A CHARACTERIZATION OF THE FINITE SIMPLE GROUP $U_4(3)$

KOK-WEE PHAN

(Received 24 April 1967)

The aim of this paper is to give a characterization of the finite simple group $U_4(3)$ i.e. the 4-dimensional projective special unitary group over the field of 9 elements. More precisely, we shall prove the following result.

THEOREM. Let t_0 be an involution in $U_4(3)$. Denote by H_0 , the centralizer of t_0 in $U_4(3)$.

Let G be a finite group of even order with the following properties:

(a) G has no subgroup of index 2,

(b) G has an involution t such that $H = C_G(t)$, the centralizer of t in G is isomorphic to H_0 .

Then G is isomorphic to $U_4(3)$. We shall use the standard notation.

1. Some properties of H_0

Let F_{9} be the finite field with 9 elements. Then the map: $x \to \bar{x} = x^{3}$ $(x \in F_{9})$ is an automorphism of F_{9} . We extend this map to a map of GL(4, 9)thus: $(\alpha_{ij}) \to \overline{(\alpha_{ij})} = (\bar{\alpha}_{ij})$ where $(\alpha_{ij}) \in GL(4, 9)$. The subgroup SU(4, 9)in GL(4, 9) consisting of all matrices with determinant 1 which satisfy the relation: $(\alpha_{ij}) \cdot (\alpha_{ij})^{*} = I$ where $(\alpha_{ij})^{*}$ is the transpose of $\overline{(\alpha_{ij})}$, is known as 4-dimensional special unitary group over F_{9} . Then $U_{4}(3) (= PSU(4, 9))$ is the factor group SU(4, 9)/Z(SU(4, 9)) where Z(SU(4, 9)) denotes the centre of SU(4, 9).

Let t'_0 be the matrix

$$t'_{0} = \begin{pmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}.$$

Then t'_0 is an involution in SU(4, 9). Now the centre of SU(4, 9) is generated by the element $c = k^2 I$ where k is a fixed primitive element of the multiplicative group of F_9 . So $Z(SU(4, 9)) = \langle c \rangle$ is cyclic of order 4. Denote by H'_0 , the group of all matrices (α_{ij}) in SU(4, 9) which 'commute projectively' with t'_0 i.e. which satisfy the relation $(\alpha_{ij})t'_0 = t'_0(\alpha_{ij})c_r$ (r = 0, 1, 2, 3). A matrix in SU(4, 9) belongs to H'_0 if and only if it has the form

$$\begin{pmatrix} A \\ B \end{pmatrix} \text{ or } \begin{pmatrix} B \\ A \end{pmatrix}$$

where (A) and (B) are 2×2 matrices in GU(2, 9) with det (A) det (B) = 1. Let L'_1 be the subgroup of H'_0 consisting of matrices of the form

$$\begin{pmatrix} A & & \\ & 1 & 0 \\ & 0 & 1 \end{pmatrix}$$

with $(A) \in SU(2, 9)$. Since $SU(2, 9) \cong SL(2, 3)$, we can easily check that the following matrices generate L'_1

$$a_{1}' = \begin{pmatrix} 0 & -1 & & \\ 1 & 0 & & \\ & & 1 & 0 \\ & & 0 & 1 \end{pmatrix}; \quad b_{1}' = \begin{pmatrix} 0 & k^{6} & & \\ k^{6} & 0 & & \\ & & 1 & 0 \\ & & 0 & 1 \end{pmatrix};$$
$$\sigma_{1}' = \begin{pmatrix} k & k^{3} & & \\ k^{5} & k^{3} & & \\ & & 1 & 0 \\ & & 0 & 1 \end{pmatrix}.$$

