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ABSTRACT

Khovanov-Lauda-Rouquier (KLR) algebras of finite Lie type come with families
of standard modules, which under the Khovanov—Lauda—Rouquier categorification
correspond to PBW bases of the positive part of the corresponding quantized enveloping
algebra. We show that there are no non-zero homomorphisms between distinct standard
modules and that all non-zero endomorphisms of a standard module are injective.
We present applications to the extensions between standard modules and modular
representation theory of KLR algebras.

1. Introduction

Let g be a complex finite-dimensional simple Lie algebra and UqJr (g) the positive part of the
quantized enveloping algebra of g. The algebra U, q+ (g) is QT-graded, where Q7 is the non-negative
part of the corresponding root lattice. On the other hand, to every a € QT and a commutative
unital ground ring k, Khovanov, Lauda and Rouquier associate an infinite-dimensional associative
unital graded k-algebra H,. Then an informal statement of the Khovanov-Lauda—Rouquier
categorification theorem [KL09, KL11, Rou08, Roul2] is that representation theory of the KLR
algebras H, categorifies U; (g) as a twisted bialgebra. This is important because, for example, it
sheds new light on various interesting bases of U, q+ (g), such as canonical and dual canonical bases
as well as PBW bases. The categorification is our first motivation for studying KLR algebras.

Our second motivation comes from the results of [BK09a, BK09b, BKW11, Rou08],
which reveal deep connections between KLR algebras and classical representation theory of
various Hecke algebras. These connections are especially important for modular representation
theory and, more specifically, questions related to reduction modulo p (although in modular
representation theory we are most interested in KLR algebras of affine Lie type A). This paper
touches upon both aspects of interest of KLR algebras described above.

KLR algebras of finite Lie type possess affine quasi-hereditary structures [Katl4, BKM14,
KLM13, KL15, KX12, Klel5b]. In particular, they come with important families of modules
which are called standard. Under the Khovanov-Lauda-Rouquier categorification, standard
modules correspond to PBW monomials in U;"(g); see [BKM14, Kat14].

Affine quasihereditary structures are parametrized by convexr orders on the sets of positive
roots of the corresponding root systems. In this paper we work with an arbitrary convex order
and an arbitrary finite Lie type. When working with the KLR algebra H, for any o € QT, the
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standard modules A(\) are labeled by A € KP(«), where KP(«) is the set of Kostant partitions
of a. With these conventions, our main result is the following.

THEOREM A. Let a € Q1 and A\, u € KP(«). If X\ # p, then
Homp, (A(N), A(n)) = 0.

When A £ p, it is clear that Hompg, (A(N), A(u)) = 0, but for A < p we found this fact
surprising. Theorem A is proved in § 3.

The case of A = p is also well understood. In fact, the endomorphism algebras of the standard
modules are naturally isomorphic to certain algebras of symmetric functions; see Theorem 2.17.

Now, Theorem A can be complemented by the following (folklore) observation and compared
with the main result of [BCGMI11].

THEOREM B. Let a € Q" and A € KP(«a). Then every non-zero H,-endomorphism of A(\) is
injective.

For the reader’s convenience, we prove Theorem B in §2.3.

Theorem A turns out to have some applications to modular representation theory of KLR
algebras, which are pursued in §4. Note that KLR algebras are defined over an arbitrary
commutative unital ground ring k, and when we wish to emphasize this fact, we use the notation
H, . Using the p-modular system (F,R,K) with F = Z/pZ, R = Z, and K = Q,, we can
reduce modulo p any irreducible H, g-module. An important problem is to determine when these
reductions remain irreducible; see [KR11, Will4]. This problem can be reduced to homological
questions involving standard modules.

In § 4, we show that standard modules have universal R-forms A(X)g such that A(A\)p@rk =
A(M) for any field k. Then (denoting graded dimension by dim,) an application of the universal
coefficient theorem and Theorem A yields the following result.

THEOREM C. Let a € QT and A\, u € KP(«). Then the R-module

Extir, o(AN)R, A)r)

is torsion-free. Moreover,
dimg Extyy, (AQ)F, A(p)r) = dimg Extyy, (AN x, A(u)k)
if and only if the R-module Ext%la (AN R, A(p)R) is torsion-free.

As a final application, using a universal extension procedure, we construct R-forms Q(\)gr
of the projective indecomposable modules P(\)x and prove the following theorem.

THEOREM D. Let a € Q. Then reductions modulo p of all irreducible H, g-modules are
irreducible if and only if one of the following equivalent conditions holds:

(i) Q(\)r®g F is a projective H, p-module for all A € KP(«);
(ii) Ext}{a‘F (QNr®r F,A(n)p) =0 for all A\, u € KP(«);
(iii) the R-module Ext%{a’R(Q()\)R, A(p)R) is torsion-free for all A\, u € KP(«).
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2. Preliminaries

2.1 KLR algebras
We follow closely the set-up of [BKM14]. In particular, ® is an irreducible root system with simple
roots {a; | i € I} and ®7 is the corresponding set of positive roots. Denote by @ the root lattice
and by QT C @ the set of Zxo-linear combinations of simple roots, and write ht(a) = >, ¢
for o = 3. cia; € QT. The standard symmetric bilinear form Q x Q@ — Z, (a, ) — a -
is normalized so that d; := (o - ;)/2 is equal to 1 for the short simple roots ;. We also set
dg = (B-B)/2 for all § € ®*. The Cartan matrix is C = (¢; ;)i jer with ¢;; := (o4 - @)/ d;.

Fix a commutative unital ring k and an element o € Q" of height n. The symmetric group
Sy, with simple transpositions s, := (r r + 1) acts on the set

n
E Odz'j = Oé}
j=1

on the left by place permutations. Choose signs €; j for all 4, j € I with ¢;; < 0 so that €; je;; = —1.
With this data, Khovanov and Lauda [KL09, KL11] and Rouquier [Rou08] define the k-algebra
H, with unit 1,, called the KLR algebra, given by generators

{Lilee Uz, ,zn} U{m, ..., 01}

subject only to the following relations:
® TypTs = Tsly;
[ 1i1j = 52"_7'1,5 and Zie]a 1,’ = 1a;
o x.1; =1;z, and 7,.1; = 15 ;73
o (47 — T4 (1)) Li = Oipipyy (Otr41 — Ot ) L35

1% .= {i—il---inefn

0 if 4 = 4pa1,
° 7}211; =< €irirg (:L'T_Cir*iTH — $r+1_cir+1’”)1i if Ciprirgr < 0,
1; otherwise;
o 7.7y = TeTy if |1 —s| > 1;
Z 5ir,z’r+1$$f’3f~+21i if Ciy iy < 0 and iy = ir+2,
o (Tri1Tr Tl — ToTra1Tr)li = Q atb=—1-ci i .,
0 otherwise.

The KLR algebra is graded with deg1; = 0, deg(x,1;) = 2d;, and deg(7,1;) = —ay, - @,
For each element w € S, fix a reduced decomposition w = s, - - - s,, and set 7y =7, - - 7y, €
H,, (this element depends in general on the choice of reduced decomposition).

THEOREM 2.1 (Basis theorem [KL09, Theorem 2.5]). The sets
{rwei* - a21;} and {z}'-- 227yl (2.2)
with w running over S,, a, running over Z=q and @ running over I¢, are k-bases for H.

It follows that H, is Noetherian if k is, which we shall always assume from now on. It also
follows that for any 1 < r < n, the subalgebra k[x,] C H, generated by x, is isomorphic to the
polynomial algebra k[z]; this fact will be used often without further comment. Moreover, for
each ¢ € 1%, the subalgebra P(¢) C 1;H,1; generated by {x,1; | 1 < r < n} is isomorphic to a
polynomial algebra in n variables. By defining Py := @, ;o P(¢), we obtain a linear action of
Sy, on P, given by

. a]‘ DY an i — al ... an 3
w - Ty 1 Top(1) xw(n)lw.l

for any w € Sy, 4 € I* and ay, ..., a, € Zsg. Setting A(a) := PS5, we have the following result.

623

https://doi.org/10.1112/50010437X16008204 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16008204

A. S. KLESHCHEV AND D. J. STEINBERG

THEOREM 2.3 [KL09, Theorem 2.9]. A(«) is the center of Hy.

