proof of Main Theorems

Let N be a parameter with N ≥ A43+ε that also satisfies hypothesis (i) or (ii) of
Lemma 2.4 according as a1, . . . , a9 are all positive or not. In Section 4, we gave the
asymptotic formula of the major arcs, and now we turn to the estimation of

∫
m

.
When α ∈ m, there exist integers a and q satisfying (3.5) with b = b9 and X = N9

and such that q + N|qα− a| ≥ P. Obviously, P satisfies

2|b|N1/7
9 < P ≤ N9.

We can apply Lemma 3.4 to get

sup
α∈m

|S9(α)| � N13/14+ε
9 + N1+ε

9 |a9|1/2P−1/2 � N13/14+ε
9 .
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We have the following mean-value estimate for S j(α):

∫ 1

0
|S j(α)|8 dα� L8

∑
m3

1+···+m3
4=m3

5+···+m3
8

m3
v≤N j ,v=1,...,8

1� N5/3+ε
j ,

which in combination with Hölder’s inequality gives∫ 1

0
|S1(α) · · · S8(α)| dα� N5/3+ε

|a1 · · · a8|5/24
.

Therefore,∫
m

|S1(α) · · · S9(α)| dα� N13/14+ε
9 · N5/3+ε

|a1 · · · a8|5/24
� N83/42+ε

|a1 · · · a8|5/24 |a9|13/42
.

Thus,

r(n) =
1

39
S(n, P)J(n) + O

( N2

|a1 · · · a9|1/3L

)
+ O
( N83/42+ε

|a1 · · · a8|5/24|a9|13/42

)
.

If n = N and all of a1, . . . , a9 are positive, then

N83/42+ε

|a1 · · · a8|5/24 |a9|13/42
� N2

|a1 · · · a9|1/3L
,

provided that N � A43+ε.
Thus,

r(n)� |a1 · · · a9|−1/3N2(log log N)−c.

On the other hand, if not all of a1, . . . , a9 are the same sign and N ≥ 27|n|, then

a1 p3
1 ≤ |n| + |a2|p3

2 + · · · + |a9|p3
9 ≤ |n| + 8N,

or
a1 p3

1 � |n| + A43+ε.

Therefore, without any loss of generality, for all 1 ≤ j ≤ 9, we have

p j � |n|1/3 + A14+ε.

This proves Theorems 1.1 and 1.2.
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Gruyter, Berlin, 1989, 595–624.

[15] M. C. Liu and T. Z. Wang, A numerical bound for small prime solutions of some ternary linear
equations. Acta Arith. 86(1998), 343–383.

[16] J. Y. Liu, Enlarged major arcs in additive problems, II. Proc. Steklov Inst. Math. 276(2012), 176–192.
[17] , On Lagrange’s theorem with prime variables. Quart. J. Math. (Oxford) 54(2003), 453–462.

http://dx.doi.org/10.1093/qmath/hag028
[18] J. Y. Liu and K. M. Tsang, Small prime solutions of ternary linear equations. Acta Arith. 118(2005),

79–100. http://dx.doi.org/10.4064/aa118-1-5
[19] X. M. Ren, On exponential sums over primes and application in Waring–Goldbach problem. Sci.

China Ser. A 48(2005), 785–797. http://dx.doi.org/10.1360/03ys0341

Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P. R. China
e-mail: zhixinliu@tju.edu.cn

https://doi.org/10.4153/CMB-2012-025-0 Published online by Cambridge University Press

http://dx.doi.org/10.4064/aa123-2-2
http://dx.doi.org/10.1016/j.jnt.2004.03.007
http://dx.doi.org/10.1090/S0002-9939-04-07784-6
http://dx.doi.org/10.4153/CJM-2002-004-4
http://dx.doi.org/10.1007/BF02567674
http://dx.doi.org/10.1017/S0305004105008819
http://dx.doi.org/10.1307/mmj/1156345592
http://dx.doi.org/10.4064/aa98-3-6
http://dx.doi.org/10.1007/BF01332353
http://dx.doi.org/10.1093/qmath/hag028
http://dx.doi.org/10.4064/aa118-1-5
http://dx.doi.org/10.1360/03ys0341
https://doi.org/10.4153/CMB-2012-025-0