Now we have the matrice u' belongs to H_0

$$u' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

and we get

$$u'\begin{pmatrix}A\\B\end{pmatrix} = \begin{pmatrix}B\\A\end{pmatrix}.$$

The matrix v'

$$v'=egin{pmatrix} k^{f 3}&k^{f 3}&\ k^{f 3}&k^{f 7}&\ &k&k\ &k&k^{f 5} \end{pmatrix}$$

also belongs to SU(4, 9). We check that $(v')^2 = t_0 c$ and $u'v'u' = (v')^{-1}$. So $\langle u', v' \rangle$ is dihedral of order 16. Put $a'_2 = u'a'_1u'$, $b'_2 = u'b'_1u'$, $\sigma'_2 = u'\sigma'_1u'$ and $L'_2 = \langle a'_2, b'_2, \sigma'_2 \rangle$. We can now verify that $H'_0 = (L'_1 \times L'_2) \langle u', v' \rangle$. Let $H_0 = H'_0 \langle c \rangle$ and in the natural homomorphism from H'_0 onto H_0 , let the images of t'_0 , a'_i , b'_i , σ'_i , L'_i , u', v' (i = 1, 2) be t_0 , a_i , b_i , σ_i , L_i , u, v respectively. We have then H_0 is a non-splitting extension of $L = L_1 L_2$ by a four group. More precisely we have the following relations:

$$\begin{split} H_0 &= L \cdot F \\ L &= L_1 L_2 \text{ where } L_1 \cap L_2 = \langle t_0 \rangle \text{ and } [L_1, L_2] = 1 \\ F &= \langle u, v \rangle, \text{ a dihedral group of order 8} \\ L_i &= \langle a_i, b_i, \sigma_i | a_i^2 = b_i^2 = t_0, \ b_i^{-1} a_i b_i = a_i^{-1}, \ \sigma_i^{-1} a_i \sigma_i = b_i, \\ \sigma_i^{-1} b_i \sigma_i = a_i b_i, \ \sigma_i^3 = 1 \rangle \end{split}$$

and

$$v^{-1}a_iv = a_i^{-1}$$
, $v^{-1}b_iv = b_ia_i$, $v^{-1}\sigma_iv = \sigma_i^{-1}$, $v^2 = t_0$.

The structure of H_0 is now completely determined. Of course, we have to see that the structure of H_0 is independent of the choice of t'_0 in SU(4, 9). This is so because we can check that $U_4(3)$ has only one conjugate class of involutions.

We shall list a few properties of H_0 , which will be used in the next section.

(1.1) Every element of H_0 can be written uniquely in the form $a_1^i b_1^j \sigma_1^k t_1^l t_2^m \sigma^n u^p v^q$ where $t_1 = a_1 a_2$; $t_2 = b_1 b_2$; $\sigma = \sigma_1 \sigma_2$; i = 0, 1, 2, 3; j = 0, 1; k = 0, 1, 2; l = 0, 1; m = 0, 1; n = 0, 1, 2; p = 0, 1; q = 0, 1. The order of H_0 is $2^7 \cdot 3^2$.

(1.2) The group $Q = \langle a_1, a_2, b_1, b_2 \rangle F \subseteq H_0$ is a Sylow 2-subgroup of H_0 . The centre Z(Q) of Q is $\langle \iota_0 \rangle$.

(1.3) There are 4 conjugate classes of involutions in H_0 with representatives t_0 , t_1 , u, uv. We have the centralizer $C_{H_0}(t_1) = A$ of t_1 in H_0 is the group $\langle a_1, a_2, t_2, u, v \rangle$, a non-abelian group of order 64. We have the centre Z(A) of A is $\langle t_0, t_1 \rangle$, a four group. The commutator group A' of A is also $\langle t_0, t_1 \rangle$. The centralizer of u, $C_{H_0}(u)$ in H_0 is $E_1 \langle \sigma \rangle$ where $E_1 = \langle t_0, t_1, t_2, u \rangle$, an elementary abelian group of order 16. The centralizer of uv, $C_{H_0}(uv)$ in H_0 is $E_2 \langle \sigma_1 \sigma_2^{-1} \rangle$ where E_2 is $\langle t_0, t_1, t_3, uv \rangle$ ($t_3 = a_1 b_1 b_2$), an elementary abelian group of order 16.

(1.4) Both E_1 and E_2 are normal in the group Q. We have $N_{H_0}(E_1) = Q\langle \sigma \rangle$ and the factor group $N_{H_0}(E_1)/E_1$ is isomorphic to S_4 , the symmetric group in 4 letters. Similarly we have $N_{H_0}(E_2) = Q\langle \rho \rangle$ $(\rho = \sigma_1 \sigma_2^{-1})$ and the factor group $N_{H_0}(E_2)/E_2$ is isomorphic to S_4 .