Let k be Noetherian. If H is a Noetherian graded k-algebra, we denote by H-mod the category
of finitely generated graded left H-modules. The morphisms in this category are all homogeneous
degree-zero H-homomorphisms, which we denote by homp(—,—). For V € H-mod, let ¢?V
denote its grading shift by d, so if V, is the degree-m component of V, then (¢%V),, = Vju_g.
More generally, for a Laurent polynomial a = a(q) = Y aqq? € Z[g,q™'] with non-negative
coefficients, we set aV = @ (¢?V)P.

For U,V € H-mod, we set Hompy (U,V) := @ o, Hompg (U, V)4, where

Homy (U, V)y := hompy (¢?U, V) = homg (U, ¢~ 4V).

We define ext} (U, V) and Ext%(U, V') similarly. Since U is finitely generated, Homg (U, V') can
be identified in the obvious way with the set of all H-module homomorphisms ignoring the
gradings. A similar result holds for Ext’; (U, V'), since U has a resolution by finitely generated
projective modules. We use = to denote an isomorphism in H-mod and ~ an isomorphism up
to a degree shift, i.e. V ~ W if and only if V = ¢"W for some n € Z.

Let g be a variable, and let Z((q)) be the ring of Laurent series. The quantum integers
[n] = (¢" — ¢ ™)/(q — ¢~ ') and expressions like 1/(1 — ¢?) are always interpreted as elements of
Z((q)).

From now on until the end of §3, we assume that k is a field. A graded k-vector space
V = @D,,c7 Vim is said to be Laurentian if the graded components V;,, are finite dimensional for
all m € Z and V,;, = 0 for m <« 0. The graded dimension of a Laurentian vector space V is

dimg V := ) (dim V;,,)¢™ € Z((q))-
meZ

We always work in the category H,-mod. Note that H, is Laurentian as a vector space;
therefore so is any V' € H,-mod, and then so are all 1;V for ¢ € I*. The formal character of
V € Hyo-mod is an element of @, ;o Z((q)) - © defined as

chy Vi= ) (dimg 1;V) - 4.
ielo

Note that ch, (¢?V) = g%ch, (V), where the first ¢ means the degree shift. We refer to 1;V as
the -weight space of V and to its vectors as vectors of weight 1.

There is an anti-automorphism ¢ : H, — H, which fixes all the generators. Given V €
H,-mod, we let

V® := Homy(V, k),

viewed as a left H,-module via ¢. Note that in general V® is not finitely generated as an
H,-module, but we will apply ® only to finite-dimensional modules. In that case, we have
chy V® = m, where the bar means the bar-involution, i.e. the automorphism of Z[q, ¢~!] that
swaps ¢ and ¢~ ! extended to DBicro Zlq,q Y - i.

Let B1,...,8m € QT and a = B1 + - - - + B,,. Consider the set of concatenations

[Prbm = 5L g | gt e [P i e IPm) C T

There is a natural (non-unital) algebra embedding Hg, ® - -- ® Hg,, = H,, which sends the unit
lg, ® -+ ®1g,, to the idempotent

1y =Y, 1i€Ha (2.4)
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We have an exact induction functor
Indgl,...,ﬁm = Halﬁl,...,ﬂm ®H51®'~'®H5m - (Hﬁl K Hﬁm)_mOd — H,-mod.

For Vi € Hg,-mod, ..., V,, € Hg, -mod, we denote by V1 X---XV,, the vector space V1 ®@---@Vy,,
considered naturally as an (Hg, ® --- ® Hg,,)-module, and set

‘/l 00 Vm :: Ind%l?"'wBTHW & e & Vm'

2.2 Standard modules

The KLR algebras H, are known to be affine quasihereditary in the sense of [Kle15b]; see [Kat14,
BKM14, KL15]. Central to this theory is the notion of standard modules, whose definition depends
on the choice of a certain partial order. We first fix a convez order on ®¥, i.e. a total order such
that whenever v, 8 and v+ 3 all belong to ®*, v < 3 implies v < v+ 3 < 3. By [Pap94], there
is a one-to-one correspondence between convex orders on ®* and reduced decompositions of the
longest element in the corresponding Weyl group.

A Kostant partition of « € QT is a tuple A = (A1, ..., \) of positive roots A\; > Ao = -+ > A,
such that A\; +--- + A\, = a. Let KP(«) denote the set of all Kostant partitions of «, and for
A as above define X, = \,_,,,+1. Now we have a bilezicographical partial order on KP(«), also
denoted by <, i.e. if A= (A1,...,\), 0 = (p1, ..., 1us) € KP(a) then A\ < p if and only if the
following two conditions are satisfied:

e A\ =p1,..., 1= w1 and A\ < g for some [;
o N =pl,.... N, =pl,_qand X, >y for some m.

To every A € KP(a), McNamara [Mcnl5] (cf. [KR11, Theorem 7.2]) associates an absolutely
irreducible finite-dimensional ®-self-dual H,-module L(\) so that {L(\) | A € KP(«)} is a
complete irredundant set of irreducible H,-modules, up to isomorphism and degree shift. Since
L(\) is ®-self-dual, its formal character is bar-invariant. The key special case is where A = ()
for « € ®*, in which case L(\) = L(«) is called a cuspidal irreducible module. For m € Z~g,
we write (o) for the Kostant partition (c,...,a) € KP(ma), where o appears m times. The
cuspidal modules have the following nice property.

LEMMA 2.5 [Mcnl5, Lemma 3.4] (cf. [KR11, Lemma 6.6]). For any o € ®* and m € Zsg, we
have L(a™) ~ L(«)°™.

If A= (A\1,..., ) € KP(«), the reduced standard module is defined to be
AN = ¢NLA)o---0L(A) (2.6)

for a specific degree shift s(\), whose description will not be important. Note that the
Grothendieck group of finite-dimensional graded H,-modules can be considered as a Z[q, ¢~ ']

module with ¢[V] = [¢V]. By [Mcnl5, Theorem 3.1] (cf. [KR11, 7.2, 7.4]), the H,-module A(\)
has simple head L(\), and in the Grothendieck group we have

[AMN] = L]+ Y daulL(w)] (2.7)

n<A

for some coefficients dy, € Z[g,q'], called the (graded) decomposition numbers. The
decomposition numbers depend on the characteristic of the ground field k.
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Let P(X) denote a projective cover of L(\) in H,-mod. For V € H,-mod we define the
(graded) composition multiplicity

[V : L(\)]q := dimg Hom(P(X), V) € Z((q)).

The standard module A(X) is defined as the largest quotient of P(A) all of whose composition
factors are of the form L(p) with g < A; see [Kat14, Corollary 4.13], [BKM14, Corollary 3.16] and
[Klel5b, (4.2)]. We note that while the irreducible modules L(A) are all finite dimensional, the
standard modules A()) are always infinite dimensional. The standard modules have the usual
nice properties.

THEOREM 2.8 [BKM14, §3]. Let o € QT and A\, u € KP(«). Then the following properties hold.

(i) A(X) has simple head L(X), and [A(X) : L(p)]q # 0 implies 1 < .
(ii) We have Homp, (A(N), A(p)) = 0 unless A < p.
(iii) For m > 1, we have Extf; (A(X),A(u)) = 0 unless A < p.
(iv) The module P(\) has a finite filtration P(A\) = Py D Py D --- D Py = 0 such that Py/P; =
A(N), and for r =1,2,...,N — 1 we have P, /P, 1 ~ A(u") for some p(") > \.
(v) Denoting the graded multiplicities of the factors in a A-filtration of P(X) by (P(X) : A(u))q,
we have (P() : A1)y = dya(g):

To construct the standard modules more explicitly, let us first assume that o € ®* and
explain how to construct the cuspidal standard module A(«). Put

o = q*"%.

