
ON THE MEASURE OF SETS OF PARALLEL 
LINEAR SUBSPACES IN AFFINE SPACE 

L. A. SANTALÔ 

1. Introduction. Let En be the w-dimensional euclidean real space and 
21 the group of unimodular affine transformations which operates on it. It is 
known that the sets of linear /^-spaces Lh (0 < h < n) have no invariant 
measure with respect to 21 (5). We wish now to consider sets of elements 

(1-1) H(Lhl, Lh2, . . . , Lhq) 

composed by q parallel subspaces of dimensions hi, h2, . . . , hq which trans
form transitively by 2t. We prove the following: 

THEOREM 1. In order that sets of elements H composed by q parallel linear 
subspaces of dimensions hi, h2, . . . , hq, which transform transitively by the 
unimodular affine group 21 have an invariant measure with respect to 21, it is 
necessary and sufficient that the dimensions ht be all equal, 

(1.2) hi = h2 = hz = . . . = hq = h 

and that 

(1.3) q = n + 1 - h. 

In § 4 we find the explicit form of this measure together with its metrical 
significance and in § 5 we indicate some applications to the theory of convex 
bodies. 

2. The Unimodular affine group. (See 2). Each unimodular affine trans
formation in En can be defined by the position of an w-frame composed of an 
origin P and n independent vectors I* which satisfy the condition 

(2.1) |Ii, I2, . . . , I„| = 1 

where the left-hand side represents the determinant formed by the components 
of the vectors I* with respect to an orthogonal frame of reference. 

The relative components of the unimodular affine group 21 are the pfaffian 
forms eau defined by the relations 

(2.2) dP = o)oilu d\k = œkilt 

where the summation convention is used, as will be done throughout. 
From (2.2) and (2.1) we deduce 

(2.3) cooz = IIJ2 . . . li-idPli+i . . . Iw|, coki = | I i . . . Ii-idlkIi+i. . . Iw|. 
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By exterior differentiation of (2.2) we obtain the equat ions of s t ruc ture 

(2.4) do)0i = COOm A Oimi dc^fd = Oûjcm A 03mi 

and by exterior differentiation of (2.1), having into account (2.3), we get 

(2.5) con + co22 + . . . + wnn = 0. 

3 . M e a s u r e of s e t s of paral le l l inear s u b s p a c e s . Let H denote a set of q 
independent parallel linear subspaces 

of dimensions hh h2j . . . , hQ respectively. We assume t h a t each pair of elements 
H t ransform transi t ively by 3Ï and t h a t the dimensions ht are ordered in the 
following way 

(3.1) n > hi > h2 > . . . > hg > 1. 

T o each H we may associate an w-frame ( P ; I l f I2 , . . . , In) such t h a t the 
following relations hold: 

Lhl = subspace spanned b y I i , 12, . . . , 1^ ; 
LH = subspace which passes through the endpoint of I ^+ i and is 

parallel to I i , I2 , . . . , 1*2 ; 
(3.2) Lhz = subspace which passes through the endpoint of I^1+2 and is 

parallel to I i , I2 , . . . , Ih3; 

Lhq = subspace which passes through the endpoint of ïhl+q-i and is 
parallel to I i , I2 , . . . , lhq. 

T h e assumed t rans i t iv i ty for the elements H with respect to 31 gives the 
condition 
(3.3) Ai + q - 1 < n. 

In order to see if sets of elements H have an invar iant measure with respect 
to 31 we follow the general method (3 ; 5 ) . According to (3.2) and (2.2) the 
completely integrable system whose integral varieties correspond to the 
elements H is the following 

coo,! = 0 (si = hi + 1, . . . , n) 
(ii = 1, . . . , h; mi = hi + 1, . . . , n) 

(s2 = h2 + 1, . . . , hi) 
(s'2 = hi + 1, . . . , n) 
(i2 = 1, . . . , h2; m2 = h2 + 1, . . . , hi) 

(3.4) co0s3 + <0ft1+2i„ = 0 (<r3 = h + 1, . . . , hi) 
(s'z = hi + 1, . . . , n) 
(i3 = 1, . . . , hz\ mz = hz + 1, . . . , h2) 

(sq = hQ + 1, . . . , hi) 
(s'q = hi + 1, . . . , n) 
(iq = 1, . . . , hq\ mg = hq + 1, . . . , Aff_i). 