(1.5) The group L is the smallest normal subgroup of H_0 with 2-factor group and H/L is a four-group.

(1.6) A Sylow 3-subgroup T of H_0 is $\langle \sigma_1; \sigma_2 \rangle$, an elementary abelian group of order 9. We have $C_{H_0}(T) = \langle t_0 \rangle \times T$ and $N_{H_0}(T) = \langle u, v \rangle T$.

2. Conjugacy of involutions

Let G be a finite group with properties (a) and (b) of the theorem. Since the group $H = C_G(t)$ is isomorphic to H_0 . We shall identify H with H_0 . Then we have $t_0 = t$.

(2.1) LEMMA. The Sylow 2-subgroup Q of H is a Sylow 2-subgroup of G.

PROOF. This is obvious since $Z(Q) = \langle t \rangle$ is cyclic of order 2.

(2.2) LEMMA. If the involution u is conjugate to t in G, then t_1 is conjugate to t in G.

PROOF. Since by assumption u is conjugate to r in G, there exists a Sylow 2-subgroup of $C_G(u)$ properly containing $E_1 = \langle t, t_1, t_2, u \rangle$. Therefore there is an element x in $C_G(u) - H$ which normalizes E_1 . Let us look more closely at the involutions in E_1 . We have

$$C_1 = \{t_1, tt_1, t_2, tt_2, t_1t_2, tt_1t_2\}$$

whose elements are conjugate in H and likewise

$$C_2 = \{u, t_1u, t_2u, t_1t_2u, tu, tt_1u, tt_2u, tt_1t_2u\}$$

with elements conjugate in H. We see that $C_1 \cup C_2 \cup \{t\} = E_1 - \{1\}$.

Since $x \notin H$, we must have $x^{-1}tx \neq t$. If $x^{-1}tx \in C_1$ or $x^{-1}t_1x \in C_2$, then we are finished. Therefore we may suppose that $x^{-1}t_x \in C_2$ and $x^{-1}t_1x \in C_1$. Then we get $x^{-1}tt_1x \in C_2$. Since tt_1 is conjugate to t_1 , the lemma is proved.

(2.3) LEMMA. If the involution uv is conjugate to t in G, then t_1 is conjugate to t in G.

PROOF. As in (2.2) with E_2 playing the role of $E_1 - \{1\}$.

For the proof of next lemma, we need an unpublished result of Thompson.

LEMMA (Thompson [7]). Suppose \mathfrak{G} is a finite group of even order which has no subgroup of index 2. Let \mathscr{S}_2 be a Sylow 2-subgroup of \mathfrak{G} and let \mathscr{M} be a maximal subgroup of \mathscr{S}_2 . Then for each involution I of \mathfrak{G} , there is an element B of \mathfrak{G} such that $B^{-1}IB \in \mathscr{M}$. (2.4) LEMMA. If the involution t_1 is conjugate to t in G, then G has only one conjugate class of involutions.

PROOF. We have by (2.1) that Q is a Sylow 2-subgroup of G. The group $M = \langle a_1, a_2, b_1, b_2, v \rangle$ is a maximal subgroup of Q. By our assumption, we have one class of involutions in M. The lemma follows from condition (a) of the theorem and Thompson's lemma.

(2.5) LEMMA. There is only one class of involutions in G.

PROOF. First we want to show that the group G is not 2-normal. By way of contradiction, suppose that it is 2-normal. Since $\langle t \rangle$ is the centre of a Sylow 2-subgroup Q of G. It follows by Hall-Grün's theorem [4], that the greatest factor group of G which is a 2-group is isomorphic to that of $N_G(Z(Q)) = H$, i.e. by (1.5) isomorphic to H/L which is of order 4. But this is a contradiction to condition (a) of the theorem. It follows that G is not 2-normal. This means that there is an element $z \in G$ such that $t \in Q \cap z^{-1}Qz$ but $\langle t \rangle$ is not the centre of $z^{-1}Qz$.