By [BKM14, Lemma 3.2], for each n € Zso there exists a unique, up to isomorphism,
indecomposable H,-module A, («) such that there are short exact sequences
0— " VEL(a) - Ap(e) > Ay q(a) = 0,
0— ¢2A,_1(a) = Ay(a) = L(a) = 0,

where we are using the convention that Ag(a) = 0. This yields an inverse system
= Ag(a) = Aq(a) = Ag(a),

and we have A(«) = l(iglAn(a); see [BKM14, Corollary 3.16].
Let m € Zs¢. An explicit endomorphism e,, € Endg,,, (A(«)°™)°P is defined in [BKM14,
§3.2], and then
A™) = gm MDA (@) ey, (2.9)

Finally, for an arbitrary a € Q% and A\ € KP(a), gather together the equal parts of A to write
A= (A", As), with A > -+ > X, Then, by [BKM14, (3.5)],
AN) Z AN") o0 A(AT™). (2.10)

Thus, cuspidal standard modules are building blocks for arbitrary standard modules. We will
need some of their additional properties. Let o € ®*. If A € KP(«) is minimal such that A > (),
then by [BKM14, Lemma 2.6], A = (3,7) for positive roots 5 > a > . In this case, (3,7) is
called a minimal pair for o and we write mp(«) for the set of all such pairs. The following result
proved in [BKM14, §§3.1 and 4.3] describes some of the important properties of A(«).
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THEOREM 2.11. Let o € ®T. Then the following properties hold.

(i) [A(e) : L(e)]g = 1/(1 — ¢3) and [A(a) : L(A)]g = 0 for A # ().
(ii) Let C, be the category of all modules in H,-mod all of whose composition factors are
~ L(a). Any V € C, is a finite direct sum of copies of the indecomposable modules ~ A, ()
and ~ A(a). Moreover, A(a) is a projective cover of L(a) in C,. Furthermore, Ext%; (A(a),
V)=0form>1andV € C,.
(i) Endg, (A(a)) = k[z] for z in degree 2d,,.
(iv) There is a short exact sequence 0 — ¢>A(a) — A(a) — L(a) — 0.

(v) For (B,7) € mp(«) there is a short exact sequence
0— g P7A(B) 0 A(Y) > A() 0 A(B) = [ps, + 1]A(@) = 0,
where pg ., is the largest integer p such that § — py is a root.

COROLLARY 2.12. Let a € ®T. The dimensions of the graded components A(a)q are bounded
above by some N > 0 independent of d, and are zero for d < 0.

Proof. By Theorem 2.11(i), we have dim; A(«a) = (dim, L(c))/(1 — ¢2), which implies the result
since L(«) is finite dimensional. O

2.3 Endomorphisms of standard modules

We shall denote by z, the degree-2d, endomorphism of A(«) which corresponds to = under the
algebra isomorphism Endy, (A(«)) = k[z] in Theorem 2.11(iii).

LEMMA 2.13. Let o € ®T. Then every non-zero H,-endomorphism of A(c) is injective, and
every submodule of A(a) is equal to x5 (A(a)) = ¢2*A(a) for some s € Zg.

Proof. 1t follows from the construction of z, in [BKM14, Theorem 3.3] that z, is injective and
To(A(a)) 2 ¢2A(a). This in particular implies the first statement.

Let V C A(a) be a submodule and f : V — A(«) the natural inclusion. First, assume that
V is indecomposable. By Theorem 2.11(ii), up to degree shift, V' is isomorphic to A(a) or A, («)
for some n > 1. If V.~ A, (a) then A(a)/V is infinite dimensional and has simple head, so by
Theorem 2.11(ii) again, A(a)/V ~ A(a). Then the short exact sequence

0>V - Ala) > Al))V —- 0

splits by projectivity in Theorem 2.11(ii), contradicting indecomposability of A(«). If instead
V ~ A(a), consider the composition

Ala) 5V L A,

This produces a graded endomorphism of A(«a), so that V = zf(A(«)) for some s > 0. Since
there are inclusions A(a) D z4A(a) D 22A(a) D -+, the general case follows from the case
where V is indecomposable. O

Again let o € ®T. We next consider the standard modules of the form A(a™). By
functoriality, the endomorphism id®" =Y @ 2, © id®™") of the HE™-module A(a)®™ induces
an endomorphism X, of the H,,,-module A(a)°™. The endomorphisms

X1,..., X € Endg (A(@)™™)
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commute. Moreover, in [BKM14, §3.2], some additional endomorphisms 0;,...,0n—1 €
Endp,,, (A(«)°™) are constructed, and it is proved in [BKM14, Lemmas 3.7-3.9] that the
algebra Endpg,  (A(a)®™)°P is isomorphic to the nil-Hecke algebra NH,,, with 0i,...,0m—1
and (appropriately scaled) X, ..., X,, corresponding to the standard generators of NH,,. The
element e,, used in (2.9) is an explicit idempotent in NH,,. Consider the algebra of symmetric
functions

Ao = Kk[X1,..., X% = Z(NH ),

with the variables X, in degree 2d,. Note that dimy Ag.m = 1/ ]2, (1 — ¢27). It is known (see,
e.g., [KLM13, Theorem 4.4(iii)]) that

emNHmem = emAam = Aam. (2.14)

THEOREM 2.15. Let o € ®T and m € Z~q. Then the following properties hold.

(i) For any A € KP(ma), we have [A(a™) : L(A)]g = 65 (am)/ TT=q (1 — ¢27).
(ii) The module A(a™) is a projective cover of L(a™) in the category of all modules in H,-mod
all of whose composition factors are ~ L(a™).
(i) Endg, (A(a™)) = Aam.
(iv) Every submodule of A(a™) is isomorphic to ¢?A(a™) for some d € Z=, and every non-zero
H,,n-endomorphism of A(a™) is injective.

Proof. Assertion (i) is [BKM14, Lemma 3.10], and (ii) follows from [Klel5b, Lemma 4.11], since
(a'™) is minimal in KP(«) by convexity. By (i) and (ii), we have that dim, Endy,, (A(a™)) =
VI (1= a2

(iii) We have that NH,, = Endpg,,, (A(«)°™)°P acts naturally on A(a)°™ on the right, and
50 Aqm = Z(NH p,) acts naturally on A(a™) = A(a)°™ey,. This defines an embedding A, —
Endg,,, (A(a™)). This embedding must be an isomorphism because of the dimensions.

(iv) In view of Lemma 2.13, every non-zero

fek[Xy,...,Xm] € NH,, = Endy,,, (A(a)°™)°P

acts as an injective linear operator on A(«)°™. The result now follows from (2.14) and (ii). O

Finally, we consider a general case. Let a € Q1 and A = (A\[",..., A7) € KP(«) with
A1 > -+ > A By functoriality of induction, we have a natural embedding
A>\17m1 ®-~-®A)\S’ms — EndHa(A(/\)), f1®~--®fs+—> flo---ofs. (216)

THEOREM 2.17. Let o € Q" and A = (A", ..., \!"s) € KP(«) with A\; > -+ > X\;. Then
EndHa (A()\)) = A)\lyml Q- ® A)\37ms

via (2.16), and every non-zero H,-endomorphism of A(\) is injective.

Proof. 1t is easy to see from Theorem 2.15(iv) that every non-zero endomorphism in the image
of the embedding (2.16) is injective. To see that there are no other endomorphisms, we first use
adjointness of End and Res to show that Endg, (A()\)) is isomorphic to

Homp,, \ @-©H,, (A" K- BANT), Resp, AN),

ML, Ms As

and then note that by the Mackey theorem, as in [Mcnl5, Lemma 3.3] for instance, we have
Res AN) = AN K- BAN). a

(6%
ML, M As
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3. Proof of Theorem A

We give a proof of Theorem A based on the recent work of Kashiwara and Park [KP15]. Our
original proof was different and relied on some unpleasant computations for non-simply laced
types. For simply laced types, however, our original proof is very simple and elementary, so we
give it later in this section, too.

3.1 Proof of Theorem A modulo a hypothesis
The following hypothesis concerns a fundamental property of cuspidal standard modules and is
probably true beyond finite Lie types.

HypPOTHESIS 3.1. Let a be a positive root of height n and let 1 < r < n. Then upon restriction
to the subalgebra k[z,] C H,, the module A(«) is free of finite rank.

The goal of this subsection is to prove Theorem A assuming the hypothesis. In §3.2 the
hypothesis will be proved using results of Kashiwara and Park, while in § 3.3 we will give a more
elementary proof for simply laced types.

LEMMA 3.2. Hypothesis 3.1 is equivalent to the property that x1,...,x, act by injective linear
operators on A(w).

