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Abstract

Khovanov–Lauda–Rouquier (KLR) algebras of finite Lie type come with families
of standard modules, which under the Khovanov–Lauda–Rouquier categorification
correspond to PBW bases of the positive part of the corresponding quantized enveloping
algebra. We show that there are no non-zero homomorphisms between distinct standard
modules and that all non-zero endomorphisms of a standard module are injective.
We present applications to the extensions between standard modules and modular
representation theory of KLR algebras.

1. Introduction

Let g be a complex finite-dimensional simple Lie algebra and U+
q (g) the positive part of the

quantized enveloping algebra of g. The algebra U+
q (g) is Q+-graded, where Q+ is the non-negative

part of the corresponding root lattice. On the other hand, to every α ∈ Q+ and a commutative
unital ground ring k, Khovanov, Lauda and Rouquier associate an infinite-dimensional associative
unital graded k-algebra Hα. Then an informal statement of the Khovanov–Lauda–Rouquier
categorification theorem [KL09, KL11, Rou08, Rou12] is that representation theory of the KLR
algebras Hα categorifies U+

q (g) as a twisted bialgebra. This is important because, for example, it
sheds new light on various interesting bases of U+

q (g), such as canonical and dual canonical bases
as well as PBW bases. The categorification is our first motivation for studying KLR algebras.

Our second motivation comes from the results of [BK09a, BK09b, BKW11, Rou08],
which reveal deep connections between KLR algebras and classical representation theory of
various Hecke algebras. These connections are especially important for modular representation
theory and, more specifically, questions related to reduction modulo p (although in modular
representation theory we are most interested in KLR algebras of affine Lie type A). This paper
touches upon both aspects of interest of KLR algebras described above.

KLR algebras of finite Lie type possess affine quasi-hereditary structures [Kat14, BKM14,
KLM13, KL15, KX12, Kle15b]. In particular, they come with important families of modules
which are called standard. Under the Khovanov–Lauda–Rouquier categorification, standard
modules correspond to PBW monomials in U+

q (g); see [BKM14, Kat14].
Affine quasihereditary structures are parametrized by convex orders on the sets of positive

roots of the corresponding root systems. In this paper we work with an arbitrary convex order
and an arbitrary finite Lie type. When working with the KLR algebra Hα for any α ∈ Q+, the
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standard modules ∆(λ) are labeled by λ ∈ KP(α), where KP(α) is the set of Kostant partitions
of α. With these conventions, our main result is the following.

Theorem A. Let α ∈ Q+ and λ, µ ∈ KP(α). If λ 6= µ, then

HomHα(∆(λ),∆(µ)) = 0.

When λ 66 µ, it is clear that HomHα(∆(λ),∆(µ)) = 0, but for λ < µ we found this fact
surprising. Theorem A is proved in § 3.

The case of λ = µ is also well understood. In fact, the endomorphism algebras of the standard
modules are naturally isomorphic to certain algebras of symmetric functions; see Theorem 2.17.
Now, Theorem A can be complemented by the following (folklore) observation and compared
with the main result of [BCGM11].

Theorem B. Let α ∈ Q+ and λ ∈ KP(α). Then every non-zero Hα-endomorphism of ∆(λ) is
injective.

For the reader’s convenience, we prove Theorem B in § 2.3.
Theorem A turns out to have some applications to modular representation theory of KLR

algebras, which are pursued in § 4. Note that KLR algebras are defined over an arbitrary
commutative unital ground ring k, and when we wish to emphasize this fact, we use the notation
Hα,k. Using the p-modular system (F,R,K) with F = Z/pZ, R = Zp and K = Qp, we can
reduce modulo p any irreducible Hα,K-module. An important problem is to determine when these
reductions remain irreducible; see [KR11, Wil14]. This problem can be reduced to homological
questions involving standard modules.

In § 4, we show that standard modules have universal R-forms ∆(λ)R such that ∆(λ)R⊗Rk ∼=
∆(λ)k for any field k. Then (denoting graded dimension by dimq) an application of the universal
coefficient theorem and Theorem A yields the following result.

Theorem C. Let α ∈ Q+ and λ, µ ∈ KP(α). Then the R-module

Ext1Hα,R(∆(λ)R,∆(µ)R)

is torsion-free. Moreover,

dimq Ext1Hα,F (∆(λ)F ,∆(µ)F ) = dimq Ext1Hα,K (∆(λ)K ,∆(µ)K)

if and only if the R-module Ext2Hα,R(∆(λ)R,∆(µ)R) is torsion-free.

As a final application, using a universal extension procedure, we construct R-forms Q(λ)R
of the projective indecomposable modules P (λ)K and prove the following theorem.

Theorem D. Let α ∈ Q+. Then reductions modulo p of all irreducible Hα,K-modules are
irreducible if and only if one of the following equivalent conditions holds:

(i) Q(λ)R ⊗R F is a projective Hα,F -module for all λ ∈ KP(α);

(ii) Ext1Hα,F (Q(λ)R ⊗R F,∆(µ)F ) = 0 for all λ, µ ∈ KP(α);

(iii) the R-module Ext2Hα,R(Q(λ)R,∆(µ)R) is torsion-free for all λ, µ ∈ KP(α).
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2. Preliminaries

2.1 KLR algebras
We follow closely the set-up of [BKM14]. In particular, Φ is an irreducible root system with simple
roots {αi | i ∈ I} and Φ+ is the corresponding set of positive roots. Denote by Q the root lattice
and by Q+ ⊂ Q the set of Z>0-linear combinations of simple roots, and write ht(α) =

∑
i∈I ci

for α =
∑

i∈I ciαi ∈ Q+. The standard symmetric bilinear form Q × Q → Z, (α, β) 7→ α · β
is normalized so that di := (αi · αi)/2 is equal to 1 for the short simple roots αi. We also set
dβ := (β · β)/2 for all β ∈ Φ+. The Cartan matrix is C = (ci,j)i,j∈I with ci,j := (αi · αj)/di.

Fix a commutative unital ring k and an element α ∈ Q+ of height n. The symmetric group
Sn with simple transpositions sr := (r r + 1) acts on the set

Iα :=

{
i = i1 · · · in ∈ In

∣∣∣∣ n∑
j=1

αij = α

}
on the left by place permutations. Choose signs εi,j for all i, j ∈ I with cij < 0 so that εi,jεj,i = −1.
With this data, Khovanov and Lauda [KL09, KL11] and Rouquier [Rou08] define the k-algebra
Hα with unit 1α, called the KLR algebra, given by generators

{1i | i ∈ Iα} ∪ {x1, . . . , xn} ∪ {τ1, . . . , τn−1}
subject only to the following relations:
• xrxs = xsxr;
• 1i1j = δi,j1i and

∑
i∈Iα 1i = 1α;

• xr1i = 1ixr and τr1i = 1sr·iτr;
• (xtτr − τrxsr(t))1i = δir,ir+1(δt,r+1 − δt,r)1i;

• τ2r 1i =


0 if ir = ir+1,

εir,ir+1(xr
−cir,ir+1 − xr+1

−cir+1,ir )1i if cir,ir+1 < 0,

1i otherwise;
• τrτs = τsτr if |r − s| > 1;

• (τr+1τrτr+1 − τrτr+1τr)1i =


∑

a+b=−1−cir,ir+1

εir,ir+1x
a
rx

b
r+21i if cir,ir+1 < 0 and ir = ir+2,

0 otherwise.

The KLR algebra is graded with deg 1i = 0, deg(xr1i) = 2dir and deg(τr1i) = −αir · αir+1 .
For each element w ∈ Sn, fix a reduced decomposition w = sr1 · · · srl and set τw = τr1 · · · τrl ∈

Hα (this element depends in general on the choice of reduced decomposition).

Theorem 2.1 (Basis theorem [KL09, Theorem 2.5]). The sets

{τwxa11 · · ·x
an
n 1i} and {xa11 · · ·x

an
n τw1i}, (2.2)

with w running over Sn, ar running over Z>0 and i running over Iα, are k-bases for Hα.

It follows that Hα is Noetherian if k is, which we shall always assume from now on. It also
follows that for any 1 6 r 6 n, the subalgebra k[xr] ⊆ Hα generated by xr is isomorphic to the
polynomial algebra k[x]; this fact will be used often without further comment. Moreover, for
each i ∈ Iα, the subalgebra P(i) ⊆ 1iHα1i generated by {xr1i | 1 6 r 6 n} is isomorphic to a
polynomial algebra in n variables. By defining Pα :=

⊕
i∈Iα P(i), we obtain a linear action of

Sn on Pα given by
w · xa11 · · ·x

an
n 1i = xa1w(1) · · ·x

an
w(n)1w·i

for any w ∈ Sn, i ∈ Iα and a1, . . . , an ∈ Z>0. Setting Λ(α) := PSnα , we have the following result.
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Theorem 2.3 [KL09, Theorem 2.9]. Λ(α) is the center of Hα.

Let k be Noetherian. If H is a Noetherian graded k-algebra, we denote by H-mod the category
of finitely generated graded left H-modules. The morphisms in this category are all homogeneous
degree-zero H-homomorphisms, which we denote by homH(−,−). For V ∈ H-mod, let qdV
denote its grading shift by d, so if Vm is the degree-m component of V , then (qdV )m = Vm−d.
More generally, for a Laurent polynomial a = a(q) =

∑
d adq

d ∈ Z[q, q−1] with non-negative
coefficients, we set aV :=

⊕
d(q

dV )⊕ad .
For U, V ∈ H-mod, we set HomH(U, V ) :=

⊕
d∈Z HomH(U, V )d, where

HomH(U, V )d := homH(qdU, V ) = homH(U, q−dV ).

