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The order completeness of some
spaces of vector-valued functions

Donald |. Cartwright

Let E Dbe a Banach lattice. Necessary and sufficient conditions

are given for the order completeness of the Banach lattices

c(X, E} and Ll(u, E) in terms of the compactness of the order
intervals in E . The results have interpretations in terms of

spaces of compact and nuclear operators.

1.

Let E be a Banach lattice. If X 1is a compact Hausdorff space,
then the space C(X, E) of norm-continuous E-valued functions on X is a
Banach lattice, where the norm of f € C(X, E) is given by
Ifll = sup{llf(¢})} : ¢ € X} , and where f = 0 means that f{(¢t) =0 in &
for each ¢ € X . Certain spaces of compact operators are isomorphic to
spaces of the type C(X, E) . (See [2], [3] and [7] for these results and

for the notation used here.) Specifically, the space of compact operators

from a space Ll(u) into E , ordered in the natural way, is order and
norm isomorphic to C(X, E} for some X . Also, the space of compact
operators E » C(X) 1is order and norm isomorphic to C(X, E') . Moreover,
any space C(X, E) is order and norm isomorphic to the space of weak*-weak
continuous compact operators C(X)' -+ E (or E' » C(X) ). The space

C(X, E) 1is also isomorphic to C(X) @ E .

Similarly, if (§, £, u) is any measure space, then the space

Ll(u, E) of E-valued Bochner integrable functions on § is a Banach
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lattice for the usual norm and the natural order. Certain spaces of
nuclear operators are order isomorphic to spaces of the type Ll(u, E)
(See [3].) The space Ll(u, E) 1is isomorphic to Ll(u) ®E .

In this paper necessary and sufficient conditions are given for the

order completeness of the spaces C((X, E) and Ll(u, E) , in terms of the

compactness of the order intervals in F .

2.

A Banach lattice EZ has the countable interpolation property if,

1 3 < < <
given sequences {xn} and {yn} in E such that x, = xn+l =Y, %Y,
for each n , there exists an element 2z in FE such that z, =z = Y,
for each n . Seever [6] showed that if X is compact and Hausdorff, then
C(X) has the countable interpolation property if and only if X is an F

space (that is, the closures of any two disjoint open Fo sets in X are
disjoint).

LEMMA., Suppose that E <s a Banach lattice and that X <is an
infinite compact Hausdorff space. Suppose that C(X, E) has the countable

interpolation property. Then every order interval in E 1is compact.
Proof. Let x € FE be positive, and let {xn} be any sequence in
fo, x] . There is a sequence {On} of non-empty disjoint open sets in
X . For each n , pick t, € 0, and then 0, € ¢(X) such that
= = i < < i
qan(tn) 1, and tpn 0 outside On , and 0 = (pn =1 on X . Define

9, € (X, E) vy

n
n n
t) = At)x. , t) = x - () [x-x.) .
£(8) = Lojo)z; g, (4) L 9;(8) (a-z;)

. ist
It is clear that fn = fn+l = 91 = 9, for each n , and so there exists
h € ¢(X, E) such that fn =hs=s g, for each n . Now
fn(tn] = gn(tn] =z ,endso gz = h(tn) € h(X) . Since h(X) is

compact, {xn} has a convergent subsequence, and so [0, x] is compact.
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COROLLARY (Rudin, see [11). If X and Y are infinite compact
Hausdorff spaces, then X x Y 1is not an F space. In particular, X xY

18 not stonian.

Proof. This is immediate from the lemma and from Seever's result,
since (see [7, p. 3571) C(XxY) = C(X, C(Y)) .

PROPOSITION. Let X be an infinite compact Hausdorff space, and let
E (# {0}) be a Banach lattice. Then C(X, E) is order complete
(respectively o-order complete) if and only if X is stonian

(respectively o-stonian) and every order interval in E <is compact.

Proof. If C(X, E) is 0O-order complete, then, by the lemma, the
order intervals in & are all compact. Conversely, if the order intervals
in E are all compact, then Walsh [§] has shown that there is a family

{ei : £ € I} of atoms of norm one in E such that each x € E has a
unique unconditionally norm convergent expansion x = z aiei , where
1

o, € R for each 7 . (An element x € E is an atom if x = 0 and if
y €E and 0 =y <ax imply that y = axr for some o € R .) It is easy
to see from this that C(X, E) is isomorphic to the space of families
{fi} of functions f% in C(X) for which } f%(t)ei converges

2
unconditionally and uniformly with respect to ¢ € X . It is now clear
that C(X, E) is [o-] order complete if and only if C(X) is [o-]
order complete, that is, if and only if X is [o-] stonian. (See [5].)

The next result deals with the situation dual to that in the above
proposition. In the proof, we make use of the fact that every order
interval in a Banach lattice E 1is weakly compact if and only if every

majorized increasing sequence in E converges in norm. ({See [4].)

PROPOSITION. Let (8, £, u) be a measure space, and let E be a
Banach lattice. If every order interval in E is weakly compact, then the

same 18 true in Ll(u, E) , and so Ll(u, E) 1is order complete.
Conversely, if Ll(u, E) 1is o-order complete and if p is not purely

atomic and if Ll(u) # {0} , then the order intervals in E are all weakly
compact.
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Proof. Suppose that fn’ f : @+ E are Bochner integrable and that
0 =< fl(w) =< f2(u)) = ... =2 f(w) for each w € Q . 1If the order intervals
in E are weakly compact, then g(w) = lim fn(w) (norm 1limit) exists for

each w €Q . Then [2, p. 151], since Ilg(w)—fn(w)ll < If(w)]] , the
function g is in Ll(u, E) and IIg—fnll + 0 . It follows that the order
intervals in Ll(u, E) are weakly compact.

Conversely, if Ll(u, E) is o-order complete, and if 1y .is not
purely atomic, then the order intervals in E are weakly compact. To see
this, suppose the contrary, and first note that E contains a sublattice
order isomorphic to Zm . (Since F is clearly o-order complete, we may
apply Proposition 2.1 ((k) = (c)) of [4].] Also, because U is not purely
atomic, Ll(u) contains a sublattice order isomorphic to Ll[O, 1] . It
1

(

is thus not difficult to see that it is enough to show that L (u, E) is

not O-order complete, where E = 7” and where (9, Z, u) = [0, 1) with
«© 3
Lebesgue measure. For each ¢t € [0, 1) , let t = z ei(t)/e'b be the
1
binary expansion of ¢ which doesn't end in a string of 1's . Define
(o 0]
i 10, 1) > 27 by £(8) = (e(), ons £ (), 0,0, ...) . Then {f}
is a majorized increasing sequence of simple functions. If {fn} has a
supremum in Ll(u, E) , it would have to be almost everywhere equal to the
function g : ¢t > (e (%), e,(%), ...} . But if ¢, t' € [0, 1) are
distinct, then ei(t) # si(t') for some % , and so |lg(t)-g(¢")|| = 1 .

Therefore [Z, p. 147], g is not measurable. (This example was suggested
to the author by J.J. Uhl.)

REMARKS. The function g : [0, 1) = a defined above is not even
weakly measurable. To see this, take any free ultrafilter F on N, and
denote by ¢(t) the limit of the sequence {Ei(t)} with respect to F .

The function ¢ is not Lebesgue measurable. (See [7, p. 247].)

The preceding proposition and its proof are also valid for Lp(u, E)
if 1 <p<eo,
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