A CHARACTERIZATION OF THE FINITE SIMPLE GROUP $\boldsymbol{U}_{\mathbf{4}}(\mathbf{3})$

KOK-WEE PHAN

(Received 24 April 1967)

The aim of this paper is to give a characterization of the finite simple group $U_{4}(3)$ i.e. the 4 -dimensional projective special unitary group over the field of 9 elements. More precisely, we shall prove the following result.

Theorem. Let t_{0} be an involution in $U_{4}(3)$. Denote by H_{0}, the centralizer of t_{0} in $U_{4}(3)$.

Let G be a finite group of even order with the following properties:
(a) G has no subgroup of index 2,
(b) G has an involution t such that $H=C_{G}(t)$, the centralizer of t in G is isomorphic to H_{0}.

Then G is isomorphic to $U_{4}(3)$.
We shall use the standard notation.

1. Some properties of $\boldsymbol{H}_{\mathbf{0}}$

Let F_{9} be the finite field with 9 elements. Then the map: $x \rightarrow \bar{x}=x^{3}$ ($x \in F_{9}$) is an automorphism of F_{9}. We extend this map to a map of $G L(4,9)$ thus: $\left(\alpha_{i j}\right) \rightarrow \overline{\left(\alpha_{i j}\right)}=\left(\bar{\alpha}_{i j}\right)$ where $\left(\alpha_{i j}\right) \in G L(4,9)$. The subgroup $S U(4,9)$ in $G L(4,9)$ consisting of all matrices with determinant 1 which satisfy the relation: $\left(\alpha_{i j}\right) \cdot\left(\alpha_{i j}\right)^{*}=I$ where $\left(\alpha_{i j}\right)^{*}$ is the transpose of $\overline{\left(\alpha_{i j}\right)}$, is known as 4-dimensional special unitary group over F_{9}. Then $U_{4}(3)(=\operatorname{PSU}(4,9))$ is the factor group $S U(4,9) / Z(S U(4,9))$ where $Z(S U(4,9))$ denotes the centre of $S U(4,9)$.

Let t_{0}^{\prime} be the matrix

$$
t_{0}^{\prime}=\left(\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

Then t_{0}^{\prime} is an involution in $S U(4,9)$. Now the centre of $S U(4,9)$ is generated by the element $c=k^{2} I$ where k is a fixed primitive element of the multiplicative group of F_{9}. So $Z(S U(4,9))=\langle c\rangle$ is cyclic of order 4 .

Denote by H_{0}^{\prime}, the group of all matrices $\left(\alpha_{i j}\right)$ in $\operatorname{SU}(4,9)$ which 'commute projectively' with t_{0}^{\prime} i.e. which satisfy the relation $\left(\alpha_{i j}\right) t_{0}^{\prime}=$ $t_{0}^{\prime}\left(\alpha_{i j}\right) c_{r}(r=0,1,2,3)$. A matrix in $S U(4,9)$ belongs to H_{0}^{\prime} if and only if it has the form

$$
\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) \text { or }\left(\begin{array}{ll}
B \\
A &
\end{array}\right)
$$

where (A) and (B) are 2×2 matrices in $G U(2,9)$ with $\operatorname{det}(A) \operatorname{det}(B)=1$.
Let L_{1}^{\prime} be the subgroup of H_{0}^{\prime} consisting of matrices of the form

$$
\left(\begin{array}{lll}
A & & \\
& 1 & 0 \\
& 0 & 1
\end{array}\right)
$$

with $(A) \in S U(2,9)$. Since $S U(2,9) \cong S L(2,3)$, we can easily check that the following matrices generate L_{1}^{\prime}

$$
\begin{gathered}
a_{1}^{\prime}=\left(\begin{array}{rrrr}
0 & -1 & & \\
1 & 0 & & \\
& & 1 & 0 \\
& & 0 & 1
\end{array}\right) ; \quad b_{1}^{\prime}=\left(\begin{array}{llll}
0 & k^{6} & & \\
k^{6} & 0 & & \\
& & 1 & 0 \\
& & 0 & 1
\end{array}\right) ; \\
\sigma_{1}^{\prime}=\left(\begin{array}{cccc}
k & k^{3} & \\
k^{5} & k^{3} & & \\
& & 1 & 0 \\
& & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Now we have the matrice u^{\prime} belongs to H_{0}

$$
u^{\prime}=\left(\begin{array}{llll}
& & 1 & 0 \\
& & 0 & 1 \\
1 & 0 & & \\
0 & 1 & &
\end{array}\right)
$$

and we get

$$
u^{\prime}\left(\begin{array}{ll}
A & \\
& B
\end{array}\right)=\left(\begin{array}{ll}
& B \\
A &
\end{array}\right)
$$

The matrix v^{\prime}

$$
v^{\prime}=\left(\begin{array}{cccc}
k^{3} & k^{3} & & \\
k^{3} & k^{7} & & \\
& & k & k \\
& & k & k^{5}
\end{array}\right)
$$

also belongs to $S U(4,9)$. We check that $\left(v^{\prime}\right)^{2}=t_{0} c$ and $u^{\prime} v^{\prime} u^{\prime}=\left(v^{\prime}\right)^{-1}$. So $\left\langle u^{\prime}, v^{\prime}\right\rangle$ is dihedral of order $\mathbf{1 6}$.

Put $a_{2}^{\prime}=u^{\prime} a_{1}^{\prime} u^{\prime}, b_{2}^{\prime}=u^{\prime} b_{1}^{\prime} u^{\prime}, \sigma_{2}^{\prime}=u^{\prime} \sigma_{1}^{\prime} u^{\prime}$ and $L_{2}^{\prime}=\left\langle a_{2}^{\prime}, b_{2}^{\prime}, \sigma_{2}^{\prime}\right\rangle$. We can now verify that $H_{0}^{\prime}=\left(L_{1}^{\prime} \times L_{2}^{\prime}\right)\left\langle u^{\prime}, v^{\prime}\right\rangle$. Let $H_{0}=H_{0}^{\prime} \mid\langle c\rangle$ and in the natural homomorphism from H_{0}^{\prime} onto H_{0}, let the images of $t_{0}^{\prime}, a_{i}^{\prime}, b_{i}^{\prime}, \sigma_{i}^{\prime}$, $L_{i}^{\prime}, u^{\prime}, v^{\prime}(i=1,2)$ be $t_{0}, a_{i}, b_{i}, \sigma_{i}, L_{i}, u, v$ respectively. We have then H_{0} is a non-splitting extension of $L=L_{1} L_{2}$ by a four group. More precisely we have the following relations:

$$
\begin{aligned}
& H_{0}=L \cdot F \\
& L=L_{1} L_{2} \text { where } L_{1} \cap L_{2}=\left\langle t_{0}\right\rangle \text { and }\left[L_{1}, L_{2}\right]=1 \\
& F=\langle u, v\rangle, \text { a dihedral group of order } 8 \\
& L_{i}=\left\langle a_{i}, b_{i}, \sigma_{i}\right| a_{i}^{2}=b_{i}^{2}=t_{0}, b_{i}^{-1} a_{i} b_{i}=a_{i}^{-1}, \sigma_{i}^{-1} a_{i} \sigma_{i}=b_{i}, \\
& \left.\qquad \sigma_{i}^{-1} b_{i} \sigma_{i}=a_{i} b_{i}, \sigma_{i}^{3}=1\right\rangle
\end{aligned}
$$

and

$$
v^{-1} a_{i} v=a_{i}^{-1}, v^{-1} b_{i} v=b_{i} a_{i}, v^{-1} \sigma_{i} v=\sigma_{i}^{-1}, v^{2}=t_{0} .
$$

The structure of H_{0} is now completely determined. Of course, we have to see that the structure of H_{0} is independent of the choice of t_{0}^{\prime} in $\operatorname{SU(4,9)}$. This is so because we can check that $U_{4}(3)$ has only one conjugate class of involutions.