Proof. The forward direction is clear. For the converse, assume that x, acts injectively on A(«).
We construct a finite basis for 1;A(«) as a k[z,]-module for every ¢ € I%. Let m := deg(x,1;).
For every a =0,1,...,m—1, let d, be a minimal integer with d, = a (modm) and 1;A(«)g, # 0.
Pick a linear basis of @' 1;A(a)4, and note that the k[z,]-module generated by the elements
of this basis is free. Factor out this k[x,]-submodule, and repeat. The process will stop after
finitely many steps, thanks to Corollary 2.12. O

While Hypothesis 3.1 claims that every k[z,| acts freely on A(«), no k[z,, x| does.

LEMMA 3.3. Let a € ®T be a root of height n > 1. Then, for every vector v € A(«a) and distinct
r,s € {1,...,n}, there is a non-zero polynomial f € k[x,y] such that f(x,,zs)v =0.

Proof. We may assume that v is a homogenous weight vector. By Corollary 2.12, the dimensions
of the graded components of A(«) are uniformly bounded. The result then follows, as the number
of linearly independent degree-d monomials in  and y grows without bound. O

One can say more about the polynomial f in the lemma; see, for example, Proposition 3.14.
Now let v € QT be arbitrary of height n, and let A = (A\; > --- > \;) € KP(«). Setting

Sx = She(ag) X 0 X She(n) C O,

integers r,s € {1,...,n} are said to be A-equivalent, written r ~ s, if they belong to the same
orbit of the action of Sy on {1,...,n}. Finally, recalling the idempotents (2.4), we set

Iy =1x..-

LEMMA 3.4. Let « € QT and n = ht(«), and let A % u be elements of KP(«). If w € S, satisfies
1\Twl, # 0, then there exists some 1 < r < n such that r ~y r+ 1 but w=(r) %, w™(r +1).
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Proof. Write A= (A1 > --- > X)) and p= (1 = -+ = ftn). The assumption 1y7,1, # 0 implies
that i = w - i* for some 3* € [MM and 4 € [#-km Write i = 47 ---4) with i) € [
for all a, and " := ¢} --- ¢!, with @}’ € I for all b. Assume for a contradiction that for every
1 < r < n we have that r ~y 7 + 1 implies w™!(r) ~, w™!(r + 1). Then there is a partition
{1,...,1} = Ly~ Ap such that p, = > aea, Ao for all b=1,....m. By convexity (cf. [BKMI14,
Lemma 2.4]), we have

min{\, | a € Ap} < pup < max{\, | a € 4Ap}.
This implies A > p. O
THEOREM 3.5. Let o € Q1 and \, u € KP(«). If X\ # p, then
Hom g, (A(X), A(u)) = 0.

Proof. Let n = ht(a) and write A= (Ay > --- > A)) and = (1 = -+ = pm)- It suffices to prove
that
Homp, (A(A1)o---o0 A(N), A(p1) o+ 0 Auy)) =0.

Suppose not, and let ¢ be a non-zero homomorphism. By Theorem 2.8(ii), we may assume that
A < p. Using Lemma 3.3, pick a generator v € A(\) o --- o A(N;) such that v = 1 v and,
for any r ~) r + 1, there is a non-zero polynomial f € k[z,y] with f(z,,2,41)v = 0. Then
f(zr, xry1)p(v) =0 as well.

Denote by S* the set of shortest-length coset representatives for S,,/S,. Then we can write
(V) = D esn Tw @y for some vy, € A(p1) ® -+ - @ A ). Since p(v) = 1xp(v) and 1,0y = vy,
we have that 1)7,1, # 0 whenever v,, # 0. In particular, if u € S is an element of maximal
length such that v, # 0, then by Lemma 3.4 we have r ~y r + 1 and u=!(r) %, u'(r + 1) for

some 1 <r < n.
Now we have

f(@r,zri1)p(v) = f(2r, Tri1) Z Tw @ Vw
weSH
= f($ra $r+1)7—u & Uy + Z f(xry -'ErJrl)Tw & Uy
wH#u
=Ty ® f('rufl(r)v xufl(rJrl))vu + (*)7

where (x) is a sum of elements of the form 7, ® v}, with v), € A(u1) ® -+ @ A(um) and w €
SH\{u}. The last equality holds because in H,, for all 1 <t < n and w € S,, we have that
TiTw = TwTy-1(y) + (#%), where (#x) is a linear combination of elements of the form 7, with
y € Sp, being Bruhat smaller than w.

Since u™1(r) %, u=(r +1), there are distinct integers a,b € {1,...,m} and integers 1 < ¢ <
ht(1q) and 1 < d < ht(pp) such that for any pure tensor v = v! @ - @v™ € A(u1) @ - - - @ A(ftm)
and any s,t € Z>o, we have

$Z—1(T)$Z—1(T+1)U = Ul K- 1'an R R 1’2’[)17 (SRR ™,
By Hypothesis 3.1, f(z,-1(), Ty-1(41))vu # 0. Hence f(zr,zr11)p(v) # 0, which gives a
contradiction. |
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3.2 Proof of Hypothesis 3.1 using the Kashiwara—Park lemma
We begin with a key lemma which follows immediately from the results of [KP15].

LEMMA 3.6. Let a € %, n = ht(«) and i € I. Define
pa= 2 (I o)
iel™ Srelln]ir=i
Then p; o A(r) # 0.

Proof. This follows from [KP15, Definition 2.2(b)] and [KP15, Proposition 3.5]. O

THEOREM 3.7. Let o € ®1 have height n. Then x'v # 0 for all 1 <r < n, m € Zx( and non-zero
v € A(«). In particular, Hypothesis 3.1 holds.

Proof. The ‘in particular’ statement follows from Lemma 3.2.

We may assume that v is a weight vector of some weight 2. Let i = ¢,.. The element p; , defined
in Lemma 3.6 is central by Theorem 2.3. By Lemma 3.6 and Theorem 2.17, the multiplication
with p; o on A(a) is injective, so multiplication with pi is also injective. But p; o involves x,1;,
so 0 # piwv = ha;"v for some h € H,, and the theorem follows. O

3.3 Elementary proof of Hypothesis 3.1 for simply laced types
Throughout this subsection, we assume that the root system ® is of (finite) ADE type. Let
a=aja; + - +aqo € QT and n = ht(a) = a; + -+ + a;. Pick a permutation (iy,...,4;) of

.a;

(1,...,0) with a;; > 0, and define 4 := icfil ---1; ' € I*. Then the stabilizer of ¢ in S, is the
standard parabolic subgroup
S; = Sai1 X - X Sail-

Let S? be a set of coset representatives for S,,/S;. Then by Theorem 2.3, the element

Z =z = Z (xw(l) 4+ xw(ail))lw"i (38)
wes?

is central of degree 2 in H,. For any 1 < r < n, note that

ity =2— Y (@) = 20) + + @uas,) — ) Lwi. (3.9)
wES?

Let H!, be the subalgebra of H, generated by
{LilteI*}U{n |1<r<n}U{z, —zr41 | 1 <7 <n}
For the reader’s convenience, we reprove a result from [BK12, Lemma 3.1].

LEMMA 3.10. Let o, ¢ and z be as above. Then:

(i) {(x1 —x2)™ -+ (Tp—1 — )™ 715 | My € Zzo,w € Syt € I} is a basis for H, ;

(ii) ifa;, - 1x # 0 in k, then there is an algebra isomorphism

H, = H, @ k[z]. (3.11)
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Proof. In view of the basis (2.2), assertion (i) follows upon checking that the span of the given
monomials is closed under multiplication, which follows from the defining relations. For (ii), note
by using (3.9) that the natural multiplication map k[z] ® H), — H, is surjective. It remains to
observe that the two algebras have the same graded dimension. O

Now let a be a positive root. Then one can always find an index i; with a;, - 1x # 0, so in
this case we always have (3.11) for an appropriate choice of i. We always assume that this choice
has been made. Following [BK12], we can now present another useful description of the cuspidal
standard module A(«). Denote by L'(«) the restriction of the cuspidal irreducible module L(«)
from H, to H],.

LEMMA 3.12. Let o € ®*. Then:
(i) L'(«) is an irreducible H|-module;
(ii) A(a) =2 Hy®@p, L'(a);

(iii) the element z acts on A(«) freely.