We define extmH(U, V ) and ExtmH(U, V ) similarly. Since U is finitely generated, HomH(U, V ) can
be identified in the obvious way with the set of all H-module homomorphisms ignoring the
gradings. A similar result holds for ExtmH(U, V ), since U has a resolution by finitely generated
projective modules. We use ∼= to denote an isomorphism in H-mod and ' an isomorphism up
to a degree shift, i.e. V 'W if and only if V ∼= qnW for some n ∈ Z.

Let q be a variable, and let Z((q)) be the ring of Laurent series. The quantum integers
[n] = (qn − q−n)/(q − q−1) and expressions like 1/(1− q2) are always interpreted as elements of
Z((q)).

From now on until the end of § 3, we assume that k is a field. A graded k-vector space
V =

⊕
m∈Z Vm is said to be Laurentian if the graded components Vm are finite dimensional for

all m ∈ Z and Vm = 0 for m� 0. The graded dimension of a Laurentian vector space V is

dimq V :=
∑
m∈Z

(dimVm)qm ∈ Z((q)).

We always work in the category Hα-mod. Note that Hα is Laurentian as a vector space;
therefore so is any V ∈ Hα-mod, and then so are all 1iV for i ∈ Iα. The formal character of
V ∈ Hα-mod is an element of

⊕
i∈Iα Z((q)) · i defined as

chq V :=
∑
i∈Iα

(dimq 1iV ) · i.

Note that chq (qdV ) = qdchq (V ), where the first qd means the degree shift. We refer to 1iV as
the i-weight space of V and to its vectors as vectors of weight i.

There is an anti-automorphism ι : Hα → Hα which fixes all the generators. Given V ∈
Hα-mod, we let

V ~ := Homk(V,k),

viewed as a left Hα-module via ι. Note that in general V ~ is not finitely generated as an
Hα-module, but we will apply ~ only to finite-dimensional modules. In that case, we have
chq V

~ = chq V , where the bar means the bar-involution, i.e. the automorphism of Z[q, q−1] that
swaps q and q−1 extended to

⊕
i∈Iα Z[q, q−1] · i.

Let β1, . . . , βm ∈ Q+ and α = β1 + · · ·+ βm. Consider the set of concatenations

Iβ1,...,βm := {i1 · · · im | i1 ∈ Iβ1 , . . . , im ∈ Iβm} ⊆ Iα.

There is a natural (non-unital) algebra embedding Hβ1 ⊗ · · ·⊗Hβm → Hα, which sends the unit
1β1 ⊗ · · · ⊗ 1βm to the idempotent

1β1,...,βm :=
∑

i∈Iβ1,...,βm
1i ∈ Hα. (2.4)
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We have an exact induction functor

Indαβ1,...,βm = Hα1β1,...,βm ⊗Hβ1⊗···⊗Hβm − : (Hβ1 ⊗ · · · ⊗Hβm)-mod→ Hα-mod.

For V1 ∈Hβ1-mod, . . . , Vm ∈Hβm-mod, we denote by V1� · · ·�Vm the vector space V1⊗· · ·⊗Vm,
considered naturally as an (Hβ1 ⊗ · · · ⊗Hβm)-module, and set

V1 ◦ · · · ◦ Vm := Indαβ1,...,βmV1 � · · ·� Vm.

2.2 Standard modules
The KLR algebras Hα are known to be affine quasihereditary in the sense of [Kle15b]; see [Kat14,
BKM14, KL15]. Central to this theory is the notion of standard modules, whose definition depends
on the choice of a certain partial order. We first fix a convex order on Φ+, i.e. a total order such
that whenever γ, β and γ + β all belong to Φ+, γ 6 β implies γ 6 γ + β 6 β. By [Pap94], there
is a one-to-one correspondence between convex orders on Φ+ and reduced decompositions of the
longest element in the corresponding Weyl group.

A Kostant partition of α ∈ Q+ is a tuple λ = (λ1, . . . , λr) of positive roots λ1 > λ2 > · · · > λr
such that λ1 + · · · + λr = α. Let KP(α) denote the set of all Kostant partitions of α, and for
λ as above define λ′m = λr−m+1. Now we have a bilexicographical partial order on KP(α), also
denoted by 6, i.e. if λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) ∈ KP(α) then λ < µ if and only if the
following two conditions are satisfied:
• λ1 = µ1, . . . , λl−1 = µl−1 and λl < µl for some l;
• λ′1 = µ′1, . . . , λ

′
m−1 = µ′m−1 and λ′m > µ′m for some m.

To every λ ∈ KP(α), McNamara [Mcn15] (cf. [KR11, Theorem 7.2]) associates an absolutely
irreducible finite-dimensional ~-self-dual Hα-module L(λ) so that {L(λ) | λ ∈ KP(α)} is a
complete irredundant set of irreducible Hα-modules, up to isomorphism and degree shift. Since
L(λ) is ~-self-dual, its formal character is bar-invariant. The key special case is where λ = (α)
for α ∈ Φ+, in which case L(λ) = L(α) is called a cuspidal irreducible module. For m ∈ Z>0,
we write (αm) for the Kostant partition (α, . . . , α) ∈ KP(mα), where α appears m times. The
cuspidal modules have the following nice property.

Lemma 2.5 [Mcn15, Lemma 3.4] (cf. [KR11, Lemma 6.6]). For any α ∈ Φ+ and m ∈ Z>0, we
have L(αm) ' L(α)◦m.

If λ = (λ1, . . . , λr) ∈ KP(α), the reduced standard module is defined to be

∆̄(λ) := qs(λ)L(λ1) ◦ · · · ◦ L(λr) (2.6)

for a specific degree shift s(λ), whose description will not be important. Note that the
Grothendieck group of finite-dimensional graded Hα-modules can be considered as a Z[q, q−1]-
module with q[V ] = [qV ]. By [Mcn15, Theorem 3.1] (cf. [KR11, 7.2, 7.4]), the Hα-module ∆̄(λ)
has simple head L(λ), and in the Grothendieck group we have

[∆̄(λ)] = [L(λ)] +
∑
µ<λ

dλ,µ[L(µ)] (2.7)

for some coefficients dλ,µ ∈ Z[q, q−1], called the (graded) decomposition numbers. The
decomposition numbers depend on the characteristic of the ground field k.
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Let P (λ) denote a projective cover of L(λ) in Hα-mod. For V ∈ Hα-mod we define the
(graded) composition multiplicity

[V : L(λ)]q := dimq Hom(P (λ), V ) ∈ Z((q)).

The standard module ∆(λ) is defined as the largest quotient of P (λ) all of whose composition
factors are of the form L(µ) with µ 6 λ; see [Kat14, Corollary 4.13], [BKM14, Corollary 3.16] and
[Kle15b, (4.2)]. We note that while the irreducible modules L(λ) are all finite dimensional, the
standard modules ∆(λ) are always infinite dimensional. The standard modules have the usual
nice properties.

Theorem 2.8 [BKM14, § 3]. Let α ∈ Q+ and λ, µ ∈ KP(α). Then the following properties hold.

(i) ∆(λ) has simple head L(λ), and [∆(λ) : L(µ)]q 6= 0 implies µ 6 λ.

(ii) We have HomHα(∆(λ),∆(µ)) = 0 unless λ 6 µ.

(iii) For m > 1, we have ExtmHα(∆(λ),∆(µ)) = 0 unless λ < µ.

(iv) The module P (λ) has a finite filtration P (λ) = P0 ⊃ P1 ⊃ · · · ⊃ PN = 0 such that P0/P1
∼=

∆(λ), and for r = 1, 2, . . . , N − 1 we have Pr/Pr+1 ' ∆(µ(r)) for some µ(r) > λ.

(v) Denoting the graded multiplicities of the factors in a ∆-filtration of P (λ) by (P (λ) : ∆(µ))q,
we have (P (λ) : ∆(µ))q = dµ,λ(q).

To construct the standard modules more explicitly, let us first assume that α ∈ Φ+ and
explain how to construct the cuspidal standard module ∆(α). Put

qα := qα·α/2.

By [BKM14, Lemma 3.2], for each n ∈ Z>0 there exists a unique, up to isomorphism,
indecomposable Hα-module ∆n(α) such that there are short exact sequences

0→ q2(n−1)α L(α)→ ∆n(α)→ ∆n−1(α)→ 0,

0→ q2α∆n−1(α)→ ∆n(α)→ L(α)→ 0,

where we are using the convention that ∆0(α) = 0. This yields an inverse system

· · ·→ ∆2(α)→ ∆1(α)→ ∆0(α),

and we have ∆(α) ∼= lim
←−∆n(α); see [BKM14, Corollary 3.16].

Let m ∈ Z>0. An explicit endomorphism em ∈ EndHmα(∆(α)◦m)op is defined in [BKM14,
§ 3.2], and then

∆(αm) ∼= qm(m−1)/2
α ∆(α)◦mem. (2.9)

Finally, for an arbitrary α ∈ Q+ and λ ∈ KP(α), gather together the equal parts of λ to write
λ = (λm1

1 , . . . , λmss ), with λ1 > · · · > λs. Then, by [BKM14, (3.5)],

∆(λ) ∼= ∆(λm1
1 ) ◦ · · · ◦∆(λmss ). (2.10)

Thus, cuspidal standard modules are building blocks for arbitrary standard modules. We will
need some of their additional properties. Let α ∈ Φ+. If λ ∈ KP(α) is minimal such that λ > (α),
then by [BKM14, Lemma 2.6], λ = (β, γ) for positive roots β > α > γ. In this case, (β, γ) is
called a minimal pair for α and we write mp(α) for the set of all such pairs. The following result
proved in [BKM14, §§ 3.1 and 4.3] describes some of the important properties of ∆(α).
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Theorem 2.11. Let α ∈ Φ+. Then the following properties hold.