We shall list a few properties of H_{0}, which will be used in the next section.
(1.1) Every element of H_{0} can be written uniquely in the form $a_{1}^{i} b_{1}^{j} \sigma_{1}^{k} t_{1}^{l} t_{2}^{m} \sigma^{n} u^{v} v^{q}$ where $t_{1}=a_{1} a_{2} ; \quad t_{2}=b_{1} b_{2} ; \quad \sigma=\sigma_{1} \sigma_{2} ; \quad i=0,1,2,3$; $j=0, \mathbf{1} ; k=0, \mathbf{1}, 2 ; l=0, \mathbf{1} ; m=0, \mathbf{1} ; n=0, \mathbf{1}, \mathbf{2} ; p=0, \mathbf{1} ; q=0, \mathbf{1}$. The order of H_{0} is $2^{7} \cdot 3^{2}$.
(1.2) The group $Q=\left\langle a_{1}, a_{2}, b_{1}, b_{2}\right\rangle F \cong H_{0}$ is a Sylow 2-subgroup of H_{0}. The centre $Z(Q)$ of Q is $\left\langle l_{0}\right\rangle$.
(1.3) There are 4 conjugate classes of involutions in H_{0} with representatives $t_{0}, t_{1}, u, u v$. We have the centralizer $C_{H_{0}}\left(t_{1}\right)=A$ of t_{1} in H_{0} is the group $\left\langle a_{1}, a_{2}, t_{2}, u, v\right\rangle$, a non-abelian group of order 64 . We have the centre $Z(A)$ of A is $\left\langle t_{0}, t_{1}\right\rangle$, a four group. The commutator group A^{\prime} of A is also $\left\langle t_{0}, t_{1}\right\rangle$. The centralizer of $u, C_{H_{0}}(u)$ in H_{0} is $E_{1}\langle\sigma\rangle$ where $E_{1}=\left\langle t_{0}, t_{1}, t_{2}, u\right\rangle$, an elementary abelian group of order 16. The centralizer of $u v, C_{H_{0}}(u v)$ in H_{0} is $E_{2}\left\langle\sigma_{1} \sigma_{2}^{-1}\right\rangle$ where E_{2} is $\left\langle t_{0}, t_{1}, t_{3}, u v\right\rangle\left(t_{3}=a_{1} b_{1} b_{2}\right)$, an elementary abelian group of order $\mathbf{1 6}$.
(1.4) Both E_{1} and E_{2} are normal in the group Q. We have $N_{H_{0}}\left(E_{1}\right)=Q\langle\sigma\rangle$ and the factor group $N_{H_{0}}\left(E_{1}\right) / E_{1}$ is isomorphic to S_{4}, the symmetric group in 4 letters. Similarly we have $N_{H_{0}}\left(E_{2}\right)=Q\langle\rho\rangle$ ($\rho=\sigma_{1} \sigma_{2}^{-1}$) and the factor group $N_{H_{0}}\left(E_{2}\right) / E_{2}$ is isomorphic to S_{4}.
(1.5) The group L is the smallest normal subgroup of H_{0} with 2-factor group and H / L is a four-group.
(1.6) A Sylow 3 -subgroup T of H_{0} is $\left\langle\sigma_{1} ; \sigma_{2}\right\rangle$, an elementary abelian group of order 9. We have $C_{H_{0}}(T)=\left\langle t_{0}\right\rangle \times T$ and $N_{H_{0}}(T)=\langle u, v\rangle T$.

2. Conjugacy of involutions

Let G be a finite group with properties (a) and (b) of the theorem. Since the group $H=C_{G}(t)$ is isomorphic to H_{0}. We shall identify H with H_{0}. Then we have $t_{0}=t$.
(2.1) Lemma. The Sylow 2-subgroup Q of H is a Sylow 2-subgroup of G.

Proof. This is obvious since $Z(Q)=\langle t\rangle$ is cyclic of order 2 .
(2.2) Lemma. If the involution u is conjugate to t in G, then t_{1} is conjugate to t in G.

Proof. Since by assumption u is conjugate to τ in G, there exists a Sylow 2 -subgroup of $C_{G}(u)$ properly containing $E_{1}=\left\langle t, t_{1}, t_{2}, u\right\rangle$. Therefore there is an element x in $C_{G}(u)-H$ which normalizes E_{1}. Let us look more closely at the involutions in E_{1}. We have

$$
C_{1}=\left\{t_{1}, t t_{1}, t_{2}, t t_{2}, t_{1} t_{2}, t t_{1} t_{2}\right\}
$$

whose elements are conjugate in H and likewise

$$
C_{2}=\left\{u, t_{1} u, t_{2} u, t_{1} t_{2} u, t u, t t_{1} u, t t_{2} u, t t_{1} t_{2} u\right\}
$$

with elements conjugate in H. We see that $C_{1} \cup C_{2} \cup\{t\}=E_{1} \smile\{1\}$.
Since $x \notin H$, we must have $x^{-1} t x \neq t$. If $x^{-1} t x \in C_{1}$ or $x^{-1} t_{1} x \in C_{2}$, then we are finished. Therefore we may suppose that $x^{-1} t x \in C_{2}$ and $x^{-1} t_{1} x \in C_{1}$. Then we get $x^{-1} t t_{1} x \in C_{2}$. Since $t t_{1}$ is conjugate to t_{1}, the lemma is proved.
(2.3) Lemma. If the involution $u v$ is conjugate to t in G, then t_{1} is conjugate to t in G.

Proof. As in (2.2) with E_{2} playing the role of $E_{1}-\{1\}$.
For the proof of next lemma, we need an unpublished result of Thompson.

Lemma (Thompson [7]). Suppose (5) is a finite group of even order which has no subgroup of index 2. Let \mathscr{S}_{2} be a Sylow 2-subgroup of $\mathfrak{C S}$ and let \mathscr{M} be a maximal subgroup of \mathscr{S}_{2}. Then for each involution I of \mathfrak{G}, there is an element B of $\mathfrak{C b}$ such that $B^{-1} I B \in \mathscr{M}$.
(2.4) Lemma. If the involution t_{1} is conjugate to t in G, then G has only one conjugate class of involutions.

Proof. We have by (2.1) that Q is a Sylow 2 -subgroup of G. The group $M=\left\langle a_{1}, a_{2}, b_{1}, b_{2}, v\right\rangle$ is a maximal subgroup of Q. By our assumption, we have one class of involutions in M. The lemma follows from condition (a) of the theorem and Thompson's lemma.
(2.5) Lemma. There is only one class of involutions in G.

Proof. First we want to show that the group G is not 2-normal. By way of contradiction, suppose that it is 2 -normal. Since $\langle t\rangle$ is the centre of a Sylow 2-subgroup Q of G. It follows by Hall-Grün's theorem [4], that the greatest factor group of G which is a 2-group is isomorphic to that of $N_{G}(Z(Q))=H$, i.e. by (1.5) isomorphic to H / L which is of order 4. But this is a contradiction to condition (a) of the theorem. It follows that G is not 2-normal. This means that there is an element $z \in G$ such that $t \in Q \cap z^{-1} Q z$ but $\langle t\rangle$ is not the centre of $z^{-1} Q z$.

The centre of $z^{-1} Q z$ is $\left\langle z^{-1} t z\right\rangle$. So $z^{-1} t z \neq t$. On the other hand, we have $t \in z^{-1} Q z$. It follows that t and $z^{-1} t z$ commute. Hence $z^{-1} t z \in H$. Without loss of generality, we may assume that $z^{-1} t z \in\left\{t_{1}, u, u v\right\}$. The lemma follows now by (2.2); (2.3) and/or (2.4).
(2.6) Lemma. The group G is simple.

Proof. Suppose at first that $O(G) \neq 1$ where $O(G)$ denotes the maximal odd-order normal subgroup of G. Then the four group $\left\langle t, t_{1}\right\rangle$ acts on G. By the structure of H and (2.5), we see that $C_{G}(x)$ does not have a nontrivial intersection with $O(G)$ for $x \in\left\langle t, t_{\mathbf{1}}\right\rangle$. Hence $\left\langle t, t_{1}\right\rangle$ acts fixed-pointfree on $O(G)$ which is not possible. Hence we have that $O(G)=1$.

Suppose next that N is a proper normal subgroup of G such that $|G / N|$ is odd. We have then $H \subseteq N$ since H does not have a proper odd-order factor group. We have that $Q \subseteq N$. By Frattini argument, $G=N \cdot N_{G}(Q)$. But then $N_{G}(Q) \subseteq N_{G}\langle t\rangle=H$. So $G=N$, a contradiction.

Lastly suppose that G is not a simple group. Then G must have a proper normal subgroup K such that both $|K|$ and $|G / K|$ are even. Since by (2.5), all involutions of G are in K. This implies that $Q \subseteq L$ since Q is generated by its involutions, a contradiction to our assumption. The proof is now complete.
(2.7) Lemma. The group $N_{G}\left(E_{i}\right) / E_{i}$ is isomorphic to A_{6}, the alternating group in 6 letters $(i=1,2)$.

Proof. By (2.5), there is a. 2-group in $C_{G}(u)$ properly containing E_{1} in which E_{1} is normal. So we get that $N_{G}\left(E_{1}\right) \not \ddagger H$. Since $N_{H}\left(E_{1}\right) / E_{1}$ is
isomorphic to S_{4}, a Sylow 2-subgroup of $N_{H}\left(E_{1}\right) / E_{1}$ is dihedral of order 8. Clearly Q / E_{1} is also a Sylow 2-subgroup of $N_{G}\left(E_{1}\right) / E_{1}$. Since we have $C_{G}\left(E_{1}\right)=E_{1}$, the group $\mathscr{S}=N_{G}\left(E_{1}\right) / E_{1}$ is isomorphic to a subgroup of $G L(4,2) \cong A_{8}$ which has order $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$.