Proof. Note that z acts as zero on L(«), which implies (i) in view of (3.11). Moreover, it is now
easy to see that H, ®p; L'(a) has a filtration with the subfactors isomorphic to ¢**L(a) for
d=0,1,.... Furthermore, by Frobenius reciprocity and (i), the module H, ®p L'(a) has simple
head L(«a). Now (ii) follows from Theorem 2.11(ii). Finally, (iii) follows from (ii) and (3.11). O

Using the description of A(«) from Lemma 3.12(ii), we can now establish Hypothesis 3.1.

THEOREM 3.13. Let o € ®* and let {v1,...,vN} be a k-basis of L'(a). Then the k[z,]-module
A(«) is free with basis {1 ® vi,...,1®vx}. In particular, Hypothesis 3.1 holds for simply laced

types.

Proof. By (3.9), we can write z, = (1/a;,)z + (), where (x) is an element of H/,. For each
1 <m < N, we have

1 b
2L1Quv,) = <> 22 @ vy 4 (),

ail

where (*%) is a linear combination of terms of the form 2¢®v; with ¢ < b. So {1®v1,...,1®vy}
is a basis of the free k[x,|-module A(«). O

The following strengthening of Lemma 3.3 is not needed for the proof of Theorem A, but we
include it for completeness.

PROPOSITION 3.14. Let o € &+ and n = ht(«a). For any 1 < r, s < n, there is d € Z~¢ such that
(z, — x,)? annihilates A(a).

Proof. Pick d such that (2, — z5)? annihilates L(c). Since A(a) = Hy ®@py, L' (cv) is spanned by

vectors of the form 2™ ® v with m € Zsq and v' € L/(a), it suffices to note that (z, — x,)¢
(Z" @) = 2" @ (2, —x5)% = 0. O
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4. Reduction modulo p

Let p be a fixed prime number, and let F' be the prime field of characteristic p. We will use the
p-modular system (F, R, K) with R = Z, and K = Q,. Note that R/pR = F.

From now on, we will work with different ground rings, so our notation needs to become
more elaborate. Recall that the KLR algebra H, is defined over an arbitrary commutative unital
ring k, and to emphasize which k we are working with, we will use the notation H, or Hg .
In all our notation we will now use the corresponding index.

For example, let k be a field. We now denote the irreducible cuspidal modules over H, by
L(a)g. We now write dim* V for the dimension of a k-vector space V, and dimﬂ(j V for the graded
dimension of a graded k-vector space V.

If V' is a finitely generated R-module, we write

ARV = dim PRV /pv),

which, by Nakayama’s lemma, equals the number of generators in any minimal generating set of
V. If V is a graded R-module with finitely generated graded components V;, such that V,, =0
for m < 0, we set
dfV = (A" V)™ € Z((q))-
meZ
Let k € {F,R, K}, and let B be a Noetherian connected positively graded k-algebra, so that
B/B~y = k. If V is a finitely generated graded B-module, we define

APV := dP/P0(V/BooV) € Zlg, g '),

By Nakayama’s lemma, if {v1,...,v,} is a minimal set of homogeneous generators of the
B-module V, then de = qdes(v) ... 4 gdes(vr),

4.1 Changing scalars

In this subsection we develop a usual formalism of modular representation theory for KLR
algebras. There will be nothing surprising here, but we need to exercise care since we work with
infinite-dimensional algebras and often with infinite-dimensional modules.

Recall from §2 that for a left Noetherian graded algebra H, we denote by H-mod the
category of finitely generated graded H-modules, for which we have the groups extﬁq(V, W) and
Ext%; (V,W). To deal with change of scalars in Ext groups, we will use the following version of
the universal coefficient theorem.

THEOREM 4.1 (Universal coefficient theorem). Let Vr and Wgr be modules in H, r-mod, free
as R-modules, and let k be an R-algebra. Then for every j € Z>q there is an exact sequence of
(graded) k-modules

0— Ext}, (Vg Wg)®rk > Ext}; (Vp@rk,Wr@rk)

k

— Torf(Exth;tiR(VR, Wgr), k) — 0.

In particular, A A
Exty, (VR Wr) ©r K = Extyy | (Ve ®r K, Wg @r K).

Proof. The standard proof for the ungraded modules works in our setting. First, apply the functor
Homy, ,(—, Wr) to a free resolution of Vi to get a complex C, of free (graded) R-modules with
finitely many generators in every graded degree. Then follow the proof of [Rot79, Theorem 8.22].
The second statement follows from the first since K is a flat R-module. O
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We need another standard result, whose proof is omitted.
LEMMA 4.2. Let k = K or F, let Vg, Wr € H, g-mod be free as R-modules, and let
0— Wg —> Eg —> Vg — 0

be the extension corresponding to a class £ € Extllqa " (Vr, Wg). Identifying Ext}{a " (Vr, Wr)®rk
with a subgroup of Ext}{a k(VR ®rk, Wgr ®r k), we have that

0> Wrork 2% Eropk 2% v opk — 0

is the extension corresponding to a class £ ® 1 € Ext}{a R(VR, Wg) ®r k.

Let k = K or F, and let Vi € H, x-mod. We say that Vg € H, g-mod is an R-form of Vi
if every graded component of Vg is free of finite rank as an R-module and, upon identifying
H, g ®rk with H,, we have Vg @p k = Vi as H, x-modules. If k = K, by a full lattice in Vi
we mean a (graded) R-submodule Vi of Vi such that every graded component Vg g of Vp is a
finite-rank free R-module which generates the graded component V; g as a K-module. If Vg is an
H, g-invariant full lattice in Vi, it is an R-form of V. Now we can see that every Vi € H, x-mod
has an R-form: pick H, g-generators v1,...,v, and define Vg := Hy gp-v1 + -+ Hor - V1.

The projective indecomposable modules over H, r have projective R-forms. Indeed, any
P(\)F is of the form H, pey p for some degree-zero idempotent ey p. By the basis theorem,
the degree-zero component H, o of H, r is defined over R; more precisely, we have H, o =
Hy ro®rk for k = K or F. Since H, F is finite dimensional, by the classical theorem on lifting
idempotents [CR81, (6.7)], there exists an idempotent ey r € Hq ro such that ey p = ey r ® 1,
and

P<)‘)R = Ha,Re)\,R

is an R-form of P(\)r. The notation P(\)g will be reserved for this specific R-form of P(\)p.
Note that while the H, gp-module P(\)r is indecomposable, it is not in general true that
P(ANr®pr K = P(\)k; see Lemma 4.8 for more information.

Let Vi € Hy k-mod and let Vg be an R-form of V. The H, p-module Vg @ F' is called a
reduction modulo p of V. Reduction modulo p in general depends on the choice of V. However,
as usual, we have a result of the following form.

LeMMA 4.3. If Vi € H, g-mod and Vg is an R-form of Vi, then for any A € KP(a) we have
[Vk @r F : L(\)plq = dim Homp, , (P(\)r ®r K, Vi).

In particular, the composition multiplicities [Vr @r F : L(\) ], are independent of the choice of
the R-form V.

Proof. We have
[Vk ®@r F : L(A)plq = dim} Homp, . (P(\)F, Vg ®r F).
By the universal coefficient theorem,

Homp, . (P(A\)F,Vr ®r F) = Hompy, ,(P(A)R,Vr) ®r F.
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Moreover, note that Homp, ,(P(A\)g, Vr) is R-free with (graded) rank equal to
dimg Homp, ,(P(\)r, Vi) ®r k
for k = F or K. Now, by the universal coefficient theorem again, we have that
dimff Homp, ,(P(M\)gr,Vr) ®r K = dimff Hompy, , (P(A\)r ®r K,Vr ®r K),
which completes the proof, since Vg @p K = Vi. O

Our main interest is in reduction modulo p of the irreducible H, x-modules L(\)g. Pick a
non-zero homogeneous vector v € L(\)x and define

L(AN)Rr:=Hug-v.

Then L(A\)g is an H, g-invariant full lattice in L(\)g, and upon reducing modulo p we get an
H, p-module L(A\)g ®p F. In general, L(A\)g ®p F' is not L(\)p, although this happens ‘often’,
for example for cuspidal modules, as stated in the following lemma.

LEMMA 4.4 [Klelba, Proposition 3.20]. Let a € ®*. Then L(a)g ®p F = L(a)F.

To generalize this lemma to irreducible modules of the form L(a™), we need to observe that
induction and restriction commute with extension of scalars. More precisely, for 1, ..., 8, € QT,
a = fB1+-- -+ and any ground ring k, we denote by Hg, . 3, .k the algebra Hg, y®y---QixHg,, k
identified as usual with a (non-unital) subalgebra of H, x. Now the following lemma is immediate.