The centre of $z^{-1}Qz$ is $\langle z^{-1}tz \rangle$. So $z^{-1}tz \neq t$. On the other hand, we have $t \in z^{-1}Qz$. It follows that t and $z^{-1}tz$ commute. Hence $z^{-1}tz \in H$. Without loss of generality, we may assume that $z^{-1}tz \in \{t_1, u, uv\}$. The lemma follows now by (2.2); (2.3) and/or (2.4).

(2.6) LEMMA. The group G is simple.

PROOF. Suppose at first that $O(G) \neq 1$ where O(G) denotes the maximal odd-order normal subgroup of G. Then the four group $\langle t, t_1 \rangle$ acts on G. By the structure of H and (2.5), we see that $C_G(x)$ does not have a non-trivial intersection with O(G) for $x \in \langle t, t_1 \rangle$. Hence $\langle t, t_1 \rangle$ acts fixed-point-free on O(G) which is not possible. Hence we have that O(G) = 1.

Suppose next that N is a proper normal subgroup of G such that |G/N| is odd. We have then $H \subseteq N$ since H does not have a proper odd-order factor group. We have that $Q \subseteq N$. By Frattini argument, $G = N \cdot N_G(Q)$. But then $N_G(Q) \subseteq N_G\langle t \rangle = H$. So G = N, a contradiction.

Lastly suppose that G is not a simple group. Then G must have a proper normal subgroup K such that both |K| and |G/K| are even. Since by (2.5), all involutions of G are in K. This implies that $Q \subseteq L$ since Q is generated by its involutions, a contradiction to our assumption. The proof is now complete.

(2.7) LEMMA. The group $N_G(E_i)/E_i$ is isomorphic to A_6 , the alternating group in 6 letters (i = 1, 2).

PROOF. By (2.5), there is a 2-group in $C_G(u)$ properly containing E_1 in which E_1 is normal. So we get that $N_G(E_1) \notin H$. Since $N_H(E_1)/E_1$ is

isomorphic to S_4 , a Sylow 2-subgroup of $N_H(E_1)/E_1$ is dihedral of order 8. Clearly Q/E_1 is also a Sylow 2-subgroup of $N_G(E_1)/E_1$. Since we have $C_G(E_1) = E_1$, the group $\mathscr{S} = N_G(E_1)/E_1$ is isomorphic to a subgroup of $GL(4, 2) \cong A_8$ which has order $2^6 \cdot 3^2 \cdot 5 \cdot 7$.

Suppose at first that $O(\mathscr{G}) \neq 1$ where $O(\mathscr{G})$ denotes the maximal odd-order normal subgroup of \mathscr{G} . Consider the action of the four-group $\langle a_1 E_1, b_1 E_1 \rangle$ on $O(\mathscr{G})$. Using the facts that all involutions of $\langle a_1 E_1, b_1 E_1 \rangle$ are conjugate in (since $\sigma E_1 \in \mathscr{G}$) and that the centralizer of any involution in A_8 has order $2^6 \cdot 3$ or $2^5 \cdot 3$, we get by a result of Brauer-Wielandt [10], that $|O(\mathscr{G})| = 3^3$ or 3. The first case is not possible since $3^3 \nmid |A_8|$. So we have $|O(\mathscr{G})| = 3$. Hence $\langle a_1 E_1, b_1 E_1 \rangle \cdot O(\mathscr{G}) = \langle a_1 E_1, b_1 E_1 \rangle \times O(\mathscr{G})$. We shall rule out this case by considering $N_{\mathscr{G}} \langle a_1 E_1, b_1 E_1 \rangle$. We have $N_G \langle a_1, b_1, a_2, b_2, u \rangle \subseteq N_G \langle t \rangle$ since $Z \langle a_1, b_1, a_2, b_2, u \rangle = \langle t \rangle$. So

$$N_{\textbf{G}}\langle a_{1}$$
, b_{1} , a_{2} , b_{2} , $u
angle \cap N_{\textbf{G}}(E_{1}) = Q\cdot\langle\sigma
angle$

and it follows $N_{\mathscr{A}}\langle a_1E_1, b_1E_1\rangle \cong S^4$, a contradiction to

$$\langle a_1 E_1, b_1 E_1 \rangle \cdot O(\mathscr{S}) = \langle a_1, E_1, b_1 E_1 \rangle \times O(\mathscr{S})$$

Thus $O(\mathscr{S}) = 1$.