Suppose at first that $O(\mathscr{S}) \neq 1$ where $O(\mathscr{S})$ denotes the maximal odd-order normal subgroup of \mathscr{S}. Consider the action of the four-group $\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle$ on $O(\mathscr{S})$. Using the facts that all involutions of $\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle$ are conjugate in (since $\sigma E_{1} \in \mathscr{S}$) and that the centralizer of any involution in A_{8} has order $2^{6} \cdot 3$ or $2^{5} \cdot 3$, we get by a result of Brauer-Wielandt [10], that $|O(\mathscr{S})|=3^{3}$ or 3 . The first case is not possible since $3^{3} \nmid\left|A_{8}\right|$. So we have $|O(\mathscr{S})|=3$. Hence $\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle \cdot O(\mathscr{S})=\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle \times O(\mathscr{P})$. We shall rule out this case by considering $N_{\mathscr{D}}\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle$. We have $N_{G}\left\langle a_{1}, b_{1}, a_{2}, b_{2}, u\right\rangle \subseteq N_{G}\langle t\rangle$ since $Z\left\langle a_{1}, b_{1}, a_{2}, b_{2}, u\right\rangle=\langle t\rangle$. So

$$
N_{G}\left\langle a_{1}, b_{1}, a_{2}, b_{2}, u\right\rangle \cap N_{G}\left(E_{1}\right)=Q \cdot\langle\sigma\rangle
$$

and it follows $N_{\mathscr{S}}\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle \cong S^{4}$, a contradiction to

$$
\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle \cdot O(\mathscr{S})=\left\langle a_{1}, E_{1}, b_{1} E_{1}\right\rangle \times O(\mathscr{S})
$$

Thus $O(\mathscr{S})=1$.
By the structure of A_{8}, the order of $C_{\mathscr{C}}\left(a_{1} E_{1}\right)$ is $2^{3} \cdot 3$ or 2^{3}. Suppose that $\left|C_{\mathscr{L}}\left(a_{1} E_{1}\right)\right|=2^{3} \cdot 3$. We are now in a position to apply GorensteinWalter's result [3], and get $\mathscr{S} \cong \operatorname{PSL}(2,23) ; \operatorname{PSL}(2,25) ; \operatorname{PGL}(2,11)$; $P G L(2,13)$ or A_{7}. The first four cases are not possible since $|\mathscr{S}| \nmid\left|A_{8}\right|$. If 7 divides the order of \mathscr{P}, we would then have an element of order 7 in $N_{G}\left(E_{1}\right)$ which acts fixed-point-free on E_{1}, a contradiction. Thus we must have $\left|C_{\mathscr{S}}\left(a_{1} E_{1}\right)\right|=8$. Let T be a Sylow 2-subgroup of G in $C_{G}\left(t_{1}\right)$ properly containing $C_{G}\left(t_{1}\right) \cap H$. Then $Z\left(T \mid E_{1}\right) \neq\left\langle a_{1} E_{1}\right\rangle$, otherwise we would get $\left|C_{\mathscr{S}}\left(a_{1} E_{1}\right)\right|>8$. This means that \mathscr{S} has only one class of involutions. Therefore by Gorenstein-Walter [3], we get $\mathscr{S} \cong P S L(2,9) \cong A_{\mathbf{6}}$. The proof is finished.

3. Sylow 3-subgroups of G and its normalizers in G

We shall determine the structure of a Sylow 3 -subgroup of G, and the normalizer of this Sylow 3-subgroup in G.

We have $T=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subseteq H$ is a Sylow 3 -subgroup of H and $C_{H}(T)=\langle t\rangle \times T, N_{H}(T)=\langle u, v\rangle T$. By the structure of H, clearly a Sylow 2-subgroup of $C_{G}(T)$ is $\langle t\rangle$. It follows, by a theorem of Burnside [4], that $C_{G}(T)$ has a normal 2 -complement $M \supseteq T$. Since we have $C_{G}(T) \triangleleft N_{G}(T)$, we get by Frattini argument that

$$
N_{G}(T)=\left(C_{G}(t) \cap N_{G}(T)\right) C_{G}(T)=\langle u, v\rangle M
$$

The normal 2-complement M of $C_{G}(T)$ is characteristic in $C_{G}(T)$. Hence M is normal in $N_{G}(T)$. Thus the four group $\langle t, u\rangle$ acts on M. Using the result of Brauer-Wielandt [10] and the fact $C_{\boldsymbol{M}}(t)=T ; C_{\boldsymbol{M}}\langle t, u\rangle=\langle\sigma\rangle$, we get $|M|=\left|C_{M}(u)\right|\left|C_{M}(t u)\right|$. Since u and $t u$ are conjugate in $N_{G}(T)$, we have $\left|C_{M}(u)\right|=\left|C_{M}(t u)\right|$. By (2.5), we have $\left|C_{M}(u)\right|=\left|C_{M}(t u)\right|=\mathbf{3}$ or $\mathbf{3}^{2}$. So the order of M is 9 or 81 .

Suppose that the order of M is 9 . Then we have $T=M$ and so T is a Sylow 3 -subgroup of G with $N_{G}(T)=\langle u, v\rangle T$. By (2.7), we know that $N_{G}\left(E_{1}\right) / E_{1} \cong A_{6}$. Let \tilde{T} be a Sylow 3 -subgroup of $N_{G}\left(E_{1}\right)$. By the structure of A_{6} and our assumption, we have $C_{G}(\tilde{T}) \cap N_{G}\left(E_{1}\right)=\widetilde{T}$ or $\left\langle t^{\prime}\right\rangle \times \widetilde{T}$ where t^{\prime} is an involution in E_{1}. Suppose we have $C_{G}(\widetilde{T}) \cap N_{G}\left(E_{1}\right)=\left\langle t^{\prime}\right\rangle \times \widetilde{T}$. Because $C_{G}\left(E_{1}\right)=E_{1}, \widetilde{T}$ induces by conjugation on E_{1} a faithful automorphism of E_{1} and fixes an involution on E_{1}. Thus we must have 3^{2} dividing $\left(2^{4}-2\right)\left(2^{4}-4\right)\left(2^{4}-8\right)=2^{6} \cdot 3 \cdot 7$, a contradiction. Hence we get $C_{G}(\widetilde{T}) \cap N_{G}\left(E_{1}\right)=\widetilde{T}$. Now by the structure of $N_{G}(T)$, and $C_{G}(\widetilde{T}) \cap N_{G}\left(E_{1}\right)=\widetilde{T}$, we get that $\left|N_{G}(\widetilde{T}) \cap N_{G}\left(E_{1}\right)\right|=3^{2}$ or $2 \cdot 3^{2}$. The later case is impossible, since the index of $N_{G}(\widetilde{T}) \cap N_{G}\left(E_{1}\right)$ in $N_{G}\left(E_{1}\right)$ is $2^{6} \cdot 5$ which is not congruent to 1 modulo 3 . Therefore, we have $\left|N_{G}(\tilde{T}) \cap N_{G}\left(E_{1}\right)\right|=3^{2}$. By a transfer theorem of Burnside [4, p. 203], $N_{G}\left(E_{1}\right) / E_{1}$ is not simple, a contradiction. So we have shown that the order of M is not 9 .

Thus M is a group of order $\mathbf{8 1}$. We shall show that M is elementary abelian. For this, we need to look at elements of order 3 in H more closely. There are 3 conjugate classes of elements of order 3 in H with representatives $\sigma_{1}, \sigma=\sigma_{1} \sigma_{2}, \rho=\sigma_{1} \sigma_{2}^{-1}$ respectively. The centralizer of σ_{1} in H is $T \cdot\left\langle a_{2}, b_{2}\right\rangle$ and so a Sylow 2-subgroup is $C_{H}\left(\sigma_{1}\right)$ is quaternion of order 8 . The centralizer of σ in H is $\langle t, u\rangle T$ and the centralizer of ρ in H is $\langle t, u v\rangle \cdot T$. Both $C_{H}(\sigma)$ and $C_{H}(\rho)$ has a four group as its Sylow 2 -subgroup and have unique Sylow 3-subgroup T. Let $T_{1}=C_{M}(u), T_{2}=C_{M}(t u)$. We have

$$
M=C_{M}(t) C_{M}(u) C_{M}(u t)=T T_{1} T_{2} \text { and } T_{1} \cap T_{2} \cap T=\langle\sigma\rangle .
$$

Now we consider $C_{G}\left(T_{1}\right)$. By (2.5), T is conjugate to T_{1} in G. So we have $C_{G}\left(T_{1}\right)=\langle u\rangle \times \tilde{M}$ where \tilde{M} is of order 81 and \tilde{M} is normal in $N_{G}\left(T_{1}\right)$. We have $\langle t, u\rangle \subseteq N_{G}\left(T_{1}\right)$ and therefore the four group $\langle t, u\rangle$ acts on \tilde{M}. So we get $\tilde{T}=C_{G}(t) \cap \tilde{M}, \widetilde{T}_{2}=C_{G}(t u) \cap \tilde{M}$ and $C_{G}(u) \cap \tilde{M}=T_{1}$, all elementary abelian of order 9 with $\tilde{T} \cap T_{1} \cap \widetilde{T}_{2}=\langle\sigma\rangle$. Since we have $\tilde{T} \subseteq H \cap C_{G}(\sigma)$, we must have $\tilde{T}=T$. Because $\langle t, u\rangle \subseteq C_{G}(t u) \cap C_{G}(\sigma)$, by our remark in last paragraph we get $T_{2}=\tilde{T}_{2}$. Thus $M=\tilde{M}$. This means that $\left\langle T, T_{1}\right\rangle \cong Z(M)$ and so M is abelian as required.

Thus we have proved the following lemma.
(3.1) Lemma. The centralizer of T in G is a splitting extension of an
elementary abelian group M of order 81 by $\langle t\rangle$. The normalizer of T in G is the group $\langle u, v\rangle M$ where $C_{M}(t)=T ; \quad C_{M}(u)=T_{1} ; \quad C_{M}(t u)=T_{2}$; $T \cap T_{1} \cap T_{2}=\langle\sigma\rangle$ and the groups T, T_{1}, T_{2} are elementary abelian of order 9.