LEMMA 4.5. Let Vg € Hg,, . g,..r-mod and Wi € H, r-mod. Then for any R-algebra k, there
are natural isomorphisms of H, x-modules

and of Hg, . g, .x-modules
(Resglwwﬁm WR) ®R k = Resgl,...,ﬂm (WR ®R k)

Let o € @ and m € Z~o. If k is a field, then by Lemma 2.5 we have L(a™)y ~ L(a)g™. By
Lemma 4.5,
L(a™)r = (L()r)™™

satisfies L(a™)r ®@p k ~ L(a™)k for k = K or F'. Taking into account Lemmas 4.3 and 4.4, we
get the next result.

LEMMA 4.6. Let o € @t and m € Z~¢. Then the reduction modulo p of L(a™)k is L(a™)p.

It was conjectured in [KR11, Conjecture 7.3] that the reduction modulo p of L(\)k is always
L(\)r, but counterexamples are given in [Will4] (see also [BKM14, Example 2.16]). Still, it is
important to understand when we have L(A)gr ®@p F = L(\)p.

Problem 4.7. Let o € Q.
(i) If A € KP(«), determine when L(A)gr ®@p F' = L(\) .
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(ii) We say that the James conjecture has positive solution (for «) if the isomorphism in (i)
holds for all A € KP(«). Determine the minimal lower bound p, on p = char F' such that the
James conjecture has positive solution for « for all p > p,. Determine all p values for which the
James conjecture has positive solution for a.

At least, we always have the following property.

LEMMA 4.8. Let « € QT and A\ € KP(«a). Then in the Grothendieck group of finite-dimensional
H, p-modules we have

(LN R @R F] = [LOA)F] + Y axuL(1)F) (4.9)
p<A

for some bar-invariant Laurent polynomials ay , € Z[q,q™']. Moreover,

PM\r®r K =P\ k& @ aunP(i)k.
P>

Proof. Let k = K or F, and consider the reduced standard module A(M); see (2.6). In view of
(2.7), we can write

[L(A)] := [AN)] + Z A ()]

pn<A

for some fgf u € Z[q,q"']. Using Lemmas 4.4 and 4.5 induction on the bilexicographical order on
KP(A), we deduce that (4.9) holds for some, not necessarily bar-invariant, coefficients ay , € Z[q,
g ']. Then we also have

chy (L(A)r ®r F) = chy (LA)F) + Y axuchg (L(p)p).

pn<A

Since reduction modulo p preserves formal characters, the left-hand side is bar-invariant.
Moreover, every chy (L(p)F) is bar-invariant. This implies that the coefficients ay , are also
bar-invariant, since by [KL09, Theorem 3.17] the formal characters {chy L(v)r | v € KP(«)} are
linearly independent.

Finally, for any u € KP(\) we have

a,,) = dim Homp, . (P(\)r ®r K, L(1)k),

thanks to Lemma 4.3. This implies the second statement. O

Remark 4.10. For k = K or F, denote by d“§ u the corresponding decomposition numbers,
as in (2.7), and consider the decomposition matrices D¥ := (dﬂi#)/\,uer(a). Setting A :=
(@xu)apuekp(a), We have DY = DK A. So the matrix A plays the role of the adjustment matric
in the classical James conjecture [Jam90]. Note that the James conjecture has positive solution
in the sense of Problem 4.7 if and only if A is the identity matrix.
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4.2 Integral forms of standard modules

Our next goal is to construct some special R-forms of standard modules. We call an H, g-module
A(N) g a universal R-form of a standard module if it is an R-form for both A(A) g and A(N)p.
We show how to construct these for all .

By Theorem 2.8(i), for any field k and 8 € R™, the standard module A(3™ ) has simple head
L(B™)k. Pick a homogeneous generator v € A(f™) g and consider the R-form A(8™)r := Hyg -
v of A(B™)k. Further, for any a € Q" and A = (A", ..., A7) € KP(a) with Ay > -+ > ), we
define the following R-form of A(A)g (cf. Lemma 4.5):

AN = AN )go -0 AN) .

Let
1()\),R = Ly, ma A R-

Then, for an appropriate set S of coset representatives in a symmetric group, we have that
{rwlygr | we S()‘)} is a basis of Ha, rl()),r considered as a right Hy,,», ... .m.\,;r-module. So

ANr = @ Twloy,r @ AN )R ® - @ AN .
weSM)

In particular, choosing v; € A(N") g with A(AN")r = Hp,a,,r - vt for all 1 <t < s and setting
vi=1o) Kk QU ®- - ®vs, We have

ANpr=Hupr-v. (4.11)
Now we show that A(\)g is a universal R-form.

LEMMA 4.12. Let o € QT and A € KP(«). Then A(N) g ®p F = A(M\)p.

Proof. In view of (2.10) and Lemma 4.5, we may assume that A is of the form (8™) for a positive
root f so that & = mf. By Lemma 4.3, for any u € KP(«) we have

[A(,Bm)R QRrF: L(/L)F}q = dimf HOHIH&,K (P(M)R ®pr K, A(Bm>K)

By convexity, (8) is a minimal element of KP(«). So Lemma 4.8 implies that all composition
factors of A(S™)r ®p F are ~ L(f™)r. Moreover,

[AB™)r @R F - L(B™)Flg = [AB™ )k + L(B™)klq = [A(B™)F : L(B™)Flg-

By construction, A(S"™)g is cyclic, hence so is A(f™)r ®r F. Therefore A(f™)r @r F
is a module with simple head and belongs to the category of all modules in H, p-mod with
composition factors ~ L(5™)p. Since (™) is minimal in KP(«), we have that A(5™)r is the
projective cover of L(8™)p in this category; see [Klel5b, Lemma 4.11]. So there is a surjective
homomorphism from A(S™)r onto A(S")r ®@g F. This has to be an isomorphism since we have
proved that the two modules have the same composition multiplicities. a

From now on, the notation A(\)r will be reserved for a universal R-form.

PROPOSITION 4.13. Let o € Q1 and \, u € KP(«).
(i) If A # p, then Homp, ,(A(N)g, A(n)r) = 0.
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(ii) For any R-algebra k, we have
Endy, ,(A(AN)Rr) @rk = Endy, , (A(N)r @r k).
(iii) If A £ p, then Extgqa’R(A()\)R, A(p)r) =0 forall j > 1.
Proof. By the universal coefficient theorem, for any j > 0 we can embed
Extyy (AR, A(1)r) O F

into Extf;{a (AN p, A(p)r). So assertion (i) follows from Theorem A, and (iii) follows from
Theorem 2.8(iii). Now statement (ii) also follows from the universal coefficient theorem, since

Exty (AR, ANr) =0
by (iii), which makes the Tor; term trivial. O

Given an R-module V', denote by VIS its torsion submodule. Torsion in Ext groups
Extl, (AR, A(p)r)™"
is of importance for Problem 4.7; see Remark 4.17. The following result was surprising to us.
THEOREM 4.14. Let a € Q" and A\, u € KP(«). Then the R-module
Extyy, (AR, A(k)r)
is torsion-free.

Proof. By Proposition 4.13(iii), we may assume that A # p. By the universal coefficient theorem,
there is an exact sequence

0 — Homp, ,(A(MNr, A(u)r) ®r F'— Homp, (AN F, A(p)F)
— Tor{z(Ext}{ayR(A()\)R,A(,u)R),F) — 0.

By Theorem A, the middle term vanishes; hence the third term also vanishes, which implies the
theorem. O

We will need the following generalization.

COROLLARY 4.15. Let o € Q1 and p € KP(«), and let V be an H, g-module with a finite
A-filtration, all of whose subfactors are of the form ~ A(\)p for A\ # p. Then the R-module
Ext}qa (V. A(p)R) is torsion-free.

Proof. Apply induction on the length of the A-filtration, the induction base coming from
Theorem 4.14. If the filtration has length greater than 1, we have an exact sequence

0> Vi—>V-—>1V-—>0,
such that the inductive assumption applies to V; and V5. Then we get a long exact sequence

Homp, (Vi A(p)r) — Extiy, ,(Va, A(u)r)
— Ext}{a’R(V,A(M)R) — Ext}qa,R(Vl, A(p)R)-

By Proposition 4.13(i), the first term vanishes. By the inductive assumption, the second and
fourth terms are torsion-free. Hence so is the third term. O
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While we have just proved that there is no torsion in Ext}{a (AR, A(p)R), the following

result reveals the importance of torsion in Ext2-groups.