(i) [∆(α) : L(α)]q = 1/(1− q2α) and [∆(α) : L(λ)]q = 0 for λ 6= (α).

(ii) Let Cα be the category of all modules in Hα-mod all of whose composition factors are
' L(α). Any V ∈Cα is a finite direct sum of copies of the indecomposable modules '∆n(α)
and '∆(α). Moreover, ∆(α) is a projective cover of L(α) in Cα. Furthermore, ExtmHα(∆(α),
V ) = 0 for m > 1 and V ∈ Cα.

(iii) EndHα(∆(α)) ∼= k[x] for x in degree 2dα.

(iv) There is a short exact sequence 0→ q2α∆(α)→ ∆(α)→ L(α)→ 0.

(v) For (β, γ) ∈ mp(α) there is a short exact sequence

0→ q−β·γ∆(β) ◦∆(γ)
ϕ−→ ∆(γ) ◦∆(β)→ [pβ,γ + 1]∆(α)→ 0,

where pβ,γ is the largest integer p such that β − pγ is a root.

Corollary 2.12. Let α ∈ Φ+. The dimensions of the graded components ∆(α)d are bounded
above by some N > 0 independent of d, and are zero for d� 0.

Proof. By Theorem 2.11(i), we have dimq ∆(α) = (dimq L(α))/(1− q2α), which implies the result
since L(α) is finite dimensional. 2

2.3 Endomorphisms of standard modules
We shall denote by xα the degree-2dα endomorphism of ∆(α) which corresponds to x under the
algebra isomorphism EndHα(∆(α)) ∼= k[x] in Theorem 2.11(iii).

Lemma 2.13. Let α ∈ Φ+. Then every non-zero Hα-endomorphism of ∆(α) is injective, and
every submodule of ∆(α) is equal to xsα(∆(α)) ∼= q2sα ∆(α) for some s ∈ Z>0.

Proof. It follows from the construction of xα in [BKM14, Theorem 3.3] that xα is injective and
xα(∆(α)) ∼= q2α∆(α). This in particular implies the first statement.

Let V ⊆ ∆(α) be a submodule and f : V → ∆(α) the natural inclusion. First, assume that
V is indecomposable. By Theorem 2.11(ii), up to degree shift, V is isomorphic to ∆(α) or ∆n(α)
for some n > 1. If V ' ∆n(α) then ∆(α)/V is infinite dimensional and has simple head, so by
Theorem 2.11(ii) again, ∆(α)/V ' ∆(α). Then the short exact sequence

0→ V → ∆(α)→ ∆(α)/V → 0

splits by projectivity in Theorem 2.11(ii), contradicting indecomposability of ∆(α). If instead
V ' ∆(α), consider the composition

∆(α)
∼−→ V

f−→ ∆(α).

This produces a graded endomorphism of ∆(α), so that V = xsα(∆(α)) for some s > 0. Since
there are inclusions ∆(α) ⊃ xα∆(α) ⊃ x2α∆(α) ⊃ · · · , the general case follows from the case
where V is indecomposable. 2

Again let α ∈ Φ+. We next consider the standard modules of the form ∆(αm). By
functoriality, the endomorphism id⊗(r−1) ⊗ xα ⊗ id⊗(m−r) of the H⊗mα -module ∆(α)�m induces
an endomorphism Xr of the Hmα-module ∆(α)◦m. The endomorphisms

X1, . . . , Xm ∈ EndHmα(∆(α)◦m)
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commute. Moreover, in [BKM14, § 3.2], some additional endomorphisms ∂1, . . . , ∂m−1 ∈
EndHmα(∆(α)◦m) are constructed, and it is proved in [BKM14, Lemmas 3.7–3.9] that the
algebra EndHmα(∆(α)◦m)op is isomorphic to the nil-Hecke algebra NHm, with ∂1, . . . , ∂m−1
and (appropriately scaled) X1, . . . , Xm corresponding to the standard generators of NHm. The
element em used in (2.9) is an explicit idempotent in NHm. Consider the algebra of symmetric
functions

Λα,m := k[X1, . . . , Xm]Sm = Z(NHm),

with the variables Xr in degree 2dα. Note that dimq Λα,m = 1/
∏m
r=1(1− q2rα ). It is known (see,

e.g., [KLM13, Theorem 4.4(iii)]) that

emNHmem = emΛα,m ∼= Λα,m. (2.14)

Theorem 2.15. Let α ∈ Φ+ and m ∈ Z>0. Then the following properties hold.

(i) For any λ ∈ KP(mα), we have [∆(αm) : L(λ)]q = δλ,(αm)/
∏m
r=1(1− q2rα ).

(ii) The module ∆(αm) is a projective cover of L(αm) in the category of all modules in Hα-mod
all of whose composition factors are ' L(αm).

(iii) EndHα(∆(αm)) ∼= Λα,m.

(iv) Every submodule of ∆(αm) is isomorphic to qd∆(αm) for some d ∈ Z>0, and every non-zero
Hmα-endomorphism of ∆(αm) is injective.

Proof. Assertion (i) is [BKM14, Lemma 3.10], and (ii) follows from [Kle15b, Lemma 4.11], since
(αm) is minimal in KP(α) by convexity. By (i) and (ii), we have that dimq EndHmα(∆(αm)) =
1/
∏m
r=1(1− q2rα ).

(iii) We have that NHm = EndHmα(∆(α)◦m)op acts naturally on ∆(α)◦m on the right, and
so Λα,m = Z(NHm) acts naturally on ∆(αm) = ∆(α)◦mem. This defines an embedding Λα,m→
EndHmα(∆(αm)). This embedding must be an isomorphism because of the dimensions.

(iv) In view of Lemma 2.13, every non-zero

f ∈ k[X1, . . . , Xm] ⊆ NHm = EndHmα(∆(α)◦m)op

acts as an injective linear operator on ∆(α)◦m. The result now follows from (2.14) and (ii). 2

Finally, we consider a general case. Let α ∈ Q+ and λ = (λm1
1 , . . . , λmss ) ∈ KP(α) with

λ1 > · · · > λs. By functoriality of induction, we have a natural embedding

Λλ1,m1 ⊗ · · · ⊗ Λλs,ms → EndHα(∆(λ)), f1 ⊗ · · · ⊗ fs 7→ f1 ◦ · · · ◦ fs. (2.16)

Theorem 2.17. Let α ∈ Q+ and λ = (λm1
1 , . . . , λmss ) ∈ KP(α) with λ1 > · · · > λs. Then

EndHα(∆(λ)) ∼= Λλ1,m1 ⊗ · · · ⊗ Λλs,ms

via (2.16), and every non-zero Hα-endomorphism of ∆(λ) is injective.

Proof. It is easy to see from Theorem 2.15(iv) that every non-zero endomorphism in the image
of the embedding (2.16) is injective. To see that there are no other endomorphisms, we first use
adjointness of End and Res to show that EndHα(∆(λ)) is isomorphic to

HomHm1λ1
⊗···⊗Hmsλs (∆(λm1

1 )� · · ·�∆(λmss ),Resαm1λ1,...,msλs∆(λ)),

and then note that by the Mackey theorem, as in [Mcn15, Lemma 3.3] for instance, we have
Resαm1λ1,...,msλs

∆(λ) ∼= ∆(λm1
1 )� · · ·�∆(λmss ). 2
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3. Proof of Theorem A

We give a proof of Theorem A based on the recent work of Kashiwara and Park [KP15]. Our
original proof was different and relied on some unpleasant computations for non-simply laced
types. For simply laced types, however, our original proof is very simple and elementary, so we
give it later in this section, too.

3.1 Proof of Theorem A modulo a hypothesis
The following hypothesis concerns a fundamental property of cuspidal standard modules and is
probably true beyond finite Lie types.

Hypothesis 3.1. Let α be a positive root of height n and let 1 6 r 6 n. Then upon restriction
to the subalgebra k[xr] ⊆ Hα, the module ∆(α) is free of finite rank.

The goal of this subsection is to prove Theorem A assuming the hypothesis. In § 3.2 the
hypothesis will be proved using results of Kashiwara and Park, while in § 3.3 we will give a more
elementary proof for simply laced types.

Lemma 3.2. Hypothesis 3.1 is equivalent to the property that x1, . . . , xn act by injective linear
operators on ∆(α).

Proof. The forward direction is clear. For the converse, assume that xr acts injectively on ∆(α).
We construct a finite basis for 1i∆(α) as a k[xr]-module for every i ∈ Iα. Let m := deg(xr1i).
For every a = 0, 1, . . . ,m−1, let da be a minimal integer with da ≡ a (modm) and 1i∆(α)da 6= 0.
Pick a linear basis of

⊕m−1
a=0 1i∆(α)da and note that the k[xr]-module generated by the elements

of this basis is free. Factor out this k[xr]-submodule, and repeat. The process will stop after
finitely many steps, thanks to Corollary 2.12. 2

While Hypothesis 3.1 claims that every k[xr] acts freely on ∆(α), no k[xr, xs] does.

Lemma 3.3. Let α ∈ Φ+ be a root of height n > 1. Then, for every vector v ∈ ∆(α) and distinct
r, s ∈ {1, . . . , n}, there is a non-zero polynomial f ∈ k[x, y] such that f(xr, xs)v = 0.