<*>iimi — 0 

CO0s2 "t" °^fll+l,S2 = 0 

^hi+l.s'2 = 0 

COZ2TO2 == " 

C00s3 "T" ù)hi+2,sz = 0 
œhi+2,s'i — 0 

Mizmz = 0 

COOsg + Uhi + q-l.sq = 0 
Uhl + Q—l.s'q = 0 

Wigmq = 0 
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Note that the number of equations is 

(3.5) JV = »(*! + g ) - i hi(ht + 1) + £ hji^ 
i=l z = l 

and coincides with the number of parameters on which H depends, as it 
should. 

The exterior product II of all the relative components (3.4) is an exterior 
differential form of order N. The integral of II will be a measure for sets of 
elements H, invariant with respect to SI, if and only if the exterior differential 
dU vanishes when the equations (2.4) and (2.5) are taken into account (see 
3; 5). Since the system (3.4) is completely integrable, the theorem of Fro-
benius (2, p. 193) says that in the structure equations (2.4) applied to the 
forms (3.4), at least one of the differential forms of each term of the sum of 
the right belongs to (3.4). Thus, up to the sign, which is immaterial for us 
since we will always take the measures in absolute value, we have 

(3.6) dU = II A $ 

where 
hi hi hq 

(3.7) $ = Yl "a + E «« + • • • + £ w« 
n n n 

~~ 12 <*>a — z2 ton — . . . — 2 2_> toH. 
i=hi+l i=h2+l i=hq+l 

The relative components of the set (3.4) which have equal indices are 

(3.8) 

Since the relative components are only related by the equation (2.5), the 
condition dll = 0 can hold only if (3.7) is equivalent to the left side of (2.5), 
up to a linear combination of the forms (3.8). This is possible if and only if 
hq = hi and hi + q — 1 = n. Taking into account (3.1) these relations prove 
the stated theorem 1. 

4. Metrical interpretation of the measure. If the equations (1.2) and 
(1.3) are satisfied, the measure for sets of elements i/composed by g = n + l—h 
parallel linear /^-spaces is given, up to a constant factor, by the integral of the 
form II obtained by exterior multiplication of all the pfafhan forms (3.4). The 
form II is called the density, invariant with respect to SI, for sets of elements H. 

We wish now to give a metrical interpretation of II. 
Let us put 

(4.1) n = n0 A ni A . . . A nn 

where 

(4.2) Ut = CO,,A+I A «ifA+2 A . . . A o)i,n (i = 0, 1, . . . , n). 

Let (P0 * e*) be an orthogonal frame composed of n perpendicular unit 
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vectors e* of origin P 0 , such t h a t ei , e2, . . . , eA lie on the subspace Lh deter

mined by P = Po, I i , 12, . . . , I». We may write 

(4.3) I« = X « ^ , 1^ = X€ ie t 

where we agree to use the following ranges of indices 

(4.4) a, 0, 7 f . . . = 1, 2, . . . , A; £, ^, f, . . . = h + 1, A + 2, . . . , n\ 
i,j,k,... = 1, 2, . . . , n. 