Next we take a look at $C_{G}\left(\sigma_{1}\right)$. By (3.1), we have $M \subseteq C_{G}\left(\sigma_{1}\right)$. By the structure of H, we get $C_{G}\left(\sigma_{1}\right) \cap H=T \cdot\left\langle a_{2}, b_{2}\right\rangle$. Let U be a Sylow 2-subgroup of $C_{G}\left(\sigma_{1}\right)$ containing $\left\langle a_{2}, b_{2}\right\rangle$. If U properly contains $\left\langle a_{2}, b_{2}\right\rangle$, we would get that $C_{G}\left(\sigma_{1}\right) \cap H$, has a Sylow 2 -subgroup properly containing $\left\langle a_{2}, b_{2}\right\rangle$, a contradiction. Hence a Sylow 2 -subgroup of $C_{G}\left(\sigma_{1}\right)$ is quaternion of order 8 . Let $V=O\left(C_{G}\left(\sigma_{1}\right)\right)$, the maximum odd-order normal subgroup of $C_{G}\left(\sigma_{1}\right)$. By Suzuki [9], the factor group $C_{G}\left(\sigma_{1}\right) / V$ has only one involution $t \cdot V$ and so $\langle t\rangle V$ is normal in $C_{G}\left(\sigma_{1}\right)$. By the Frattini argument

$$
C_{G}\left(\sigma_{1}\right)=\left(C_{G}\left(\sigma_{1}\right) \cap C_{G}(t)\right) V=\left\langle a_{2}, b_{2}\right\rangle T \cdot V
$$

Because $\left\langle a_{2}, b_{2}\right\rangle T$ is not 3-closed, it follows that $T \neq V$ and so $T \cap V=\left\langle\sigma_{1}\right\rangle$. We get $C_{G}\left(\sigma_{1}\right)=\left\langle a_{2}, b_{2}, \sigma_{2}\right\rangle V=L_{2} V \quad$ where $L_{2} \cong S L(2,3)$. Since $C_{G}(t) \cap V=\left\langle\sigma_{1}\right\rangle$, it follows that t acts fixed-point-free on $V /\left\langle\sigma_{1}\right\rangle$. So $V \mid\left\langle\sigma_{1}\right\rangle$ is abelian. Hence $V^{\prime} \cong\left\langle\sigma_{1}\right\rangle \cong Z(V)$ and V is nilpotent of class at most 2.

We have therefore proved the following lemma.
(3.2) Lemma. The centralizer of the element σ_{1} in G is the group $L_{2} V$ where $L_{2}=\left\langle a_{2}, b_{2} \sigma_{2}\right\rangle$ and $V=O\left(C_{G}\left(\sigma_{1}\right)\right)$ is odd-order and nilpotent of class at most 2.

The proof of the next lemma is rather involved.
(3.3) Lemma. We have that $N_{G}(M) / M$ is isomorphic to A_{6}, the alternating group in 6 letters.

Proof. Since M is characteristic in $N_{G}(T)$, we get $\langle u, v\rangle \subseteq N_{G}(M)$. Let $U \supseteq\langle u, v\rangle$ be a Sylow 2-subgroup of $N_{G}(M)$. If $U \supset\langle u, v\rangle$, this would imply that $C_{G}(t) \cap U \supset\langle u, v\rangle$. Since $C_{G}(t) \cap M=T$ is normalized by $C_{G}(t) \cap U$, this would give a contradiction to the structure of $C_{G}(t)$. Hence $U=\langle u, v\rangle$ and a Sylow 2 -subgroup of $N_{G}(M)$ is dihedral of order 8.

Since the four group $\langle t, u\rangle$ acts on $O\left(N_{G}(M)\right)$ and $C_{M}\langle t, u\rangle=\langle\sigma\rangle$, we get $O\left(N_{G}(M)\right)=M$. Now suppose that $N_{G}(M)=N_{G}(T)$, then M is a Sylow 3 -subgroup of G. The groups T and T_{1}, being conjugate in G, should be conjugate in $N_{G}(M)$, by a theorem of Burnside [4], a contradiction. So we get that $N_{G}(M) \supset N_{G}(T)$.

By (3.2), $C_{G}(T)=\langle t\rangle M$ and so $C_{G}(M)=M$. Hence $N_{G}(M) / M$ is isomorphic to a subgroup of $G L(4,3)$. Since $C_{G}(t) \cap N_{G}(M)=\langle u, v\rangle T$. we get $C(t M) \cap\left(N_{G}(M) / M\right)=\langle u, v\rangle M / M$. We are now in a position to use the result of Gorenstein-Walter [3], giving $N_{G}(M) / M \cong A_{7} ; \operatorname{PSL}(2,7)$; $P S L(2,9) ; P G L(2,3)$ or $P G L(2,5)$. Because 7 does not divide $|G L(4,3)|$,
we have $N_{G}(M) / M$ is isomorphic to $\operatorname{PSL}(2,9) ; \operatorname{PGL}(2,3)$ or $\operatorname{PGL}(2,5)$.
Suppose that $N_{G}(M) / M$ is isomorphic to $\operatorname{PGL}(2,3)$ or $P G L(2,5)$. Let K be a subgroup of index 2 in $N_{G}(M)$. Then a Sylow 2 -subgroup of K is either $\langle t, u\rangle$ or $\langle t, u v\rangle$. First suppose that it is $\langle t, u\rangle$. We have then F / M is isomorphic to A_{4} or A_{5}. In either case, there exists an element μ of 3-power order in F such that $N_{G}\langle t, u\rangle \cap F=\langle t, u\rangle\langle\sigma, \mu\rangle$ where $\langle\sigma, \mu\rangle$ is a group of order 9 and $\mu^{-1} t \mu=u, \mu^{-1} u u=t u, \mu^{-1} u \mu=t$. The group $\langle\sigma, \mu\rangle$ is either elementary abelian or cyclic of order 9 . Since $C_{G}(t, u\rangle=E_{1}\langle\sigma\rangle$, and E_{1} is characteristic in $C_{G}\langle t, u\rangle$, we have $E_{1} \triangleleft N_{G}\langle t, u\rangle$. By (2.7), a Sylow 3-subgroup of $N_{G}\left(E_{1}\right)$ is elementary abelian of order 9 . Hence we have shown that μ is an element of order 3 and $\langle t, u\rangle\langle\mu\rangle \cong A_{4}$.

Put $\mathscr{M}=M\langle\mu\rangle$. It follows that

$$
T_{1}=M \cap C_{G}(u)=T^{\mu} \text { and } T_{2}=M \cap C_{G}(t u)=T^{\mu^{2}}
$$

Let $\rho=\sigma_{1} \sigma_{2}^{-1}$. Then

$$
T=\langle\sigma, \rho\rangle, T_{1}=\left\langle\sigma, \rho^{\mu}\right\rangle, T_{2}=\left\langle\sigma, \rho^{\mu^{2}}\right\rangle
$$

So every element of M can be written uniquely in the form $\sigma^{\alpha} \rho^{\beta} \rho_{1}^{\gamma} \rho_{2}^{\delta}$ where $\rho_{1}=\rho^{\mu} ; \rho_{2}=\rho^{\mu^{2}} ; \alpha, \beta, \gamma, \delta=0,1$ or -1 . Therefore the structure of \mathscr{M} is completely determined. Since \mathscr{M} is non-abelian, we have

$$
Z(\mathscr{M})=C_{M}(\mu)=\left\langle\sigma, \rho \rho_{1} \rho_{2}\right\rangle .
$$

An easy computation shows that $\mathscr{M}^{\prime}=\left\langle\rho \rho_{1} \rho_{2}, \rho \rho_{1}^{-1}\right\rangle$, which is elementary abelian of order 9 . Since $Z(\mathscr{M}) \neq \mathscr{M}^{\prime}$, we get $C_{\mathscr{M}}\left(\mathscr{M}^{\prime}\right)=M$ and therefore $M \triangleleft N_{G}(\mathscr{M})$. This gives $N_{G}(\mathscr{M}) \subseteq N_{G}(M)$ and in particular \mathscr{M} is a Sylow 3-subgroup of G.