Proof. We may assume that v is a homogenous weight vector. By Corollary 2.12, the dimensions
of the graded components of ∆(α) are uniformly bounded. The result then follows, as the number
of linearly independent degree-d monomials in x and y grows without bound. 2

One can say more about the polynomial f in the lemma; see, for example, Proposition 3.14.
Now let α ∈ Q+ be arbitrary of height n, and let λ = (λ1 > · · · > λl) ∈ KP(α). Setting

Sλ := Sht(λ1) × · · · × Sht(λl) ⊂ Sn,

integers r, s ∈ {1, . . . , n} are said to be λ-equivalent, written r ∼λ s, if they belong to the same
orbit of the action of Sλ on {1, . . . , n}. Finally, recalling the idempotents (2.4), we set

1λ := 1λ1,...,λl .

Lemma 3.4. Let α ∈ Q+ and n = ht(α), and let λ 6> µ be elements of KP(α). If w ∈ Sn satisfies
1λτw1µ 6= 0, then there exists some 1 6 r < n such that r ∼λ r + 1 but w−1(r) 6∼µ w−1(r + 1).
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Proof. Write λ = (λ1 > · · · > λl) and µ = (µ1 > · · · > µm). The assumption 1λτw1µ 6= 0 implies
that iλ = w · iµ for some iλ ∈ Iλ1,...,λl and iµ ∈ Iµ1,...,µm . Write iλ := iλ1 · · · iλl with iλa ∈ Iλa
for all a, and iµ := iµ1 · · · i

µ
m with iµb ∈ I

µb for all b. Assume for a contradiction that for every
1 6 r < n we have that r ∼λ r + 1 implies w−1(r) ∼µ w−1(r + 1). Then there is a partition
{1, . . . , l} =

⊔m
b=1Ab such that µb =

∑
a∈Ab λa for all b = 1, . . . ,m. By convexity (cf. [BKM14,

Lemma 2.4]), we have

min{λa | a ∈ Ab} 6 µb 6 max{λa | a ∈ Ab}.

This implies λ > µ. 2

Theorem 3.5. Let α ∈ Q+ and λ, µ ∈ KP(α). If λ 6= µ, then

HomHα(∆(λ),∆(µ)) = 0.

Proof. Let n = ht(α) and write λ = (λ1 > · · · > λl) and µ = (µ1 > · · · > µm). It suffices to prove
that

HomHα(∆(λ1) ◦ · · · ◦∆(λl),∆(µ1) ◦ · · · ◦∆(µm)) = 0.

Suppose not, and let ϕ be a non-zero homomorphism. By Theorem 2.8(ii), we may assume that
λ < µ. Using Lemma 3.3, pick a generator v ∈ ∆(λ1) ◦ · · · ◦ ∆(λl) such that v = 1λv and,
for any r ∼λ r + 1, there is a non-zero polynomial f ∈ k[x, y] with f(xr, xr+1)v = 0. Then
f(xr, xr+1)ϕ(v) = 0 as well.

Denote by Sµ the set of shortest-length coset representatives for Sn/Sµ. Then we can write
ϕ(v) =

∑
w∈Sµ τw⊗ vw for some vw ∈ ∆(µ1)⊗· · ·⊗∆(µm). Since ϕ(v) = 1λϕ(v) and 1µvw = vw,

we have that 1λτw1µ 6= 0 whenever vw 6= 0. In particular, if u ∈ Sµ is an element of maximal
length such that vu 6= 0, then by Lemma 3.4 we have r ∼λ r + 1 and u−1(r) 6∼µ u−1(r + 1) for
some 1 6 r < n.

Now we have

f(xr, xr+1)ϕ(v) = f(xr, xr+1)
∑
w∈Sµ

τw ⊗ vw

= f(xr, xr+1)τu ⊗ vu +
∑
w 6=u

f(xr, xr+1)τw ⊗ vw

= τu ⊗ f(xu−1(r), xu−1(r+1))vu + (∗),

where (∗) is a sum of elements of the form τw ⊗ v′w with v′w ∈ ∆(µ1) ⊗ · · · ⊗ ∆(µm) and w ∈
Sµ\{u}. The last equality holds because in Hα, for all 1 6 t 6 n and w ∈ Sn we have that
xtτw = τwxw−1(t) + (∗∗), where (∗∗) is a linear combination of elements of the form τy with
y ∈ Sn being Bruhat smaller than w.

Since u−1(r) 6∼µ u−1(r+ 1), there are distinct integers a, b ∈ {1, . . . ,m} and integers 1 6 c 6
ht(µa) and 1 6 d 6 ht(µb) such that for any pure tensor v = v1⊗· · ·⊗vm ∈ ∆(µ1)⊗· · ·⊗∆(µm)
and any s, t ∈ Z>0, we have

xsu−1(r)x
t
u−1(r+1)v = v1 ⊗ · · · ⊗ xscva ⊗ · · · ⊗ xtdvb ⊗ · · · ⊗ vm.

By Hypothesis 3.1, f(xu−1(r), xu−1(r+1))vu 6= 0. Hence f(xr, xr+1)ϕ(v) 6= 0, which gives a
contradiction. 2
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3.2 Proof of Hypothesis 3.1 using the Kashiwara–Park lemma
We begin with a key lemma which follows immediately from the results of [KP15].

Lemma 3.6. Let α ∈ Φ+, n = ht(α) and i ∈ I. Define

pi,α :=
∑
i∈Iα

( ∏
r∈[1,n],ir=i

xr

)
1i.

Then pi,α∆(α) 6= 0.

Proof. This follows from [KP15, Definition 2.2(b)] and [KP15, Proposition 3.5]. 2

Theorem 3.7. Let α ∈ Φ+ have height n. Then xmr v 6= 0 for all 1 6 r 6 n, m ∈ Z>0 and non-zero
v ∈ ∆(α). In particular, Hypothesis 3.1 holds.

Proof. The ‘in particular’ statement follows from Lemma 3.2.
We may assume that v is a weight vector of some weight i. Let i = ir. The element pi,α defined

in Lemma 3.6 is central by Theorem 2.3. By Lemma 3.6 and Theorem 2.17, the multiplication
with pi,α on ∆(α) is injective, so multiplication with pmi,α is also injective. But pi,α involves xr1i,
so 0 6= pmi,αv = hxmr v for some h ∈ Hα, and the theorem follows. 2

3.3 Elementary proof of Hypothesis 3.1 for simply laced types
Throughout this subsection, we assume that the root system Φ is of (finite) ADE type. Let
α = a1α1 + · · · + alαl ∈ Q+ and n = ht(α) = a1 + · · · + al. Pick a permutation (i1, . . . , il) of
(1, . . . , l) with ai1 > 0, and define i := i

ai1
1 · · · i

ail
l ∈ Iα. Then the stabilizer of i in Sn is the

standard parabolic subgroup

Si := Sai1 × · · · × Sail .

Let Si be a set of coset representatives for Sn/Si. Then by Theorem 2.3, the element

z = zi :=
∑
w∈Si

(xw(1) + · · ·+ xw(ai1 ))1w·i (3.8)

is central of degree 2 in Hα. For any 1 6 r 6 n, note that

ai1xr = z −
∑
w∈Si

((xw(1) − xr) + · · ·+ (xw(ai1 ) − xr))1w·i. (3.9)

Let H ′α be the subalgebra of Hα generated by

{1i | i ∈ Iα} ∪ {τr | 1 6 r < n} ∪ {xr − xr+1 | 1 6 r < n}.

For the reader’s convenience, we reprove a result from [BK12, Lemma 3.1].

Lemma 3.10. Let α, i and z be as above. Then:

(i) {(x1 − x2)m1 · · · (xn−1 − xn)mn−1τw1i | mr ∈ Z>0, w ∈ Sn, i ∈ Iα} is a basis for H ′α;

(ii) if ai1 · 1k 6= 0 in k, then there is an algebra isomorphism

Hα
∼= H ′α ⊗ k[z]. (3.11)
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Proof. In view of the basis (2.2), assertion (i) follows upon checking that the span of the given

monomials is closed under multiplication, which follows from the defining relations. For (ii), note

by using (3.9) that the natural multiplication map k[z]⊗H ′α → Hα is surjective. It remains to

observe that the two algebras have the same graded dimension. 2

Now let α be a positive root. Then one can always find an index i1 with ai1 · 1k 6= 0, so in

this case we always have (3.11) for an appropriate choice of i. We always assume that this choice

has been made. Following [BK12], we can now present another useful description of the cuspidal

standard module ∆(α). Denote by L′(α) the restriction of the cuspidal irreducible module L(α)

from Hα to H ′α.

Lemma 3.12. Let α ∈ Φ+. Then:

(i) L′(α) is an irreducible H ′α-module;

(ii) ∆(α) ∼= Hα ⊗H′α L
′(α);

(iii) the element z acts on ∆(α) freely.

Proof. Note that z acts as zero on L(α), which implies (i) in view of (3.11). Moreover, it is now

easy to see that Hα ⊗H′α L
′(α) has a filtration with the subfactors isomorphic to q2dL(α) for

d = 0, 1, . . . . Furthermore, by Frobenius reciprocity and (i), the module Hα⊗H′αL
′(α) has simple

head L(α). Now (ii) follows from Theorem 2.11(ii). Finally, (iii) follows from (ii) and (3.11). 2

Using the description of ∆(α) from Lemma 3.12(ii), we can now establish Hypothesis 3.1.

Theorem 3.13. Let α ∈ Φ+ and let {v1, . . . , vN} be a k-basis of L′(α). Then the k[xr]-module

∆(α) is free with basis {1⊗ v1, . . . , 1⊗ vN}. In particular, Hypothesis 3.1 holds for simply laced

types.

Proof. By (3.9), we can write xr = (1/ai1)z + (∗), where (∗) is an element of H ′α. For each

1 6 m 6 N , we have

xbr(1⊗ vm) =

(
1

ai1

)b
zb ⊗ vm + (∗∗),

where (∗∗) is a linear combination of terms of the form zc⊗vt with c < b. So {1⊗v1, . . . , 1⊗vN}
is a basis of the free k[xr]-module ∆(α). 2

The following strengthening of Lemma 3.3 is not needed for the proof of Theorem A, but we

include it for completeness.