COROLLARY 4.16. Let a € QT and \, u € KP(«). We have

dimf; Extllga’F (AN, A(p)F)
= dimy" Extyy (AN, Alu)x) + dg'Bxtiy, (AR, Ap)r) ™"

In particular,
dimff Ext}{a’F(A()\)p, Alp)p) = dimf EXtilL[a,K (AN g, A(p) k)
if and only if the R-module Ext%{a ~(AN)R, A(p)R) is torsion-free.

Proof. By the universal coefficient theorem, there is an exact sequence

0= Exty,  (ANg, A(p)r) ©r F — Exty,  (AN)r, A(u)r)
g TOI'{%(EXt%{a’R(A()\)R7 A(.“)R)v F) -0

and an isomorphism
Extl (ANm A(p)r) @5 K = Exth, (AN K, Ap)x).
The last isomorphism and Theorem 4.14 imply
dim)* Extyr (AN, Ap)k) = dfExty, (AN, A(p)r).
On the other hand,
df;‘Ext%{a’R(A()\)R,A(M)R)T"rs = dimf Torf/(Ext%Ia,R(A()\)R,A(M)R),F),
so the result now follows from the exactness of the first sequence. O

Remark 4.17. By Theorem 4.14, lack of torsion in Ext%{a,R(A()\)R,A(,u)R) is equivalent to

the fact that the extension groups Extllqa (A(N),A(p)) have the same graded dimension in
characteristic 0 and characteristic p. This is relevant for Problem 4.7. However, we do not
understand the precise connection between Problem 4.7 and lack of torsion in the groups
Ext%{ayR(A()\)R,A(u)R). For example, we do not know if such lack of torsion for all A and p
implies (or is equivalent to) the James conjecture having positive solution. In the next section
we establish a different statement of that nature. Set

Ak = @ A(}\)k

AeKP(a)

By the universal coefficient theorem, all groups Extgqa L(A(N)R, A(p)r) are torsion-free if and

>

only if the dimension of the k-algebras Exty; | (Ag, Ag) is the same for k = K and k = F', and
EXt;fa,k (Ag, Ag) = EX’C;{D“R(AR, ARr)®rk

for k = K or F. We do not know if the James conjecture has positive solution under the
assumption that all groups Extgqa L(A(N)R, A(p)r) are torsion-free.
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4.3 Integral forms of projective modules in characteristic zero

Recall that by lifting idempotents, we have constructed projective R-forms P(\)g of the
projective indecomposable modules P(A)p. Our next goal is to construct some interesting
R-forms of the projective modules P(\)g. As we cannot denote them by P(\)g, we will have to
use the notation Q(A\)r. We will construct Q(\) g using the usual ‘universal extension procedure’
applied to universal R-forms of the standard modules, but in our ‘infinite-dimensional integral’
situation we need to be rather careful. We begin with some lemmas.

LEMMA 4.18. Let k be a field and suppose that V' € H, -mod has the following properties:

(i) V is indecomposable;
(ii) V has a finite A-filtration with the top factor A(\);
(iii) Exty (V. A(p)k) = 0 for all € KP(a).
Then V = P(AN)k.
Proof. We have a short exact sequence 0 - M — P — V — 0, where P is a finite direct
sum of indecomposable projective modules. By [Klel5b, Corollary 7.10(i)], M has a finite A-
filtration. Now, by property (iii), the short exact sequence splits. Hence V' is projective. As it

is indecomposable, it must be of the form ¢?P(u). By property (ii), we must have A\ = p and
d=0. O

For A € KP(a) and k € {F, K, R}, we consider the endomorphism algebra
B)\k = EndHay]k(A()\)]k)Op.

By Proposition 4.13(ii), we have By p = By p ® F and B) g = By p ® K. Note that A(\)y is
naturally a right B) x-module. We need to know that this B) x-module is finitely generated. In
fact, we will prove that it is free of finite rank. First of all, this is known over a field.

LEMMA 4.19. Let A € KP(«) and let k be a field. Then the following properties hold.

(i) Bax is a commutative polynomial algebra in finitely many variables of positive degrees.
(ii) Let Nyk be the ideal in By spanned by all monomials of positive degree, and let M :=
A(NiNyk. Then A(N)x/M = A(XN)g; see the notation (2.6).
(iii) Let vy,...,vny € A(N)k be such that {vi + M, ..., vy + M} is a k-basis of A(\)x/M; then
{vi,...,un} is a basis of A(N)k as a By x-module.

Proof. For (i) see Theorem 2.17. For (ii) and (iii), see [Klel5b, Proposition 5.7]. O

The following general lemma, whose proof is omitted, will help us to transfer the result of
Lemma 4.19 from K and F to R.

LEMMA 4.20. Let Bgr be an R-algebra and Vi a Br-module. Assume that Br and Vg are free
as R-modules. If vy, ...,vy € Vg are such that {vi ® li,...,vy ® 1k} is a basis of Vg ®r k as a

Br ®pr k-module for k = K and F, then {v1,...,vn} is a basis of Vi as a Br-module.

LEMMA 4.21. Let A € KP(a). As a By gp-module, A(\)rg is free of finite rank.
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Proof. Let A = (A]", ..., ') for positive roots A\; > --- > A. Choose v =1()) K QVIR - QU5 as
in (4.11). There is a submodule M C A(A) g with A(A\) /M = A(N) k. Pick hy,....hy € Hor
such that {hyv+ M, ... hyv+ M} is an R-basis of A(N\)g = Ho,r - (v+ M). By Lemma 4.19,

{hﬂ)@lk,...,h]\/’u@lk}

is a B) k-basis of A(A\)g ®p k for k=K or F'. Now apply Proposition 4.13(ii) and Lemma 4.20. O

COROLLARY 4.22. Let k € {F,K,R}, V € Hyi-mod, A € KP(«) and j € Zxo. Then, as a
B x-module, Ext‘l’qa (V, A(N)k) is finitely generated.

k

Proof. Since H, ) is Noetherian, V has a resolution by finite-rank free modules over H, .
Applying Homp, , (—, A(N)k) to this resolution, we get a complex with terms that are finite
direct sums of modules ~ A(M), which are finite-rank free over B, thanks to Lemmas 4.19
and 4.21. As B) is Noetherian, the cohomology groups of the complex are finitely generated
B x-modules. O

Remark 4.23. It is a more subtle issue to determine whether Extjﬁa (A, V) is finitely
generated as a B x-module. We do not know if this is always true.

LEMMA 4.24 (Universal extension procedure). Let k € {F, K, R} and u € KP(«), and let Vi be
an indecomposable H, x-module with a finite A-filtration, all of whose subfactors are of the form
~ A(N for X 2 p. If k = R, assume in addition that Vg @ K is indecomposable. Let

B _
r(g) = dg"*Exty_, (Vi, A()) € Zlg,q ).

Then there exists an H, x-module E(Vi, A(p)x) with the following properties:
(i) E(Vk,A(p)x) is indecomposable;

(it) Ext,  (B(Vi, Alp)k), Alp)x) = 0;

(iii) there is a short exact sequence

0 — r(q)A(p)k = E(Vi, A(p)x) — Vi = 0.

Proof. In this proof we drop H, | from the indices and write Ext! for Ext}qa , etc. Also, when
it is unlikely to cause confusion, we drop k from the indices. Let &1, ..., &, be a minimal set of
homogeneous generators of Ext!(V, A(i)) as a B,-module, and let ds := deg(&;) for s=1,...,7
so that 7(q) = Y, ¢%. The extension

0— ¢ "A(p)—> E1 >V =0,

corresponding to &1, yields the long exact sequence

Hom (g~ A(p), A() 5 Ext!(V, A(w)) > Ext(Ey, A(u)) — 0.