Let $M_{1}=M \cap V$. Suppose that V has a characteristic subgroup X of order $\geqq 9$ contained in M. Then $X \triangleleft C_{G}\left(\sigma_{1}\right)$ and so $C_{G}(X) \cap C_{G}\left(\sigma_{1}\right)$ is normal in $C_{G}\left(\sigma_{1}\right)$. Suppose that $t \in C_{G}(X)$. Then $X \subseteq C_{G}(t) \cap V=\left\langle\sigma_{1}\right\rangle$, a contradiction to our assumption. Thus $\left\langle\sigma_{2}\right\rangle=C_{G}(X) \cap L_{2}$, which would imply that $\left\langle\sigma_{2}\right\rangle$ is normal in L_{2}, a contradiction. Hence V does not have any characteristic subgroup of order $\geqq 9$ contained in M_{1}. It follows that M_{1} is not a Sylow 3-subgroup of V. Let $M_{2} \supset M_{1}$ be a Sylow 3-subgroup of V. Then $\left[M_{2}: M_{1}\right]=3$ and so $\left\langle M_{2}, \sigma_{2}\right\rangle$ is a Sylow 3-subgroup of G. If M_{2} were abelian, then $C_{G}\left(M_{1}\right) \supseteqq\left\langle M_{2}, \sigma_{2}\right\rangle$ and so $M_{1} \cong Z\left\langle M_{2}, \sigma_{2}\right\rangle$, which contradicts $|Z(\mathscr{M})|=9$. Hence M_{2} is non-abelian and so $\left\langle\sigma_{1}\right\rangle \subseteq Z\left(M_{2}\right) \subseteq M_{1}$. Thus we get $Z\left(M_{2}\right)=\left\langle\sigma_{1}\right\rangle$ and also $M_{2}^{\prime}=\left\langle\sigma_{1}\right\rangle$. Since M_{2} is a 3 -group of class at most 2 , it follows that M_{2} is regular (in the sense of P. Hall). If M_{2} were not of exponent 3 , then M_{1} would be characteristic in M_{2}, a contradiction. It follows that the Frattini group $\phi\left(M_{2}\right)=\left\langle\sigma_{1}\right\rangle$ and so $M_{2} /\left\langle\sigma_{1}\right\rangle$ is a 'vector space' of dimension 3 over the field of 3 elements F_{3}.

For any two elements $\bar{x}=x\left\langle\sigma_{1}\right\rangle, \bar{y}=\left\langle\sigma_{1}\right\rangle$ of $M_{2} /\left\langle\sigma_{1}\right\rangle$ where $x, y \in M_{2}$, define $[\bar{x}, \bar{y}]=c$ where $c \in F_{3}$ and $[x, y]=x^{-1} y^{-1} x y=\sigma_{1}^{c}$. Then $[\bar{x}, \bar{y}]$ is a non-singular bilinear skew symmetric form defined on $M_{2} /\left\langle\sigma_{1}\right\rangle$ with values in F_{3} [5]. But then the dimension of $M_{2} /\left\langle\sigma_{1}\right\rangle$ must be even by [1], a contradiction.

An identical proof applies when a Sylow 2-subgroup of K is $\langle t, u v\rangle$. Therefore we have shown that $N_{G}(M) / M$ is isomorphic to A_{6}.

We shall now begin the determination of the structure of a Sylow 3-subgroup of G. But first, we look at the structure of $N_{G}(M)$ more closely. Since the normalizer of a four group in A_{6} is of order 24 , there exists an element μ of 3 -power order such that $N_{G}\langle t, u\rangle \cap N_{G}(M)=\langle u, v\rangle \cdot\langle\sigma, \mu\rangle$. By the same reasoning as in (3.3), we conclude that μ is of order 3 and we have $\mu^{-1} t \mu=u, \mu^{-1} u \mu=t u$.

Let \mathscr{S} be the isomorphism of $N_{G}(M) / M$ onto A_{6}. Without loss of generality, we may suppose that $(v M) \mathscr{S}=(1324)(56),(u M) \mathscr{S}=(13)(24)$ and choosing μ in $N_{G}\langle t, u\rangle$ suitably, we may assume that $(\mu M) \mathscr{S}=(132)$. Let $z \in N_{G}(M)$ such that $(z M) \mathscr{S}=(12)(45)$. Then we have

$$
\begin{align*}
& (\mu M) \mathscr{S}=(132)=e_{1} ;(t M) \mathscr{S}=(12)(34)=e_{2} \\
& (z M) \mathscr{S}=(12)(45)=e_{3} ;(t u v M) \mathscr{S}=(12)(56)=e_{4}, \cdots \tag{*}
\end{align*}
$$

By Moore, we have $A_{6}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$. Next we may represent $N_{G}(M) / M$ as linear transformations on the vector space, M over the field of 3 elements in term of the basis $\sigma, \rho, \rho_{1}=\rho^{\mu}, \rho_{2}=\rho^{\mu^{2}}$. The representation is faithful since $C_{G}(M)=M$. Hence we get

$$
\begin{gathered}
\mu M \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) ; \quad t M \rightarrow\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right) \\
u M \rightarrow\left(\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right)
\end{gathered}
$$

From the relations $v^{2}=t, v^{-1} u v=t u$, we get v is represented by the matrix

$$
v M \rightarrow\left(\begin{array}{rrrr}
-1 & 0 & & \\
0 & -1 & & \\
& & 0 & -1 \\
& & 1 & 0
\end{array}\right)
$$

interchanging v by v^{-1} if necessary.

Let $(z M)$ be represented by $\left(\alpha_{i j}\right) \in G L(4,3)$. Then from the relation $(\mu z M)^{2}=M$, we get that z is representated by

$$
z M \rightarrow\left(\begin{array}{llll}
\alpha_{11} & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\
\alpha_{21} & \alpha_{23} & \alpha_{24} & \alpha_{22} \\
\alpha_{21} & \alpha_{24} & \alpha_{22} & \alpha_{23}
\end{array}\right)
$$

and from $(z M)^{2}=M$, we get
(**) $\quad\left(\begin{array}{llll}\alpha_{11}^{2} & \alpha_{12} \cdot s & \alpha_{12} \cdot s & \alpha_{12} \cdot s \\ \alpha_{21} \cdot s & g+h_{1} & g+h_{2} & g+h_{2} \\ \alpha_{21} \cdot s & g+h_{2} & g+h_{1} & g+h_{2} \\ \alpha_{21} \cdot s & g+h_{2} & g+h_{2} & g+h_{1}\end{array}\right)=\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1\end{array}\right) \cdots$
where

$$
\begin{aligned}
s & =\alpha_{11}+\alpha_{22}+\alpha_{23}+\alpha_{24} \\
g & =\alpha_{12} \alpha_{21} \\
h_{1} & =\alpha_{22}^{2}+\alpha_{23}^{2}+\alpha_{24}^{2} \\
h_{2} & =\alpha_{22} \alpha_{23}+\alpha_{23} \alpha_{24}+\alpha_{24} \alpha_{22}
\end{aligned}
$$

We have $(z \cdot t u v M) \rightarrow(456)$. Therefore the group $M\langle\mu, z t u v\rangle$ is a Sylow 3-subgroup of $N_{G}(M)$. As before, put $\mathscr{M}=M\langle\mu\rangle$. By the proof in (3.3), we have $Z(\mathscr{M})=\left\langle\sigma, \rho \rho_{1} \rho_{2}\right\rangle ; \mathscr{M}^{\prime}=\left\langle\rho \rho_{1} \rho_{2}, \rho \rho_{1}^{-1}\right\rangle$. Hence $Z(\mathscr{M}) \cap \mathscr{M}^{\prime}=\left\langle\rho \rho_{1} \rho_{2}\right\rangle$ is characteristic in \mathscr{M} and so $\left\langle\rho \rho_{1} \rho_{2}\right\rangle$ is normal in $M\langle\mu, z t u v\rangle$. Therefore we have $\rho \rho_{1} \rho_{2}$ centralized by $\lambda=z t u v$.

Now λ is represented by the matrix

$$
\lambda M \rightarrow\left(\begin{array}{llll}
-\alpha_{11} & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
-\alpha_{21} & \alpha_{22} & \alpha_{24} & \alpha_{23} \\
-\alpha_{21} & \alpha_{23} & \alpha_{22} & \alpha_{24} \\
-\alpha_{21} & \alpha_{24} & \alpha_{23} & \alpha_{22}
\end{array}\right) .
$$

From $(\lambda M)^{3}=M$, we get $\alpha_{11}=-1$. Since λ commute with $\rho \rho_{1} \rho_{2}$, we obtain $\alpha_{22}+\alpha_{23}+\alpha_{24}=1$. Since $(t z)^{3} \in M$, this implies that $\alpha_{12} \alpha_{21}\left(1+\alpha_{22}\right)=-1$ (by working at the (1,1) entry of the representation of $t z$). Therefore $\alpha_{12} \alpha_{21} \neq 0$. First suppose that $\alpha_{12} \alpha_{21}=1$. Then we have $\alpha_{22}=1$. By ($\left.* *\right)$, we get $h_{2}=-1$. So we obtain $\alpha_{24}=-\alpha_{23} \neq 0$. Hence $t z$ is represented by the matrix

$$
t z M \rightarrow\left(\begin{array}{cccl}
-1 & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
\alpha_{12} & 1 & \alpha_{23} & -\alpha_{23} \\
-\alpha_{12} & -\alpha_{23} & \alpha_{23} & -1 \\
-\alpha_{12} & \alpha_{23} & -1 & -\alpha_{23}
\end{array}\right)
$$

and we check that $(t z)^{3} \notin M$, a contradiction.