Proposition 3.14. Let α ∈ Φ+ and n = ht(α). For any 1 6 r, s 6 n, there is d ∈ Z>0 such that

(xr − xs)d annihilates ∆(α).

Proof. Pick d such that (xr − xs)d annihilates L(α). Since ∆(α) = Hα ⊗H′α L
′(α) is spanned by

vectors of the form zm ⊗ v′ with m ∈ Z>0 and v′ ∈ L′(α), it suffices to note that (xr − xs)d
(zm ⊗ v′) = zm ⊗ (xr − xs)dv′ = 0. 2

632

https://doi.org/10.1112/S0010437X16008204 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008204


Homomorphisms between standard modules

4. Reduction modulo p

Let p be a fixed prime number, and let F be the prime field of characteristic p. We will use the
p-modular system (F,R,K) with R = Zp and K = Qp. Note that R/pR = F .

From now on, we will work with different ground rings, so our notation needs to become
more elaborate. Recall that the KLR algebra Hα is defined over an arbitrary commutative unital
ring k, and to emphasize which k we are working with, we will use the notation Hα,k or Hα;k.
In all our notation we will now use the corresponding index.

For example, let k be a field. We now denote the irreducible cuspidal modules over Hα,k by
L(α)k. We now write dimk V for the dimension of a k-vector space V , and dimk

q V for the graded
dimension of a graded k-vector space V .

If V is a finitely generated R-module, we write

dRV := dimR/pR(V/pV ),

which, by Nakayama’s lemma, equals the number of generators in any minimal generating set of
V . If V is a graded R-module with finitely generated graded components Vm such that Vm = 0
for m� 0, we set

dRq V :=
∑
m∈Z

(dRVm)qm ∈ Z((q)).

Let k ∈ {F,R,K}, and let B be a Noetherian connected positively graded k-algebra, so that
B/B>0

∼= k. If V is a finitely generated graded B-module, we define

dBq V := dB/B>0
q (V/B>0V ) ∈ Z[q, q−1].

By Nakayama’s lemma, if {v1, . . . , vr} is a minimal set of homogeneous generators of the
B-module V , then dBq V = qdeg(v1) + · · ·+ qdeg(vr).

4.1 Changing scalars
In this subsection we develop a usual formalism of modular representation theory for KLR
algebras. There will be nothing surprising here, but we need to exercise care since we work with
infinite-dimensional algebras and often with infinite-dimensional modules.

Recall from § 2 that for a left Noetherian graded algebra H, we denote by H-mod the
category of finitely generated graded H-modules, for which we have the groups extiH(V,W ) and
ExtiH(V,W ). To deal with change of scalars in Ext groups, we will use the following version of
the universal coefficient theorem.

Theorem 4.1 (Universal coefficient theorem). Let VR and WR be modules in Hα,R-mod, free
as R-modules, and let k be an R-algebra. Then for every j ∈ Z>0 there is an exact sequence of
(graded) k-modules

0→ ExtjHα,R(VR,WR)⊗R k→ ExtjHα,k(VR ⊗R k,WR ⊗R k)

→ TorR1 (Extj+1
Hα,R

(VR,WR), k)→ 0.

In particular,
ExtjHα,R(VR,WR)⊗R K ∼= ExtjHα,K (VR ⊗R K,WR ⊗R K).

Proof. The standard proof for the ungraded modules works in our setting. First, apply the functor
HomHα,R(−,WR) to a free resolution of VR to get a complex C• of free (graded) R-modules with
finitely many generators in every graded degree. Then follow the proof of [Rot79, Theorem 8.22].
The second statement follows from the first since K is a flat R-module. 2

633

https://doi.org/10.1112/S0010437X16008204 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008204


A. S. Kleshchev and D. J. Steinberg

We need another standard result, whose proof is omitted.

Lemma 4.2. Let k = K or F , let VR,WR ∈ Hα,R-mod be free as R-modules, and let

0→WR
ι−→ ER

π−→ VR→ 0

be the extension corresponding to a class ξ ∈ Ext1Hα,R(VR,WR). Identifying Ext1Hα,R(VR,WR)⊗Rk
with a subgroup of Ext1Hα,k(VR ⊗R k,WR ⊗R k), we have that

0→WR ⊗R k ι⊗idk−−−→ ER ⊗R k π⊗idk−−−→ VR ⊗R k→ 0

is the extension corresponding to a class ξ ⊗ 1k ∈ Ext1Hα,R(VR,WR)⊗R k.

Let k = K or F , and let Vk ∈ Hα,k-mod. We say that VR ∈ Hα,R-mod is an R-form of Vk
if every graded component of VR is free of finite rank as an R-module and, upon identifying
Hα,R ⊗R k with Hα,k, we have VR ⊗R k ∼= Vk as Hα,k-modules. If k = K, by a full lattice in VK
we mean a (graded) R-submodule VR of VK such that every graded component Vd,R of VR is a
finite-rank free R-module which generates the graded component Vd,K as a K-module. If VR is an
Hα,R-invariant full lattice in VK , it is anR-form of VK . Now we can see that every VK ∈Hα,K-mod
has an R-form: pick Hα,K-generators v1, . . . , vr and define VR := Hα,R · v1 + · · ·+Hα,R · v1.

The projective indecomposable modules over Hα,F have projective R-forms. Indeed, any
P (λ)F is of the form Hα,F eλ,F for some degree-zero idempotent eλ,F . By the basis theorem,
the degree-zero component Hα,F,0 of Hα,F is defined over R; more precisely, we have Hα,k,0 =
Hα,R,0⊗R k for k = K or F . Since Hα,F,0 is finite dimensional, by the classical theorem on lifting
idempotents [CR81, (6.7)], there exists an idempotent eλ,R ∈ Hα,R,0 such that eλ,F = eλ,R ⊗ 1F ,
and

P (λ)R := Hα,Reλ,R

is an R-form of P (λ)F . The notation P (λ)R will be reserved for this specific R-form of P (λ)F .
Note that while the Hα,R-module P (λ)R is indecomposable, it is not in general true that
P (λ)R ⊗R K ∼= P (λ)K ; see Lemma 4.8 for more information.

Let VK ∈ Hα,K-mod and let VR be an R-form of VK . The Hα,F -module VR ⊗R F is called a
reduction modulo p of VK . Reduction modulo p in general depends on the choice of VR. However,
as usual, we have a result of the following form.

Lemma 4.3. If VK ∈ Hα,K-mod and VR is an R-form of VK , then for any λ ∈ KP(α) we have

[VR ⊗R F : L(λ)F ]q = dimK
q HomHα,K (P (λ)R ⊗R K,VK).

In particular, the composition multiplicities [VR⊗R F : L(λ)F ]q are independent of the choice of
the R-form VR.

Proof. We have

[VR ⊗R F : L(λ)F ]q = dimF
q HomHα,F (P (λ)F , VR ⊗R F ).

By the universal coefficient theorem,

HomHα,F (P (λ)F , VR ⊗R F ) ∼= HomHα,R(P (λ)R, VR)⊗R F.
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Moreover, note that HomHα,R(P (λ)R, VR) is R-free with (graded) rank equal to

dimk
q HomHα,R(P (λ)R, VR)⊗R k

for k = F or K. Now, by the universal coefficient theorem again, we have that

dimK
q HomHα,R(P (λ)R, VR)⊗R K = dimK

q HomHα,K (P (λ)R ⊗R K,VR ⊗R K),

which completes the proof, since VR ⊗R K ∼= VK . 2

Our main interest is in reduction modulo p of the irreducible Hα,K-modules L(λ)K . Pick a
non-zero homogeneous vector v ∈ L(λ)K and define

L(λ)R := Hα,R · v.

Then L(λ)R is an Hα,R-invariant full lattice in L(λ)K , and upon reducing modulo p we get an
Hα,F -module L(λ)R ⊗R F . In general, L(λ)R ⊗R F is not L(λ)F , although this happens ‘often’,
for example for cuspidal modules, as stated in the following lemma.

Lemma 4.4 [Kle15a, Proposition 3.20]. Let α ∈ Φ+. Then L(α)R ⊗R F ∼= L(α)F .

To generalize this lemma to irreducible modules of the form L(αm), we need to observe that
induction and restriction commute with extension of scalars. More precisely, for β1, . . . , βm ∈ Q+,
α = β1+· · ·+βm and any ground ring k, we denote by Hβ1,...,βm;k the algebra Hβ1,k⊗k · · ·⊗kHβm,k
identified as usual with a (non-unital) subalgebra of Hα,k. Now the following lemma is immediate.

Lemma 4.5. Let VR ∈ Hβ1,...,βm;R-mod and WR ∈ Hα,R-mod. Then for any R-algebra k, there
are natural isomorphisms of Hα,k-modules

(Indαβ1,...,βmVR)⊗R k ∼= Indαβ1,...,βm(VR ⊗R k)

and of Hβ1,...,βm;k-modules

(Resαβ1,...,βmWR)⊗R k ∼= Resαβ1,...,βm(WR ⊗R k).

Let α ∈ Φ+ and m ∈ Z>0. If k is a field, then by Lemma 2.5 we have L(αm)k ' L(α)◦mk . By
Lemma 4.5,

L(αm)R := (L(α)R)◦m

satisfies L(αm)R ⊗R k ' L(αm)k for k = K or F . Taking into account Lemmas 4.3 and 4.4, we
get the next result.

Lemma 4.6. Let α ∈ Φ+ and m ∈ Z>0. Then the reduction modulo p of L(αm)K is L(αm)F .