By the structure of A_8 , the order of $C_{\mathscr{G}}(a_1E_1)$ is $2^3 \cdot 3$ or 2^3 . Suppose that $|C_{\mathscr{G}}(a_1E_1)| = 2^3 \cdot 3$. We are now in a position to apply Gorenstein-Walter's result [3], and get $\mathscr{S} \cong PSL(2, 23)$; PSL(2, 25); PGL(2, 11); PGL(2, 13) or A_7 . The first four cases are not possible since $|\mathscr{S}| \nmid |A_8|$. If 7 divides the order of \mathscr{S} , we would then have an element of order 7 in $N_G(E_1)$ which acts fixed-point-free on E_1 , a contradiction. Thus we must have $|C_{\mathscr{G}}(a_1E_1)| = 8$. Let T be a Sylow 2-subgroup of G in $C_G(t_1)$ properly containing $C_G(t_1) \cap H$. Then $Z(T/E_1) \neq \langle a_1E_1 \rangle$, otherwise we would get $|C_{\mathscr{G}}(a_1E_1)| > 8$. This means that \mathscr{S} has only one class of involutions. Therefore by Gorenstein-Walter [3], we get $\mathscr{S} \cong PSL(2, 9) \cong A_6$. The proof is finished.

3. Sylow 3-subgroups of G and its normalizers in G

We shall determine the structure of a Sylow 3-subgroup of G, and the normalizer of this Sylow 3-subgroup in G.

We have $T = \langle \sigma_1, \sigma_2 \rangle \subseteq H$ is a Sylow 3-subgroup of H and $C_H(T) = \langle t \rangle \times T, N_H(T) = \langle u, v \rangle T$. By the structure of H, clearly a Sylow 2-subgroup of $C_G(T)$ is $\langle t \rangle$. It follows, by a theorem of Burnside [4], that $C_G(T)$ has a normal 2-complement $M \supseteq T$. Since we have $C_G(T) \triangleleft N_G(T)$, we get by Frattini argument that

$$N_{\mathbf{G}}(T) = (C_{\mathbf{G}}(t) \cap N_{\mathbf{G}}(T))C_{\mathbf{G}}(T) = \langle u, v \rangle M.$$

The normal 2-complement M of $C_G(T)$ is characteristic in $C_G(T)$. Hence M is normal in $N_G(T)$. Thus the four group $\langle t, u \rangle$ acts on M. Using the result of Brauer-Wielandt [10] and the fact $C_M(t) = T$; $C_M \langle t, u \rangle = \langle \sigma \rangle$, we get $|M| = |C_M(u)| |C_M(tu)|$. Since u and tu are conjugate in $N_G(T)$, we have $|C_M(u)| = |C_M(tu)|$. By (2.5), we have $|C_M(u)| = |C_M(tu)| = 3$ or 3^2 . So the order of M is 9 or 81.

Suppose that the order of M is 9. Then we have T = M and so T is a Sylow 3-subgroup of G with $N_G(T) = \langle u, v \rangle T$. By (2.7), we know that $N_G(E_1)/E_1 \cong A_6$. Let \tilde{T} be a Sylow 3-subgroup of $N_G(E_1)$. By the structure of A_6 and our assumption, we have $C_G(\tilde{T}) \cap N_G(E_1) = \tilde{T}$ or $\langle t' \rangle \times \tilde{T}$ where t' is an involution in E_1 . Suppose we have $C_G(\tilde{T}) \cap N_G(E_1) = \langle t' \rangle \times \tilde{T}$. Because $C_G(E_1) = E_1$, \tilde{T} induces by conjugation on E_1 a faithful automorphism of E_1 and fixes an involution on E_1 . Thus we must have 3^2 dividing $(2^4-2)(2^4-4)(2^4-8) = 2^6 \cdot 3 \cdot 7$, a contradiction. Hence we get $C_G(\tilde{T}) \cap N_G(E_1) = \tilde{T}$. Now by the structure of $N_G(T)$, and $C_G(\tilde{T}) \cap N_G(E_1) = \tilde{T}$, we get that $|N_G(\tilde{T}) \cap N_G(E_1)| = 3^2$ or $2 \cdot 3^2$. The later case is impossible, since the index of $N_G(\tilde{T}) \cap N_G(E_1)$ in $N_G(E_1)$ is $2^6 \cdot 5$ which is not congruent to 1 modulo 3. Therefore, we have $|N_G(\tilde{T}) \cap N_G(E_1)| = 3^2$. By a transfer theorem of Burnside [4, p. 203], $N_G(E_1)/E_1$ is not simple, a contradiction. So we have shown that the order of M is not 9.