If we pu t 

(4.5) de* = 0i;e,-

we will have 

dl (4.6) 

(4.7) 

where 

(4.8) 

dXafip + XajS^e/3 = </>a/3e/3 + l ^ a ^ 

dl$ = dX^tQi + Xçidet = a^iQi 

Let us note tha t , according to (4.7), the volume element a t the endpoint 
of I„ is avi A G-7,2 A . . . A <rm and the element of (n-h)-dimensional volume 
in the (n-h)-space spanned by eh+i, e^+2, . . . , en a t the orthogonal projection 
on it of the endpoint of I , is 

(4.9) dPv = <TVlh+l A Vr,,h+2 A . . . A 0y n . 

T h e first relation (2.2) m a y be wri t ten 

(4.10) dP = œoili = dx&i 

and from (2.3) and (4.4) we deduce 

(4.11) co0£ = I I J2 • • • 1^-1(^x^01^+1 • • . I«| = A^dxv 

where A ^ means the algebraic complement of X^ in the de te rminan t 

(4.12) II1I2 U = 

X11X12. 

X21X22. 

Xih 0 
0 

0 
0 

XMX/?2 . . • Xhh 0 . . . 0 

X/H-l.lX/j+1,2 • . • X/H-i.fcXft+i^+i 

XwlXw2 . • . Xnh\n,h+1 • • • 

Xh+l,n 

X.»« 

= 1 . 

Therefore, by exterior multiplication of the forms (4.11), tak ing into 
account a well-known proper ty on adjoint de te rminants (4, p . 73) we obta in 

(4.13) n 0 = \Acv\dxh+i A dxh+2 A . . . A dxn = D dP0 

where we have pu t 
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(4.14) D = 

X11X12. . . \ih 

X21X22 • • • ^2h 

XMX, hi • • • A M 

and dP0 = dxh+i A . . . A dxn = element of (n-h)-dimensional volume on the 
(n-h)-space spanned by eh+i, eh+2l . . . , en a t the point P0. 

From (2.3) and (4.7) we have 

W„$ = |Iil2 . . . Iç - ldI , I f + i . . . In\ 

Jlv = {A^a^h+i A . . . A <rm = D dPv. 

(4.15) 

and therefore 

(4.16) 

Finally, we have, 

(4.17) Uar, = |Ill2 • • • I,-l^IaI^+l . . . Iw| 

and therefore 

(4.18) n « = |A,{-|^a,ft+l A . . . A ypan = D^a,h+1 A . . . A $„n. 

If we introduce the density dLn-h invar iant with respect to rotat ions about 
Po (metrical density, see (6)) , for the linear (n-h) -spaces through P0 spanned 
by eh+i, . . . , e», t h a t is, 

(4.19) dLn-n = ( 0 M + 1 A 62tn+i A . . . A dh,n+1) A ( 0 M + 2 A . . . A 6h>h+2) 
A . . . A (61>n A d2>n. . . A 0h,n), 

we have, from (4.18) and (4.8) 

(4.20) Hi A n 2 A . . . A H» = DndLn_h. 

Therefore, we have, 

(4.21) n = D2n~h+1 dP0 A dPh+1 A dPh+2 A . . . A dPn A dLn.h. 

Let us now observe t h a t the volume 5 of the (n-h)-dimensional simplex of 
vertices P 0 , Ph+h Pn+z, • • • , Pn, taking into account (4.3), is given by 

(4.22 S = 
1 

(n - h)\ 

From (4.12) and (4.22) we get 

D = 

Xa+l .a+l • • • Xft+l,ra 

^h+2,h+l • • • ^h+2,n 

>,fl + l 

1 

• • « A w > w 

(n - h)\S 

and (4.21) may be wri t ten in the definitive form 

dPo A dPh+i A . . . A dPn A dl,n_„ 
(4.24) n l(n - hy.sy 

https://doi.org/10.4153/CJM-1962-023-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-023-0


318 L. A. SANTALÔ 

Let us summarize the meaning of the terms in (4.24). Given n — h + 1 
parallel /^-spaces, we cut them by an orthogonal (n-h)-space Ln_h through a 
fixed origin; let P0, Ph+\, . . . , Pre be the intersection points. Then, S is the 
volume of the simplex of vertices P0 , Pn+u • • • » Pn\ each dPt (i = 0, h + 1, 
. . . , n) is the element of volume at Pt of Ln-hl and dLn_h represents the 
metrical density for sets of (n-h)-spaces through the origin (6). 