It was conjectured in [KR11, Conjecture 7.3] that the reduction modulo p of L(λ)K is always
L(λ)F , but counterexamples are given in [Wil14] (see also [BKM14, Example 2.16]). Still, it is
important to understand when we have L(λ)R ⊗R F ∼= L(λ)F .

Problem 4.7. Let α ∈ Q+.

(i) If λ ∈ KP(α), determine when L(λ)R ⊗R F ∼= L(λ)F .
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(ii) We say that the James conjecture has positive solution (for α) if the isomorphism in (i)

holds for all λ ∈ KP(α). Determine the minimal lower bound pα on p = charF such that the

James conjecture has positive solution for α for all p > pα. Determine all p values for which the

James conjecture has positive solution for α.

At least, we always have the following property.

Lemma 4.8. Let α ∈ Q+ and λ ∈ KP(α). Then in the Grothendieck group of finite-dimensional

Hα,F -modules we have

[L(λ)R ⊗R F ] = [L(λ)F ] +
∑
µ<λ

aλ,µ[L(µ)F ] (4.9)

for some bar-invariant Laurent polynomials aλ,µ ∈ Z[q, q−1]. Moreover,

P (λ)R ⊗R K ∼= P (λ)K ⊕
⊕
µ>λ

aµ,λP (µ)K .

Proof. Let k = K or F , and consider the reduced standard module ∆̄(λ)k; see (2.6). In view of

(2.7), we can write

[L(λ)k] := [∆̄(λ)k] +
∑
µ<λ

fkλ,µ[∆̄(µ)k]

for some fkλ,µ ∈ Z[q, q−1]. Using Lemmas 4.4 and 4.5 induction on the bilexicographical order on

KP(λ), we deduce that (4.9) holds for some, not necessarily bar-invariant, coefficients aλ,µ ∈ Z[q,

q−1]. Then we also have

chq (L(λ)R ⊗R F ) = chq (L(λ)F ) +
∑
µ<λ

aλ,µchq (L(µ)F ).

Since reduction modulo p preserves formal characters, the left-hand side is bar-invariant.

Moreover, every chq (L(µ)F ) is bar-invariant. This implies that the coefficients aλ,µ are also

bar-invariant, since by [KL09, Theorem 3.17] the formal characters {chq L(ν)F | ν ∈ KP(α)} are

linearly independent.

Finally, for any µ ∈ KP(λ) we have

aµ,λ = dimK
q HomHα,K (P (λ)R ⊗R K,L(µ)K),

thanks to Lemma 4.3. This implies the second statement. 2

Remark 4.10. For k = K or F , denote by dkλ,µ the corresponding decomposition numbers,

as in (2.7), and consider the decomposition matrices Dk := (dkλ,µ)λ,µ∈KP(α). Setting A :=

(aλ,µ)λ,µ∈KP(α), we have DF = DKA. So the matrix A plays the role of the adjustment matrix

in the classical James conjecture [Jam90]. Note that the James conjecture has positive solution

in the sense of Problem 4.7 if and only if A is the identity matrix.
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4.2 Integral forms of standard modules
Our next goal is to construct some special R-forms of standard modules. We call an Hα,R-module
∆(λ)R a universal R-form of a standard module if it is an R-form for both ∆(λ)K and ∆(λ)F .
We show how to construct these for all λ.

By Theorem 2.8(i), for any field k and β ∈ R+, the standard module ∆(βm)k has simple head
L(βm)k. Pick a homogeneous generator v ∈∆(βm)K and consider the R-form ∆(βm)R := Hmβ,R ·
v of ∆(βm)K . Further, for any α ∈ Q+ and λ = (λm1

1 , . . . , λmss ) ∈ KP(α) with λ1 > · · · > λs, we
define the following R-form of ∆(λ)K (cf. Lemma 4.5):

∆(λ)R := ∆(λm1
1 )R ◦ · · · ◦∆(λmss )R.

Let
1(λ),R := 1m1λ1,...,msλs;R.

Then, for an appropriate set S(λ) of coset representatives in a symmetric group, we have that
{τw1(λ),R | w ∈ S(λ)} is a basis of Hα,R1(λ),R considered as a right Hm1λ1,...,msλs;R-module. So

∆(λ)R =
⊕

w∈S(λ)

τw1(λ),R ⊗∆(λm1
1 )R ⊗ · · · ⊗∆(λmss )R.

In particular, choosing vt ∈ ∆(λmtt )K with ∆(λmtt )R = Hmtλt,R · vt for all 1 6 t 6 s and setting
v := 1(λ),K ⊗ v1 ⊗ · · · ⊗ vs, we have

∆(λ)R = Hα,R · v. (4.11)

Now we show that ∆(λ)R is a universal R-form.

Lemma 4.12. Let α ∈ Q+ and λ ∈ KP(α). Then ∆(λ)R ⊗R F ∼= ∆(λ)F .

Proof. In view of (2.10) and Lemma 4.5, we may assume that λ is of the form (βm) for a positive
root β so that α = mβ. By Lemma 4.3, for any µ ∈ KP(α) we have

[∆(βm)R ⊗R F : L(µ)F ]q = dimK
q HomHα,K (P (µ)R ⊗R K,∆(βm)K).

By convexity, (βm) is a minimal element of KP(α). So Lemma 4.8 implies that all composition
factors of ∆(βm)R ⊗R F are ' L(βm)F . Moreover,

[∆(βm)R ⊗R F : L(βm)F ]q = [∆(βm)K : L(βm)K ]q = [∆(βm)F : L(βm)F ]q.

By construction, ∆(βm)R is cyclic, hence so is ∆(βm)R ⊗R F . Therefore ∆(βm)R ⊗R F
is a module with simple head and belongs to the category of all modules in Hα,F -mod with
composition factors ' L(βm)F . Since (βm) is minimal in KP(α), we have that ∆(βm)F is the
projective cover of L(βm)F in this category; see [Kle15b, Lemma 4.11]. So there is a surjective
homomorphism from ∆(βm)F onto ∆(βm)R⊗R F . This has to be an isomorphism since we have
proved that the two modules have the same composition multiplicities. 2

From now on, the notation ∆(λ)R will be reserved for a universal R-form.

Proposition 4.13. Let α ∈ Q+ and λ, µ ∈ KP(α).

(i) If λ 6= µ, then HomHα,R(∆(λ)R,∆(µ)R) = 0.

637

https://doi.org/10.1112/S0010437X16008204 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008204


A. S. Kleshchev and D. J. Steinberg

(ii) For any R-algebra k, we have

EndHα,R(∆(λ)R)⊗R k ∼= EndHα,k(∆(λ)R ⊗R k).

(iii) If λ 6< µ, then ExtjHα,R(∆(λ)R,∆(µ)R) = 0 for all j > 1.

Proof. By the universal coefficient theorem, for any j > 0 we can embed

ExtjHα,R(∆(λ)R,∆(µ)R)⊗R F

into ExtjHα,F (∆(λ)F ,∆(µ)F ). So assertion (i) follows from Theorem A, and (iii) follows from

Theorem 2.8(iii). Now statement (ii) also follows from the universal coefficient theorem, since

Ext1Hα,R(∆(λ)R,∆(λ)R) = 0

by (iii), which makes the Tor1 term trivial. 2

Given an R-module V , denote by V Tors its torsion submodule. Torsion in Ext groups

ExtjHα,R(∆(λ)R,∆(µ)R)Tors

is of importance for Problem 4.7; see Remark 4.17. The following result was surprising to us.

Theorem 4.14. Let α ∈ Q+ and λ, µ ∈ KP(α). Then the R-module

Ext1Hα,R(∆(λ)R,∆(µ)R)

is torsion-free.

Proof. By Proposition 4.13(iii), we may assume that λ 6= µ. By the universal coefficient theorem,
there is an exact sequence

0→ HomHα,R(∆(λ)R,∆(µ)R)⊗R F → HomHα,F (∆(λ)F ,∆(µ)F )

→ TorR1 (Ext1Hα,R(∆(λ)R,∆(µ)R), F )→ 0.

By Theorem A, the middle term vanishes; hence the third term also vanishes, which implies the
theorem. 2

We will need the following generalization.

Corollary 4.15. Let α ∈ Q+ and µ ∈ KP(α), and let V be an Hα,R-module with a finite
∆-filtration, all of whose subfactors are of the form ' ∆(λ)R for λ 6= µ. Then the R-module
Ext1Hα,R(V,∆(µ)R) is torsion-free.

Proof. Apply induction on the length of the ∆-filtration, the induction base coming from
Theorem 4.14. If the filtration has length greater than 1, we have an exact sequence

0→ V1→ V → V2→ 0,

such that the inductive assumption applies to V1 and V2. Then we get a long exact sequence

HomHα,R(V1,∆(µ)R)→ Ext1Hα,R(V2,∆(µ)R)

→ Ext1Hα,R(V,∆(µ)R)→ Ext1Hα,R(V1,∆(µ)R).

By Proposition 4.13(i), the first term vanishes. By the inductive assumption, the second and
fourth terms are torsion-free. Hence so is the third term. 2
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While we have just proved that there is no torsion in Ext1Hα,R(∆(λ)R,∆(µ)R), the following

result reveals the importance of torsion in Ext2-groups.

Corollary 4.16. Let α ∈ Q+ and λ, µ ∈ KP(α). We have

dimF
q Ext1Hα,F (∆(λ)F ,∆(µ)F )

= dimK
q Ext1Hα,K (∆(λ)K ,∆(µ)K) + dRq Ext2Hα,R(∆(λ)R,∆(µ)R)Tors.

In particular,

dimF
q Ext1Hα,F (∆(λ)F ,∆(µ)F ) = dimK

q Ext1Hα,K (∆(λ)K ,∆(µ)K)

if and only if the R-module Ext2Hα,R(∆(λ)R,∆(µ)R) is torsion-free.