Here we have used the fact that Ext!(¢~ A(u), A(u)) = 0; see Proposition 4.13(iii). Note that
¢ A(p) = A(p) as Ho-modules but with degrees shifted down by d;. So we can consider the
identity map id : ¢~ A(u) — A(u), which has degree d;. The connecting homomorphism ¢
maps this identity map to &. It follows that Ext'(FE;, A(u)) is generated as a B,-module by
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the elements & = ¥(&2),. .., & = ¥(&,). Repeating the argument r — 1 more times, we get an
extension

0—q "A(p) & &g "A) =r(@)A(n) > E—>V >0

such that in the corresponding long exact sequence

Hom(E, A(u)) —> Hom(r(q)A (1), A())
5 Ext™(V, A(n)) — Ext'(E, A(n)) — 0,

for all s = 1,...,7 we have p(ms) = &, where 7, is the (degree-ds) projection onto the sth
summand. In particular, ¢ is surjective and Ext!(E, A(u)) = 0.

It remains to prove that E is indecomposable. We first prove this when k is a field. In that
case, if E = E'@® E”, then both E’ and E” have finite A-filtrations; see [Kle15b, Corollary 7.10].
Since Ext!(A(u), A(N\)) = 0 for A # pu, there is a partition J’ U J” = {1,...,r} such that there
are submodules

M =@ Ap CE, M= AR CE
jeJ’ jeJ”
and E' /M’ and M" / E" have A-filtrations. Since Hom(A(u), V) = 0, we deduce that V = E'/M'®
E"/M". As V is indecomposable, we may assume that E’'/M’ = 0. Then some projection 7 lifts
to a homomorphism E — A(u), which shows that this 7 is in the image of y and hence in the
kernel of ¢, which is a contradiction.

Now let k = R. Note that V and FE are free as R-modules, since all the A(v)g are. If ER is
decomposable, then so is Fr ® K; therefore it suffices to prove that Fr ® K is indecomposable.
In view of Corollary 4.15, the B, x-module

Ext!(Vr, A(u)r) ®r K =2 Ext! (Vg @r K, A1) k)

is minimally generated by §1 r ® 1k,...,& r ® 1. It follows, using Lemma 4.2, that Egr ®p
K =2 Eg, where Eg is constructed using the universal extension procedure starting with the
indecomposable module Vi := Vg ® g K as in the first part of the proof of the lemma. By the
field case established in the previous paragraph, Ex is indecomposable. O

Let A € KP(«). For k € {R, K, F'}, we construct a module Q(\)x by starting with A(\)g and
repeatedly applying the universal extension procedure. To simplify notation, we drop some of
the indices k if this is unlikely to lead to confusion. Given Laurent polynomials 7¢(q),r1(q),. - .,
rm(q) € Z[q, ¢~ '] with non-negative coefficients and Kostant partitions A%, AL, ..., \™ € KP(«),
we will use the notation

V =r0(@AN) [ r1(@ANY) |-+ | 1 (@) A™)

to indicate that the H,-module V has a filtration V.=V, 2 V43 D -+ D V,,41 = (0) such that
Vo/Vast = ry()AOY) for s = 0,1,....,m.

If Exty (A(X), A(n)) = 0 for all 4 € KP(«), we set Q(A)x := A(N)k. Otherwise, let A1¥ €
KP(«) be minimal with Extllqa (A(N), A(AMK)) # 0. Note that this A\'* could indeed depend on
the ground ring k, hence the notation. Also notice that AbE > \. Let

BN = B(AK), AAM9));
see Lemma 4.24. By construction, we have

EQA9), = A | rig(@) AN,
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where

Tl,k(Q) = del,kEXt}Ia (A()\), A()\l’k)).
This Laurent polynomial may depend on k, hence the notation. If
Extly, (E(\ M), A() =0

for all 1 € KP(a), we set Q(\)y := E (X, AMK),. Otherwise, let A>¥ € KP(a) be minimal with
Ext]lga (E(X\, AV5), A(N2K)) #£ 0. Note that A>F > X and A2F #£ ALK, Let

E\ NN NEE = BB, AR ANZE)).
By construction, we have
EAE N = AN | ree(@) A | rop(q) AN,

where .
rae(g) = dg Bty (B, AY), AOS)).

If Extyy (E(A AN A25) A(u)) = 0 for all € KP(a), we set
QN := E(\, AVE \2E),

Since in each step we have to pick Ab* > X\, which does not belong to {\, A< ... X=LkL
the process will stop after finitely many steps, and we will obtain an indecomposable module

B X5, = A | L@ AN |- | P (@) AT,

where

B _
reg(q) = dg " Extyy,  (BOLAME AT ANy (4.25)
for all 1 <t < my, such that
Extir (B ™), A(u)) = 0

for all 4 € KP (). We set
QN := B AME, L Xk,
THEOREM 4.26. Let o € QT and X € KP(«).

(i) Fork = K or F, we have Q(\)kx = P(\)k.
(ii) For k = K or F, the Laurent polynomial r:x(q) from (4.25) equals the decomposition

number dﬂ;t,k7/\ for all 1 <t < my, and d“;/\ =0 for p & (N 1<t <myl
(iii) We have mpr = my; setting m := mpg, we may choose \bf = ALK \mF — \xmK - anq

then 1y r(q) = ri,x(q) for all 1 <t < m.
(iV) We have Q()\)R ®p K = P()\)K

Proof. Property (i) follows from the construction and Lemma 4.18. Assertion (ii) follows from
(i), the construction, and Theorem 2.8(v).

To prove (iii) and (iv), we show by induction on ¢ = 0,1,.. ., that we can choose Abf = \bK
7,r(q) = ¢,k (q) and
ENAYE N pop K 2= EOAYE LX) (4.27)
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The induction base is simply the statement A(A)rp ®r K = A(N)g. For the induction step,
assume t > 0 and that the claim has been proved for all s < ¢.
Let &1.R, .., &rr be a minimal set of generators of the Byi,r p-module

Extp (B AR, X g AN R),
so that

re,r(q) = deg(§1,r) + -+ - + deg (&, R)-

Using Corollary 4.15 and the universal coefficient theorem, we deduce that A% can be chosen
to be A"* and the By g-module

Ext! (AN, AN)R) @r K = Ext' (Ve @r K, AN"")k)

is minimally generated by & r®1k, ..., & r® 1k, so that ry x(q) = r¢ r(q). Finally, (4.27) comes
from Lemma 4.2. O

In view of Theorem 4.26(i), Q(\)g is not in general an R-form of Q(\)r = P(\)p. For every
X € KP(«), define the H, p-module

X\ =QNr® F.

THEOREM 4.28. The James conjecture has positive solution for « if and only if one of the
following equivalent conditions holds:

(i) X (M) is projective;

(il) X(\) =2 P(\)F for all X € KP(«);

(iii) ExtH (X (A), A(p)p) =0 for all A, u € KP(a);

(iv) the R-module ExtH Q@A) R, A(p)R) is torsion-free for all A, i € KP(a).

Proof. Conditions (i) and (ii) are equivalent by an argument involving formal characters and
Lemma 4.8. Furthermore, (i) and (iii) are equivalent by Lemma 4.18. Since Ext}{aR(Q()\)R,
A(p)r) = 0 for all p, (iii) is equivalent to (iv) by the universal coefficient theorem. ’

We now prove that (ii) is equivalent to the James conjecture having positive solution. If
X(A) =2 P(AN)F for all A, then they have the same graded dimension, so the R-modules Q(\)r
and P(\)g have the same graded R-rank, and hence the K-modules P(\)x = Q(\) g ®r K and
P(A\)r ®gr K have the same graded dimension; therefore P(A\)gr ®@r K = P(\)k for all A (see
Lemma 4.8), and so the James conjecture has positive solution.

Conversely, assume that the James conjecture has positive solution. This means that
df,A = diA for all pu, A € KP(a). Then, by Theorem 4.26(ii), in every step of our universal
extension process, we will have the same dimension of the Ext'-group over K and F; so, by
Theorem 4.26(iii), in every step of our universal extension process, we are also going to have the
same rank of the appropriate Ext!-groups over R and F. Now use Lemma 4.2 as in the proof of
Theorem 4.26(iv) to show that Q(A\)r ®r F = P(\)p. O

Remark 4.29. We conjecture that P(A\)p has an X-filtration with the top quotient X (\) and

X(p) appearing a, x(q) times. On the level of Grothendieck groups, this is true thanks to
Lemma 4.8. But it seems not obvious even that X (\) is a quotient of P(\) .
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