Thus we must have $\alpha_{12} \alpha_{21}=-1$. Then $\alpha_{22}=0$, from $\alpha_{22}+\alpha_{23}+\alpha_{24}=1$, we get $\alpha_{23}=\alpha_{24}=-1$. Hence we have z represented by

$$
z M \rightarrow\left(\begin{array}{cccc}
-1 & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
-\alpha_{12} & 0 & -1 & -1 \\
-\alpha_{12} & -1 & -1 & 0 \\
-\alpha_{12} & -1 & 0 & -1
\end{array}\right)
$$

and

$$
\lambda M \rightarrow\left(\begin{array}{cccc}
-1 & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
-\alpha_{12} & 0 & -1 & -1 \\
-\alpha_{12} & -1 & 0 & -1 \\
-\alpha_{12} & -1 & -1 & 0
\end{array}\right)
$$

Interchanging λ by λ^{-1}, if necessary, we may suppose that $\alpha_{12}=-1$.
Now $M\langle\lambda, \mu\rangle$ is a Sylow 3 -subgroup of $N_{G}(M)$ and by the structure of A_{6}, the commutator $[\lambda, \mu] \in M$. Since M is abelian, and $M\langle\lambda, \mu\rangle$ is not, we get $Z(M\langle\lambda, \mu\rangle)=C_{M}\langle\lambda, \mu\rangle=\left\langle\rho \rho_{1} \rho_{2}\right\rangle$. An easy computation shows that the commutator group of $M\langle\lambda, \mu\rangle$ contains $\left\langle\sigma, \rho \rho_{1} \rho_{2}, \rho \rho_{1}^{-1}\right\rangle$ and is contained in M. Since $Z(M\langle\lambda, \mu\rangle) \neq(M\langle\lambda, \mu\rangle)^{\prime}$, we see that M is characteristic in $M\langle\lambda, \mu\rangle$. So we have $N_{G}(M\langle\lambda, \mu\rangle) \subseteq N_{G}(M)$. Hence $M\langle\lambda, \mu\rangle$ is a Sylow 3 -subgroup of G. and moreover, by the structure of A_{6}, the normalizer of $M\langle\lambda, \mu\rangle$ is a splitting extension of $M\langle\lambda, \mu\rangle$ by a group of order 4.

Next we check that we have $z^{\prime}=\left(\mu^{2} t z\right)^{3}$ such that $\left(z^{\prime}\right) \rho \rho_{1} \rho_{2} z^{\prime}=\sigma \rho$. Let $\mu^{\prime}=\left(z^{\prime}\right)^{-1} \mu z$ and $\lambda^{\prime}=\left(z^{\prime}\right)^{-1} \lambda z^{\prime}$, we see that $\left\langle\lambda^{\prime}, \mu^{\prime}\right\rangle \cong C_{G}\left(\sigma_{1}\right)$. and that $\mu^{\prime}, \lambda^{\prime}$ are represented by the following matrices.

$$
\mu^{\prime} M \rightarrow\left(\begin{array}{rrrr}
-1 & -1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & -1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) ; \quad \lambda^{\prime} M \rightarrow\left(\begin{array}{rrrr}
-1 & -1 & -1 & 1 \\
1 & 0 & -1 & 1 \\
-1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) .
$$

Therefore we have

$$
\left(\mu^{\prime}\right)^{-1} \lambda^{\prime} M \rightarrow\left(\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
-1 & -1 & 1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) ; \quad\left(\mu^{\prime}\right)^{-1}\left(x^{\prime}\right)^{-1} \cdot M \rightarrow\left(\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
-1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right) .
$$

The group $M\left\langle\lambda^{\prime}, \mu^{\prime}\right\rangle$ is contained in $C_{G}\left(\sigma_{1}\right)$. We turn our attention back to $C_{G}\left(\sigma_{1}\right)$. Let $U_{1} \subseteq V$ be the Sylow 3 -subgroup of V. We have $M \cap V=M_{1}$ is elementary abelian of order 27 . Suppose that $\rho_{1}=\rho^{\mu} \notin M_{1}$.

Then we have $\rho_{1}=\sigma_{2}^{j} m$ for some fixed $j=1$ or $\mathbf{- 1}$ and $m \in M_{1}$. Now t acts fixed-point-free on $V /\left\langle\sigma_{1}\right\rangle$. Therefore we get

$$
t \rho_{1} t=\sigma_{2}^{j} m^{-1} \sigma_{1}^{i}=\rho_{1}^{-1}=\sigma_{2}^{-j} m^{-1} \sigma_{1}^{i}
$$

giving $\sigma_{2}^{j}=\sigma_{1}^{i}$, a contradiction. Similarly we can show that $\rho_{2}=\mu^{\mu^{2}} \in M_{1}$.
Let $\left\langle\rho_{1}^{a_{2}}, \rho_{2}^{a_{2}}\right\rangle=\left\langle\rho_{3}, \rho_{4}\right\rangle \subseteq U_{1}$. By way of contradiction, suppose that $\left\langle\rho_{3}, \rho_{4}\right\rangle \cap M_{1}$ is non-empty. Then there exists an element $\rho_{3}^{i} \rho_{4}^{j} \in M_{1}$ for fixed i, j not both zero. Since σ_{2} centralize M_{1}, we would then get $b_{2}^{-1} \rho_{1}^{i} \rho_{2}^{j} b_{2}=a_{2}^{-1} \rho_{1}^{i} \rho_{2}^{j} a_{2}$. This is a contradiction, since $C_{G}(t) \cap V=\left\langle\sigma_{1}\right\rangle$. Thus $\left\langle\rho_{3}, \rho_{4}\right\rangle \subseteq M_{1}$. Since a Sylow 3 -subgroup of G is of order 3^{6} we must have $U_{1}=\left\langle\sigma_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right\rangle$.

The group $U_{1} \mid\left\langle\sigma_{1}\right\rangle$ is abelian and so is elementary abelian of order 81 . We may then represent the group $L_{2}=\left\langle a_{2}, b_{2}, \sigma_{2}\right\rangle$ as linear transformations on the 'vector space' $U_{1} \mid\left\langle\sigma_{1}\right\rangle$ over the field of 3 elements. We get in terms of the basis $\rho_{1}\left\langle\sigma_{1}\right\rangle, \rho_{2}\left\langle\sigma_{1}\right\rangle, \rho_{3}\left\langle\sigma_{1}\right\rangle, \rho_{4}\left\langle\sigma_{1}\right\rangle$, the representation of a_{2}

$$
a_{2} \rightarrow\left(\begin{array}{rrrr}
& & -1 & 0 \\
& & 0 & -1 \\
1 & 0 & & \\
0 & 1 & &
\end{array}\right) .
$$

We have shown that $v^{-1} \rho_{1} v=\rho_{2}, v^{-1} \rho_{2} v=\rho_{1}^{-1}$. Therefore with the relation $v^{-1} a_{2} v=a_{2}^{-1}$, we get

$$
v \rightarrow\left(\begin{array}{rrrr}
0 & -1 & & \\
1 & 0 & & \\
& & 0 & 1 \\
& & -1 & 0
\end{array}\right)
$$

Let σ_{2} be represented by the matrix

$$
\sigma_{2} \rightarrow\left(\begin{array}{ll}
I & C \\
0 & D
\end{array}\right)
$$

where (C) and (D) are 2×2 matrices. From the relation $\left(a_{2} \sigma_{2}\right)^{3}=1$, we get that $(C)=\left(-D^{-1}\right)$. Since (D) is non-singular, we have $\operatorname{det}(D)= \pm 1$. Suppose $\operatorname{det}(D)=-1$, then using the relation $v^{-1} \sigma_{2} v=\sigma_{2}^{-1}$, we obtain a contradiction. Hence $\operatorname{det}(D)=1$. Again by the relation $v^{-1} \sigma_{2} v=\sigma_{2}^{-1}$, we obtain that $(D)=$ identity matrix. Hence σ_{2} is represented by

$$
\sigma_{2}=\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

It follows that $\left\langle\rho_{3}, \rho_{4}\right\rangle \subseteq N_{G}(M) \cap C_{G}\left(\sigma_{1}\right)-M$. So comparing the action of the group $\left\langle\lambda^{\prime}, \mu^{\prime}\right\rangle$ on M, we conclude that $\rho_{3} M=\left(\mu^{\prime}\right)^{-1} \lambda^{\prime} M$ and $\rho_{4} M=\left(\mu^{\prime}\right)^{-1}\left(\lambda^{\prime}\right)^{-1} M$. We have

$$
N_{G}(P)=U_{1}\left(N_{G}\left(\sigma_{2}\right) \cap L_{2}\langle v\rangle\right)=U_{1}\left\langle\sigma_{2}\right\rangle\langle v\rangle=P\langle v\rangle
$$

where $P=U_{1}\left\langle\sigma_{2}\right\rangle$. Thus we have proved the following lemma.
(3.4) Lemma. The group $P=M\left\langle\rho_{3}, \rho_{4}\right\rangle$ is a Sylow 3-subgroup of G and has the following structure:

$$
M=T T_{1} T_{2}
$$

an elementary abelian group of order 81 where

$$
\begin{aligned}
& T=C_{M}(t)=\langle\sigma, \rho\rangle \\
& T_{1}=C_{M}(u)=\left\langle\sigma, \rho_{1}\right\rangle \\
& T_{2}=C_{M}(t u)=\left\langle\sigma, \rho_{2}\right\rangle
\end{aligned}
$$

elementary abelian of order 9 and

$$
\begin{array}{clll}
\rho_{3}^{-1} \sigma_{1} \rho_{3}=\sigma_{1} ; & \rho_{3}^{-1} \sigma_{2} \rho_{3}=\sigma_{2} \rho_{3} \sigma_{1} ; & \rho_{3}^{-1} \rho_{1} \rho_{3}=\rho_{1} \sigma_{1}^{-1} ; & \rho_{3}^{-1} \rho_{2} \rho_{3}=\rho_{2} ; \\
\rho_{4}^{-1} \sigma_{1} \rho_{4}=\sigma_{1} ; & \rho_{4}^{-1} \sigma_{2} \rho_{4}=\sigma_{2} \rho_{4} \sigma_{1} ; & \rho_{4}^{-1} \rho_{1} \rho_{4}=\rho_{1} ; & \rho_{4}^{-1} \rho_{2} \rho_{4}=\rho_{2} \sigma_{1}^{-1} . \\
\text { Moreover } N_{G}(P)=P \cdot\langle v\rangle \text { where } & \\
v^{-1} \rho_{1} v=\rho_{2}, \quad v^{-1} \rho_{2} v=\rho_{1}^{-1}, \quad v^{-1} \rho_{3} v=\rho_{4}^{-1}, \quad v^{-1} \rho_{4} v=\rho_{3} .
\end{array}
$$

4. Final characterization

Using the informations already found, we shall now prove that G is isomorphic to $U_{4}(3)$. The following preliminary lemmas are required.
(4.1) Lemma. The group P and its conjugate $t_{1} P t_{1}$ have trivial intersection.