5. Application to convex bodies. Let K be a convex body in En. It is 
well known that the measure of sets of linear /^-spaces, invariant with respect 
to the group of motions, which intersect K, gives rise up to a constant factor 
to the metrical invariants Wh

n (= hth mixed volume of K with the unit 
sphere; A = 1, 2, . . . , w — 1; see (6)). 

This result is not straightforwardly generalizable to the affine geometry, 
because the linear subspaces of dimension h > 0 have no invariant measure 
with respect to the unimodular affine group (5) .However, if we consider 
sets of parallel /^-spaces in the sense of § 3, we find that the measure of sets 
of elements H composed of n — h + 1 parallel linear /^-spaces whose convex 
cover C(H) contains K in its interior, will give an affine invariant for K. It 
has the form 

(5.1) Ml(K) = 

f TT \( Z.M1»-2»-! f dPQ A dPi A . . . A dPn_h A dLn_h 

where the integral is extended over all Ln^h orthogonal to the parallel A-spaces 
which constitute H, such that K C C(H) and dP\ (i = 0, 1, 2, . . . , n — h) 
are the volume elements in Ln-h at the intersection points of Ln-h with H. 

For A = 1, 2, . . . , n — 1 we get a set of n — 1 affine invariants which 
may be considered as the affine generalization of the Wh

n of the metrical 
case. It seems to be an interesting open question to investigate if the affine 
invariants Mh

n are related by inequalities of the type of those of Minkowski 
for the metrical invariants Wh

n. For h = n — 1, see (7). 
Let us consider the cases n = 2, n = 3. 

1. Case of the plane (n = 2). According to (1.3) we have the possibility 
h = 1, a = 2, that is, the elements H are composed of two parallel lines. Let 
6 denote the angle of the direction normal to these lines and let p0j pi be their 
distances to a fixed origin 0. The measure of the set of parallel lines which 
contain K in its interior gives the following affine invariant for K: 

(5.2) Ml(K) = Ç^LAdÈ^dB = 1 C'dB 
J \p\ — pv\ 6 Jo A 

where A = A(0) denotes the width of K in the direction 6. 

2. Case of the space (n = 3). According to (1.3) we have two possibilities: 

(a) h = 2, q = 2; (b) h = 1, q = 3. 
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For the case (a) the elements H are pairs of parallel planes. If dQ, denotes 
the element of area on the unit sphere corresponding to the direction normal 
to the planes H and pQ, pi are their distances to a fixed origin 0, the measure 
of the set of pairs of parallel planes which contain a given convex body K 
gives the following affine invariant for K 

(KO\ n/rzrjr\ CdP° A dP1 A d9, 1 Cd® 
(5.3) M2(K) = J ]po _ pi{6 = - j ? , 

where A = A (12) denotes the width of K in the direction 12. 
For the case (b) the elements H are constituted by three parallel lines. If 

dti denotes the area element on the unit sphere at the point defined by the 
direction of these lines and dP0, dPh dP% are the elements of area of a plane 
normal to the parallel lines at the corresponding intersection points, the 
measure of the set of three parallel lines whose convex cover contains K, 
gives the following affine invariant for K: 

(5.4) Ml(K)=^jdujd-^-dl^^ 

where S denotes the area of the triangle P0P1P2. The first integration is ex
tended over all triangles P0P1P2 which contain the projection KQ, of K on 
the plane normal to the direction 12. The second integration is extended over 
half of the unit sphere. 

A direct way of obtaining the invariants (5.2) and (5.3) together with 
certain inequalities between them and the area (volume) of K has been given 
in (7). 
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