Proof. By the universal coefficient theorem, there is an exact sequence

0→ Ext1Hα,R(∆(λ)R,∆(µ)R)⊗R F → Ext1Hα,F (∆(λ)F ,∆(µ)F )

→ TorR1 (Ext2Hα,R(∆(λ)R,∆(µ)R), F )→ 0

and an isomorphism

Ext1Hα,R(∆(λ)R,∆(µ)R)⊗R K ∼= Ext1Hα,K (∆(λ)K ,∆(µ)K).

The last isomorphism and Theorem 4.14 imply

dimK
q Ext1Hα,K (∆(λ)K ,∆(µ)K) = dRq Ext1Hα,R(∆(λ)R,∆(µ)R).

On the other hand,

dRq Ext2Hα,R(∆(λ)R,∆(µ)R)Tors = dimF
q TorR1 (Ext2Hα,R(∆(λ)R,∆(µ)R), F ),

so the result now follows from the exactness of the first sequence. 2

Remark 4.17. By Theorem 4.14, lack of torsion in Ext2Hα,R(∆(λ)R,∆(µ)R) is equivalent to

the fact that the extension groups Ext1Hα(∆(λ),∆(µ)) have the same graded dimension in
characteristic 0 and characteristic p. This is relevant for Problem 4.7. However, we do not
understand the precise connection between Problem 4.7 and lack of torsion in the groups
Ext2Hα,R(∆(λ)R,∆(µ)R). For example, we do not know if such lack of torsion for all λ and µ

implies (or is equivalent to) the James conjecture having positive solution. In the next section
we establish a different statement of that nature. Set

∆k :=
⊕

λ∈KP(α)

∆(λ)k.

By the universal coefficient theorem, all groups ExtjHα,R(∆(λ)R,∆(µ)R) are torsion-free if and

only if the dimension of the k-algebras Ext•Hα,k(∆k,∆k) is the same for k = K and k = F , and

Ext•Hα,k(∆k,∆k) ∼= Ext•Hα,R(∆R,∆R)⊗R k

for k = K or F . We do not know if the James conjecture has positive solution under the
assumption that all groups ExtjHα,R(∆(λ)R,∆(µ)R) are torsion-free.
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4.3 Integral forms of projective modules in characteristic zero
Recall that by lifting idempotents, we have constructed projective R-forms P (λ)R of the
projective indecomposable modules P (λ)F . Our next goal is to construct some interesting
R-forms of the projective modules P (λ)K . As we cannot denote them by P (λ)R, we will have to
use the notation Q(λ)R. We will construct Q(λ)R using the usual ‘universal extension procedure’
applied to universal R-forms of the standard modules, but in our ‘infinite-dimensional integral’
situation we need to be rather careful. We begin with some lemmas.

Lemma 4.18. Let k be a field and suppose that V ∈ Hα,k-mod has the following properties:

(i) V is indecomposable;

(ii) V has a finite ∆-filtration with the top factor ∆(λ)k;

(iii) Ext1Hα,k(V,∆(µ)k) = 0 for all µ ∈ KP(α).

Then V ∼= P (λ)k.

Proof. We have a short exact sequence 0 → M → P → V → 0, where P is a finite direct
sum of indecomposable projective modules. By [Kle15b, Corollary 7.10(i)], M has a finite ∆-
filtration. Now, by property (iii), the short exact sequence splits. Hence V is projective. As it
is indecomposable, it must be of the form qdP (µ). By property (ii), we must have λ = µ and
d = 0. 2

For λ ∈ KP(α) and k ∈ {F,K,R}, we consider the endomorphism algebra

Bλ,k := EndHα,k(∆(λ)k)op.

By Proposition 4.13(ii), we have Bλ,F ∼= Bλ,R ⊗ F and Bλ,K ∼= Bλ,R ⊗ K. Note that ∆(λ)k is
naturally a right Bλ,k-module. We need to know that this Bλ,k-module is finitely generated. In
fact, we will prove that it is free of finite rank. First of all, this is known over a field.

Lemma 4.19. Let λ ∈ KP(α) and let k be a field. Then the following properties hold.

(i) Bλ,k is a commutative polynomial algebra in finitely many variables of positive degrees.

(ii) Let Nλ,k be the ideal in Bλ,k spanned by all monomials of positive degree, and let M :=
∆(λ)kNλ,k. Then ∆(λ)k/M ∼= ∆̄(λ)k; see the notation (2.6).

(iii) Let v1, . . . , vN ∈ ∆(λ)k be such that {v1 +M, . . . , vN +M} is a k-basis of ∆(λ)k/M ; then
{v1, . . . , vN} is a basis of ∆(λ)k as a Bλ,k-module.

Proof. For (i) see Theorem 2.17. For (ii) and (iii), see [Kle15b, Proposition 5.7]. 2

The following general lemma, whose proof is omitted, will help us to transfer the result of
Lemma 4.19 from K and F to R.

Lemma 4.20. Let BR be an R-algebra and VR a BR-module. Assume that BR and VR are free
as R-modules. If v1, . . . , vN ∈ VR are such that {v1 ⊗ 1k, . . . , vN ⊗ 1k} is a basis of VR ⊗R k as a
BR ⊗R k-module for k = K and F , then {v1, . . . , vN} is a basis of VR as a BR-module.

Lemma 4.21. Let λ ∈ KP(α). As a Bλ,R-module, ∆(λ)R is free of finite rank.
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Proof. Let λ = (λm1
1 , . . . , λmss ) for positive roots λ1 > · · · > λs. Choose v = 1(λ),K⊗v1⊗· · ·⊗vs as

in (4.11). There is a submodule M ⊂ ∆(λ)K with ∆(λ)K/M ∼= ∆̄(λ)K . Pick h1, . . . , hN ∈ Hα,R

such that {h1v +M, . . . , hNv +M} is an R-basis of ∆̄(λ)R = Hα,R · (v +M). By Lemma 4.19,

{h1v ⊗ 1k, . . . , hNv ⊗ 1k}

is a Bλ,k-basis of ∆(λ)R ⊗R k for k=Kor F . Now apply Proposition 4.13(ii) and Lemma 4.20. 2

Corollary 4.22. Let k ∈ {F,K,R}, V ∈ Hα,k-mod, λ ∈ KP(α) and j ∈ Z>0. Then, as a

Bλ,k-module, ExtjHα,k(V,∆(λ)k) is finitely generated.

Proof. Since Hα,k is Noetherian, V has a resolution by finite-rank free modules over Hα,k.
Applying HomHα,k(−,∆(λ)k) to this resolution, we get a complex with terms that are finite
direct sums of modules ' ∆(λ)k, which are finite-rank free over Bλ,k, thanks to Lemmas 4.19
and 4.21. As Bλ,k is Noetherian, the cohomology groups of the complex are finitely generated
Bλ,k-modules. 2

Remark 4.23. It is a more subtle issue to determine whether ExtjHα,k(∆(λ)k, V ) is finitely

generated as a Bλ,k-module. We do not know if this is always true.

Lemma 4.24 (Universal extension procedure). Let k ∈ {F,K,R} and µ ∈ KP(α), and let Vk be
an indecomposable Hα,k-module with a finite ∆-filtration, all of whose subfactors are of the form
' ∆(λ)k for λ 6> µ. If k = R, assume in addition that VR ⊗R K is indecomposable. Let

r(q) := d
Bµ,k
q Ext1Hα,k(Vk,∆(µ)k) ∈ Z[q, q−1].

Then there exists an Hα,k-module E(Vk,∆(µ)k) with the following properties:

(i) E(Vk,∆(µ)k) is indecomposable;

(ii) Ext1Hα,k(E(Vk,∆(µ)k),∆(µ)k) = 0;

(iii) there is a short exact sequence

0→ r(q)∆(µ)k→ E(Vk,∆(µ)k)→ Vk→ 0.

Proof. In this proof we drop Hα,k from the indices and write Ext1 for Ext1Hα,k etc. Also, when
it is unlikely to cause confusion, we drop k from the indices. Let ξ1, . . . , ξr be a minimal set of
homogeneous generators of Ext1(V,∆(µ)) as a Bµ-module, and let ds := deg(ξs) for s = 1, . . . , r
so that r(q) =

∑
s q

ds . The extension

0→ q−d1∆(µ)→ E1→ V → 0,

corresponding to ξ1, yields the long exact sequence

Hom(q−d1∆(µ),∆(µ))
ϕ−→ Ext1(V,∆(µ))

ψ−→ Ext1(E1,∆(µ))→ 0.

Here we have used the fact that Ext1(q−d1∆(µ),∆(µ)) = 0; see Proposition 4.13(iii). Note that
q−d1∆(µ) = ∆(µ) as Hα-modules but with degrees shifted down by d1. So we can consider the
identity map id : q−d1∆(µ) → ∆(µ), which has degree d1. The connecting homomorphism ϕ
maps this identity map to ξ1. It follows that Ext1(E1,∆(µ)) is generated as a Bµ-module by
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the elements ξ̄2 := ψ(ξ2), . . . , ξ̄r := ψ(ξr). Repeating the argument r − 1 more times, we get an
extension

0→ q−d1∆(µ)⊕ · · · ⊕ q−dr∆(µ) = r(q)∆(µ)→ E → V → 0

such that in the corresponding long exact sequence

Hom(E,∆(µ))
χ−→ Hom(r(q)∆(µ),∆(µ))

ϕ−→ Ext1(V,∆(µ))→ Ext1(E,∆(µ))→ 0,

for all s = 1, . . . , r we have ϕ(πs) = ξs, where πs is the (degree-ds) projection onto the sth
summand. In particular, ϕ is surjective and Ext1(E,∆(µ)) = 0.