Proof. We have $P \subseteq C_{G}\left(\sigma_{1}\right)$. Therefore

$$
P \cap t_{1} P t_{1} \cong C_{G}\left(\sigma_{1}\right) \cap C_{G}\left(\sigma_{1}^{t_{1}}\right) \subseteq C_{G}\left(\sigma_{1}\right) \cap C_{G}\left(a_{1} b_{1}\right)=\left\langle\sigma_{2}\right\rangle
$$

The group $P \cap t_{1} P t_{1}$ is normalized by t_{1}. So it follows that $P \cap t_{1} P t_{1}=1$.
(4.2) Lemma. We have the following relations:

$$
\left(a_{2} \sigma_{2}\right)^{3}=\left(u t \rho_{3}\right)^{3}=\left(u \rho_{4}\right)^{3}=\left(v u \rho_{3}^{-1} \rho_{4}\right)^{3}=\left(t u v \rho_{3}^{-1} \rho_{4}^{-1}\right)^{3}=1 .
$$

Proof. Using our representation, of $N_{G}(M)$ as linear transformation on the vector space M, we compute that $\left(u t \rho_{3}\right)^{3} \in M$. Since $\rho_{3}=a_{2}^{-1} \rho_{1} a_{2}$, we have $u t_{\rho_{3}} \in C_{G}\left(u t t_{1}\right)$. So $\left(u t \rho_{3}\right)^{3} \in M \cap C_{G}\left(u t t_{1}\right) \cong P \cap C_{G}\left(u t t_{1}\right)=\left\langle\rho_{3}\right\rangle$. Therefore we get $\left(u t \rho_{3}\right)^{3}=1$.

Next we have $u \rho_{4}=v\left(u t \rho_{3}\right) v^{-1}$. So we get $\left(u \rho_{4}\right)^{3}=1$. Again from our representations of $u v$ and $\rho_{3}^{-1} \rho_{4}$, we verify that $\left(u v \rho_{3}^{-1} \rho_{4}\right)^{3} \in M$. Also we have $u v \rho_{3}^{-1} \rho_{4} \in C_{G}\left(u v t_{1}\right)$. Hence

$$
\left(u v \rho_{3}^{-1} \rho_{4}\right)^{3} \cong M \cap C_{G}\left(u v t_{1}\right) \subseteq P \cap C_{G}\left(u v t_{1}\right)=\left\langle\rho_{3}^{-1} \rho_{4}\right\rangle .
$$

Showing that $\left(u v \rho_{3}^{-1} \rho_{4}\right)^{3}=1$. By (3.4) we have $\left(t u v \rho_{3}^{-1} \rho_{4}^{-1}\right)=v^{-1}\left(u v \rho_{3}^{-1} \rho_{4}\right) v$. Therefore $\left(t u v \rho_{3}^{-1} \rho_{4}^{-1}\right)^{3}=1$.

By the structure of H, we know that $\left(a_{2} \sigma_{2}\right)^{3}=1$.
The assertions of this lemma are completely proved.
(4.3) Lemma. The group $W=N_{G}\langle v\rangle \mid\langle v\rangle$ is generated by the involutions $r_{1}=a_{2}\langle v\rangle$ and $r_{2}=u\langle v\rangle$ and is dihedral of order 8.

Proof. Obvious from the structure of H.
Put $B=N_{G}(P)$, and $N=N_{G}\langle v\rangle$. We want to show that the set of elements in $B N B$ forms a subgroup of G. For any $w \in W$, define $l(w)=l$ to be the smallest positive integer such that $w=r_{i_{1}} r_{i_{2}} \cdots r_{i_{i}}$ where $r_{i_{j}} \in\left\{r_{1}, r_{2}\right\}$. Let $\omega\left(r_{1}\right)=a_{2}, \omega\left(r_{2}\right)=u$. For any $w \in W$, and $w=r_{i_{1}} \cdots r_{i_{i}}$, define $\omega(w)=\omega\left(r_{i_{1}}\right) \cdots \omega\left(r_{i_{2}}\right)$. We shall denote $B w B$ to mean $B \omega(w) B$.
(4.4) Lemma. The set of elements in $B \cup B r_{i} B(i=1,2)$ forms a subgroup of G.

Proof. Let $g=b \omega\left(r_{i}\right) b^{\prime} \in B r_{i} B$ where $b, b^{\prime} \in B$. Then the element $g^{\prime}=\left(b^{\prime}\right)^{-1} \omega\left(r_{i}\right)\left(\omega\left(r_{i}\right)^{-2} b^{-1}\right) \in B r_{i} B$ and is an inverse of g.

Let $G_{1}=B \cup B r_{1} B=B \cup B a_{2} B$. Clearly to show that G_{1} is closed with respect to multiplication, we need only to show that $a_{2} \sigma_{2}^{\delta} a_{2} \in G_{1}$ $\langle\delta=0,1,-1)$; since B has the form $\left\langle\sigma_{2}\right\rangle\left(\langle v\rangle\left\langle\sigma_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right\rangle\right)$ and $\langle v\rangle\left\langle\sigma_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right\rangle$ is normalized by a_{2}. If $\delta=0$, then $a_{2} \sigma_{2}^{\delta} a_{2}=t \in B$. If δ is 1 , then by (4.3), $a_{2} \sigma_{2} a_{2}=\sigma_{2}^{-1} a_{2}\left(t \sigma_{2}^{-1}\right) \in B a_{2} B$. Similarly of $\delta=-1$, we get $a_{2} \sigma_{2}^{-1} a_{2}=t \sigma_{2} a_{2} \sigma_{2} t \in B a_{2} B$. Hence we have shown that G_{1} is a subgroup of G.

Next to show that $G_{2}=B \cup B r_{2} B$ is a subgroup of G, we need to show that $u \rho_{3}^{i} u \rho_{4}^{j} \in G_{2}(i, j=0,1,-1)$. By using (4.3), and similar reasoning as in the last case, this is in fact true.
(4.5) Lemma. For any i and $w \in W$, if $l\left(r_{i} w\right) \geqq l(w)$, then $r_{i} B w \cong B r_{i} w B$.

Proof. First of all, we construct table I showing the action of a_{2} and u on P by conjugation.

Table I

	σ_{1}	σ_{2}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}
a_{2}	σ_{1}	-	ρ_{3}	ρ_{4}	ρ_{1}^{-1}	ρ_{2}^{-1}
\boldsymbol{u}	σ_{2}	σ_{1}	ρ_{1}	ρ_{2}^{-1}	-	-

To prove this lemma, we construct table II, showing $l\left(r_{i} w\right)$ and $l(w)$ for all i and $w \in W$. Clearly we need only to see that $r_{1} \sigma_{2} w \subseteq B r_{1} w B$ and $r_{2} \rho_{3}^{i} \rho_{4}^{j} w \subseteq B r_{2} w B \quad(i, j=0,1,-1)$. It is easily verified that for those $w \in W$ such that $l\left(r_{2} w\right) \geqq l(w)$, we can always get $r_{1} \sigma_{2} w \in B r_{1} w y_{1}$ and $r_{2} \rho_{3}^{i} \rho_{4}^{j} w \in B r_{2} \rho_{3}^{i} \rho_{4}^{j} y_{2}$, using the informations in table I. Hence the lemma is completely proved.

Table II

w	$l(w)$	$l\left(r_{1} w\right)$	y_{1}	$l\left(r_{2} w\right)$	y_{2}
1	0	1	1	1	1
r_{1}	1	0		2	$\rho_{1}^{-i} \rho_{2}^{-j}$
r_{2}	1	2	σ_{1}	0	
$r_{1} r_{2}$	2	1		3	$\rho_{2}^{-i} \rho_{2}^{j}$
$r_{2} r_{1}$	2	3	σ_{1}	1	
$r_{1} \gamma_{2} r_{1}$	3	2		4	$\rho_{3}^{-i} \rho_{4}^{j}$
$r_{2} r_{1} r_{2}$	3	4	σ_{2}	2	
$r_{1} \gamma_{2} r_{1} r_{2}$	4	3		3	

(4.6) Lemma. The set of elements $G_{0}=B N B$ is a subgroup of G and if we have $B w_{1} B=B w_{2} B$, then $w_{1}=w_{2}$.

Proof. It follows from (4.4), (4.5) and Tits [8].
We shall next compute the order of G_{0}. Define for any $w \in W$, the group B_{w} generated by elements $x \in P$ such that $\omega(w) \times \omega(w)^{-1} \in t_{1} P t_{1}$. The groups B_{w} for all $w \in W$ are shown in the next table.

Table III

w	1	r_{1}	r_{2}	$r_{1} r_{2}$
B_{w}	1	$\left\langle\sigma_{2}\right\rangle$	$\left\langle\rho_{3}, \rho_{4}\right\rangle$	$\left\langle\sigma_{1}, \rho_{3}, \rho_{4}\right\rangle$
$\left(B_{w}\right)^{\prime}$	P	$\left\langle\sigma_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right\rangle$	M	$\left\langle\sigma_{2}, \rho_{1}, \rho_{2}\right\rangle$
$r_{2} \gamma_{1}$	$r_{1} r_{2} \gamma_{1}$	$r_{2} r_{1} \gamma_{2}$	$r_{1} \gamma_{2} r_{1} r_{2}$	
$\left\langle\sigma_{2}, \rho_{1}, \rho_{2}\right\rangle$	M	$\left\langle\sigma_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right\rangle$	P	
$\left\langle\sigma_{1}, \rho_{3}, \rho_{4}\right\rangle$	$\left\langle\rho_{3}, \rho_{4}\right\rangle$	$\left\langle\sigma_{2}\right\rangle$	1	

We observe that for every B_{w}, there exists the subgroup $\left(B_{w}\right)$ such that $B_{w}\left(B_{w}\right)^{\prime}=P$ and $B_{w} \cap\left(B_{w}\right)^{\prime}=1$ (see (4.1)).
(4.7) Lemma. The order of G_{0} is $2^{7} \cdot 3^{6} \cdot 5 \cdot 7$.

Proof. We show first that every element of G_{0} can be written in the 'normal' form $h p \omega(w) p_{w}$ where $h \in\langle v\rangle, p \in P$ and $p_{w} \in B_{w}$. By (4.6), every element x in G_{0} has the form $x=b_{1} \omega(w) b_{2}$ where $b_{1}, b_{2} \in B$. Since we have $P=B_{w}\left(B_{w}\right)^{\prime}$ we may write $b_{2}=h p_{2}^{\prime} p_{2}$ where $h \in\langle v\rangle, p_{2} \in B_{w}$ and $p_{2}^{\prime} \in\left(B_{w}\right)^{\prime}$. From the facts $\omega(w) h \omega(w)^{-1} \in\langle v\rangle$ and $\omega(w) p_{2}^{\prime} \omega(w)^{-1} \in P$, we get $x=b \omega(w) p_{2}$ showing the existence of the 'normal' form.

To show the uniqueness of the 'normal' form, suppose that

$$
b \omega(w) b_{w}=b^{\prime} \omega\left(w^{\prime}\right) b_{w^{\prime}}^{\prime}
$$

By (4.6), we have $w=w^{\prime}$. Therefore we get

$$
\left(b^{\prime}\right)^{-1} b=\omega(w) b_{w}\left(b_{w}^{\prime}\right)_{t_{1}}^{-1} \omega(w)^{-1}
$$

Since $\left(b^{\prime}\right)^{-1} b \in B$ and

$$
\omega(w) b_{w}\left(b w w^{\prime}\right)^{-1} \omega(w)^{-1} \in P^{t_{1}}
$$

we obtain

$$
\left(b^{\prime}\right)^{-1} b \in B \cap P^{t_{1}} \subseteq P
$$

The uniqueness follows by (4.1).
By (4.1), the 8 double cosets in $B N B$ are distinct, therefore we have

$$
\left|G_{0}\right|=|B| \sum_{w}\left|B_{w}\right|=2^{7} \cdot 3^{6} \cdot 5 \cdot 7
$$

To conclude the proof of the theorem, we require the following result of Thompson.

Lemma (Thompson). Let \mathscr{M} be a subgroup of (S) such that
($\left.\mathrm{a}^{\prime}\right)|\mathscr{M}|$ is even.
(b^{\prime}) \mathscr{M} contains the centralizer of each of its involutions.
(c') $\bigcap_{s \in \boldsymbol{G}} \mathscr{M}^{s}$ is of odd order.
Let \mathscr{S} be a S_{2}-subgroup of \mathscr{M} and let I be an involution in $Z(\mathscr{S})$. We have $\left(\mathrm{d}^{\prime}\right) N(\mathscr{S}) \cong \mathscr{M}$.

Then
(i) $i(\mathscr{M})=1$ (the number of conjugate classes of involution in \mathscr{M})
(ii) \mathscr{M} contains a subgroup \mathscr{M}_{0} of odd order such that $\mathscr{M}=\mathscr{M}_{0} C_{\mathscr{M}}(I)$.

Using the informations of our tables (I, II, III), (4.2) and the structures of P and $\langle v\rangle$, we can multiply any two elements of G_{0} in the 'normal' form to get the product uniquely in the 'normal' form. Now if X is any finite group satisfying properties (a) and (b) of the theorem, then X contains a subgroup X_{0} of order $\left|U_{4}(3)\right|$ with uniquely determined multiplication table. Hence taking X to be $U_{4}(3)$, we see that $X_{0}=U_{4}(3)$ and so $G_{0} \cong U_{4}(3)$.

Consequently G_{0} satisfies conditions (a^{\prime}), (b^{\prime}) and (d^{\prime}) of Thompson lemma. Suppose the (c^{\prime}) is also fulfilled, then we obtain that G_{0} contains a subgroup M_{0} of odd order such that $G_{0}=M_{0} C_{G}(t)=M_{0} H$.

Suppose that $\left|M_{0} \cap H\right|=3^{2}$, then we have $\left|M_{0}\right|=3^{6} \cdot 5 \cdot 7$. Let S_{3} be a Sylow 3 -subgroup of M_{0}. By (3.4) we get $N_{M_{0}}\left(S_{3}\right)=S_{3}$. This is a contradiction since $\left|M_{0}: N_{M_{0}}\left(S_{3}\right)\right|=5 \cdot 7 \not \equiv 1(\bmod 3)$. Hence we must have $\left|M_{0}\right|=3^{4} \cdot 5 \cdot 7$ or $3^{5 \cdot 5 \cdot 7}$. Now M_{0} is soluble and so by P. Hall (4], there exists a subgroup of order $5 \cdot 7$ in M_{0}. Clearly K is abelian. Let S_{7} be the Sylow 7-subgroup of K. By Sylow's Theorem, we get that S_{7} is normal in M_{0}. Applying Sylow's theorem again, we obtain that $N_{G_{0}}\left(S_{7}\right)$ is $2^{4} \cdot 3^{6} \cdot 5 \cdot 7,2^{5} \cdot 3^{4} \cdot 5 \cdot 7,2^{2} \cdot 3^{4} \cdot 5 \cdot 7$ or $2 \cdot 3^{6} \cdot 5 \cdot 7$. The first 3 cases are not possible, since this would then imply that an involution of G_{0} is centralized by elements of order 7, a contradiction of structure of H. Thus we have $\left|N_{G_{0}}\left(S_{7}\right)\right|=2 \cdot 3^{6} \cdot 5 \cdot 7$. Now a Sylow 2-subgroup of $N_{G_{0}}\left(S_{7}\right)$ is cyclic of order 2. Therefore, by Burnside [4], there is a subgroup of order $3^{6} \cdot 5 \cdot 7$ in $N_{G_{0}}\left(S_{7}\right)$ and this gives a contradiction as before.

Thus we must get $\bigcap_{g \in G} G_{0}^{g}$ is even. By (2.6), the group G is simple. Hence $G=G_{0} \cong U_{4}(3)$, proving our theorem.

Acknowledgement

The author is greatly indebted to Professor Z. Janko, who suggested and supervised this research.

References

[1] E. Artin, Geometric Algebra, Wiley-Interscience (1957).
[2] R. Brauer and M. Suzuki, 'On finite groups of even order whose 2-Sylow group is a quaternion group', Proc. Nat. Acad. Sci.. U.S.A. 45 (1959), 1757-1759.
[3] D. Gorenstein and J. H. Walter, 'On finite groups with dihedral Sylow 2-subgroups', Illinois J. Math. 6 (1962) 553-593.
[4] M. Hall, The Theory of Groups, (Fifth Printing 1964).
[5] G. Higman and P. Hall, 'The p-length of a p-soluble group and reduction theorems for Burnside's problem', Proc. London Math. Soc. (3), 7 (1956), $1-42$.
[6] Z. Janko, 'A characterization of the finite simple group $P S p_{4}(3)$ ', (to appear).
[7] J. G. Thompson, 'Non-solvable finite groups whose non-identity solvable subgroups have solvable normalizers' (to appear).
[8] M. Jacques Tits, 'Theorème de Bruhat et sous-groupes paraboliques', C.R. Acad. Sci. Paris, 254 (1962), 2910-2912.
[9] M. Suzuki, 'On characterization of linear groups', I. Trans. Amer. Math. Soc. 92 (1959).
[10] H. Wielandt, Beziehungen zwischen Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe', Math. Zeit. 73, 146-158 (1960).

Department of Mathematics
Monash University
Clayton, Australia