It remains to prove that E is indecomposable. We first prove this when k is a field. In that
case, if E = E′⊕E′′, then both E′ and E′′ have finite ∆-filtrations; see [Kle15b, Corollary 7.10].
Since Ext1(∆(µ),∆(λ)) = 0 for λ 6> µ, there is a partition J ′ t J ′′ = {1, . . . , r} such that there
are submodules

M ′ ∼=
⊕
j∈J ′

qdj∆(µ) ⊆ E′, M ′′ ∼=
⊕
j∈J ′′

qdj∆(µ) ⊆ E′′,

and E′/M ′ andM ′′/E′′ have ∆-filtrations. Since Hom(∆(µ), V ) = 0, we deduce that V ∼= E′/M ′⊕
E′′/M ′′. As V is indecomposable, we may assume that E′/M ′ = 0. Then some projection πs lifts
to a homomorphism E → ∆(µ), which shows that this πs is in the image of χ and hence in the
kernel of ϕ, which is a contradiction.

Now let k = R. Note that V and E are free as R-modules, since all the ∆(ν)R are. If ER is
decomposable, then so is ER ⊗K; therefore it suffices to prove that ER ⊗K is indecomposable.
In view of Corollary 4.15, the Bµ,K-module

Ext1(VR,∆(µ)R)⊗R K ∼= Ext1(VR ⊗R K,∆(µ)K)

is minimally generated by ξ1,R ⊗ 1K , . . . , ξr,R ⊗ 1K . It follows, using Lemma 4.2, that ER ⊗R
K ∼= EK , where EK is constructed using the universal extension procedure starting with the
indecomposable module VK := VR ⊗R K as in the first part of the proof of the lemma. By the
field case established in the previous paragraph, EK is indecomposable. 2

Let λ ∈ KP(α). For k ∈ {R,K,F}, we construct a module Q(λ)k by starting with ∆(λ)k and
repeatedly applying the universal extension procedure. To simplify notation, we drop some of
the indices k if this is unlikely to lead to confusion. Given Laurent polynomials r0(q), r1(q), . . . ,
rm(q) ∈ Z[q, q−1] with non-negative coefficients and Kostant partitions λ0, λ1, . . . , λm ∈ KP(α),
we will use the notation

V = r0(q)∆(λ0) | r1(q)∆(λ1) | · · · | rm(q)∆(λm)

to indicate that the Hα-module V has a filtration V = V0 ⊇ V1 ⊇ · · · ⊇ Vm+1 = (0) such that
Vs/Vs+1

∼= rs(q)∆(λs) for s = 0, 1, . . . ,m.
If Ext1Hα(∆(λ),∆(µ)) = 0 for all µ ∈ KP(α), we set Q(λ)k := ∆(λ)k. Otherwise, let λ1,k ∈

KP(α) be minimal with Ext1Hα(∆(λ),∆(λ1,k)) 6= 0. Note that this λ1,k could indeed depend on
the ground ring k, hence the notation. Also notice that λ1,k > λ. Let

E(λ, λ1,k)k := E(∆(λ),∆(λ1,k));

see Lemma 4.24. By construction, we have

E(λ, λ1,k)k = ∆(λ) | r1,k(q)∆(λ1,k),
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where
r1,k(q) = d

B
λ1,k

q Ext1Hα(∆(λ),∆(λ1,k)).

This Laurent polynomial may depend on k, hence the notation. If

Ext1Hα(E(λ, λ1,k),∆(µ)) = 0

for all µ ∈ KP(α), we set Q(λ)k := E(λ, λ1,k)k. Otherwise, let λ2,k ∈ KP(α) be minimal with
Ext1Hα(E(λ, λ1,k),∆(λ2,k)) 6= 0. Note that λ2,k > λ and λ2,k 6= λ1,k. Let

E(λ, λ1,k, λ2,k)k := E(E(λ, λ1,k),∆(λ2,k)).

By construction, we have

E(λ, λ1,k, λ2,k)k = ∆(λ) | r1,k(q)∆(λ1,k) | r2,k(q)∆(λ2,k),

where
r2,k(q) = d

B
λ2,k

q Ext1Hα(E(λ, λ1,k),∆(λ2,k)).

If Ext1Hα(E(λ, λ1,k, λ2,k),∆(µ)) = 0 for all µ ∈ KP(α), we set

Q(λ)k := E(λ, λ1,k, λ2,k).

Since in each step we have to pick λt,k > λ, which does not belong to {λ, λ1,k, . . . , λt−1,k},
the process will stop after finitely many steps, and we will obtain an indecomposable module

E(λ, λ1,k, . . . , λmk,k)k = ∆(λ) | r1,k(q)∆(λ1,k) | · · · | rmk,k(q)∆(λmk,k),

where
rt,k(q) = d

B
λt,k

q Ext1Hα,k(E(λ, λ1,k, . . . , λt−1,k)k,∆(λt,k)k) (4.25)

for all 1 6 t 6 mk, such that

Ext1Hα,k(E(λ, λ1,k, . . . , λmk,k)k,∆(µ)k) = 0

for all µ ∈ KP(α). We set
Q(λ)k := E(λ, λ1,k, . . . , λmk,k)k.

Theorem 4.26. Let α ∈ Q+ and λ ∈ KP(α).

(i) For k = K or F , we have Q(λ)k ∼= P (λ)k.

(ii) For k = K or F , the Laurent polynomial rt,k(q) from (4.25) equals the decomposition
number dk

λt,k,λ
for all 1 6 t 6 mk, and dkµ,λ = 0 for µ 6∈ {λt,k | 1 6 t 6 mk}.

(iii) We have mR = mK ; setting m := mR, we may choose λ1,R = λ1,K , . . . , λm,R = λm,K and
then rt,R(q) = rt,K(q) for all 1 6 t 6 m.

(iv) We have Q(λ)R ⊗R K ∼= P (λ)K .

Proof. Property (i) follows from the construction and Lemma 4.18. Assertion (ii) follows from
(i), the construction, and Theorem 2.8(v).

To prove (iii) and (iv), we show by induction on t = 0, 1, . . ., that we can choose λt,R = λt,K ,
rt,R(q) = rt,K(q) and

E(λ, λ1,R, . . . , λt,R)R ⊗R K ∼= E(λ, λ1,K , . . . , λt,K)K . (4.27)
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The induction base is simply the statement ∆(λ)R ⊗R K ∼= ∆(λ)K . For the induction step,
assume t > 0 and that the claim has been proved for all s < t.

Let ξ1,R, . . . , ξr,R be a minimal set of generators of the Bλt,R,R-module

Ext1Hα,R(E(λ, λ1,R, . . . , λt−1,R)R,∆(λt,R)R),

so that

rt,R(q) = deg(ξ1,R) + · · ·+ deg(ξr,R).

Using Corollary 4.15 and the universal coefficient theorem, we deduce that λt,K can be chosen
to be λt,R and the Bλt,R,K-module

Ext1(∆(λ)R,∆(λt,R)R)⊗R K ∼= Ext1(VR ⊗R K,∆(λt,R)K)

is minimally generated by ξ1,R⊗1K , . . . , ξr,R⊗1K , so that rt,K(q) = rt,R(q). Finally, (4.27) comes
from Lemma 4.2. 2

In view of Theorem 4.26(i), Q(λ)R is not in general an R-form of Q(λ)F ∼= P (λ)F . For every
λ ∈ KP(α), define the Hα,F -module

X(λ) := Q(λ)R ⊗ F.

Theorem 4.28. The James conjecture has positive solution for α if and only if one of the
following equivalent conditions holds:

(i) X(λ) is projective;

(ii) X(λ) ∼= P (λ)F for all λ ∈ KP(α);

(iii) Ext1Hα,F (X(λ),∆(µ)F ) = 0 for all λ, µ ∈ KP(α);

(iv) the R-module Ext2Hα,R(Q(λ)R,∆(µ)R) is torsion-free for all λ, µ ∈ KP(α).

Proof. Conditions (i) and (ii) are equivalent by an argument involving formal characters and
Lemma 4.8. Furthermore, (i) and (iii) are equivalent by Lemma 4.18. Since Ext1Hα,R(Q(λ)R,

∆(µ)R) = 0 for all µ, (iii) is equivalent to (iv) by the universal coefficient theorem.
We now prove that (ii) is equivalent to the James conjecture having positive solution. If

X(λ) ∼= P (λ)F for all λ, then they have the same graded dimension, so the R-modules Q(λ)R
and P (λ)R have the same graded R-rank, and hence the K-modules P (λ)K ∼= Q(λ)R ⊗RK and
P (λ)R ⊗R K have the same graded dimension; therefore P (λ)R ⊗R K ∼= P (λ)K for all λ (see
Lemma 4.8), and so the James conjecture has positive solution.

Conversely, assume that the James conjecture has positive solution. This means that
dKµ,λ = dFµ,λ for all µ, λ ∈ KP(α). Then, by Theorem 4.26(ii), in every step of our universal

extension process, we will have the same dimension of the Ext1-group over K and F ; so, by
Theorem 4.26(iii), in every step of our universal extension process, we are also going to have the
same rank of the appropriate Ext1-groups over R and F . Now use Lemma 4.2 as in the proof of
Theorem 4.26(iv) to show that Q(λ)R ⊗R F ∼= P (λ)F . 2

Remark 4.29. We conjecture that P (λ)F has an X-filtration with the top quotient X(λ) and
X(µ) appearing aµ,λ(q) times. On the level of Grothendieck groups, this is true thanks to
Lemma 4.8. But it seems not obvious even that X(λ) is a quotient of P (λ)F .
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