Thus M is a group of order 81. We shall show that M is elementary abelian. For this, we need to look at elements of order 3 in H more closely. There are 3 conjugate classes of elements of order 3 in H with representatives σ_1 , $\sigma = \sigma_1 \sigma_2$, $\rho = \sigma_1 \sigma_2^{-1}$ respectively. The centralizer of σ_1 in H is $T \cdot \langle a_2, b_2 \rangle$ and so a Sylow 2-subgroup is $C_H(\sigma_1)$ is quaternion of order 8. The centralizer of σ in H is $\langle t, u \rangle T$ and the centralizer of ρ in H is $\langle t, uv \rangle \cdot T$. Both $C_H(\sigma)$ and $C_H(\rho)$ has a four group as its Sylow 2-subgroup and have unique Sylow 3-subgroup T. Let $T_1 = C_M(u)$, $T_2 = C_M(tu)$. We have

$$M = C_{\mathbf{M}}(t)C_{\mathbf{M}}(u)C_{\mathbf{M}}(ut) = TT_{1}T_{2} \text{ and } T_{1} \cap T_{2} \cap T = \langle \sigma \rangle.$$

Now we consider $C_G(T_1)$. By (2.5), T is conjugate to T_1 in G. So we have $C_G(T_1) = \langle u \rangle \times \tilde{M}$ where \tilde{M} is of order 81 and \tilde{M} is normal in $N_G(T_1)$. We have $\langle t, u \rangle \subseteq N_G(T_1)$ and therefore the four group $\langle t, u \rangle$ acts on \tilde{M} . So we get $\tilde{T} = C_G(t) \cap \tilde{M}$, $\tilde{T}_2 = C_G(tu) \cap \tilde{M}$ and $C_G(u) \cap \tilde{M} = T_1$, all elementary abelian of order 9 with $\tilde{T} \cap T_1 \cap \tilde{T}_2 = \langle \sigma \rangle$. Since we have $\tilde{T} \subseteq H \cap C_G(\sigma)$, we must have $\tilde{T} = T$. Because $\langle t, u \rangle \subseteq C_G(tu) \cap C_G(\sigma)$, by our remark in last paragraph we get $T_2 = \tilde{T}_2$. Thus $M = \tilde{M}$. This means that $\langle T, T_1 \rangle \subseteq Z(M)$ and so M is abelian as required.

Thus we have proved the following lemma.

(3.1) LEMMA. The centralizer of T in G is a splitting extension of an

elementary abelian group M of order 81 by $\langle t \rangle$. The normalizer of T in G is the group $\langle u, v \rangle M$ where $C_M(t) = T$; $C_M(u) = T_1$; $C_M(tu) = T_2$; $T \cap T_1 \cap T_2 = \langle \sigma \rangle$ and the groups T, T_1 , T_2 are elementary abelian of order 9.

Next we take a look at $C_{G}(\sigma_{1})$. By (3.1), we have $M \subseteq C_{G}(\sigma_{1})$. By the structure of H, we get $C_{G}(\sigma_{1}) \cap H = T \cdot \langle a_{2}, b_{2} \rangle$. Let U be a Sylow 2-subgroup of $C_{G}(\sigma_{1})$ containing $\langle a_{2}, b_{2} \rangle$. If U properly contains $\langle a_{2}, b_{2} \rangle$, we would get that $C_{G}(\sigma_{1}) \cap H$, has a Sylow 2-subgroup properly containing $\langle a_{2}, b_{2} \rangle$, a contradiction. Hence a Sylow 2-subgroup of $C_{G}(\sigma_{1})$ is quaternion of order 8. Let $V = O(C_{G}(\sigma_{1}))$, the maximum odd-order normal subgroup of $C_{G}(\sigma_{1})$. By Suzuki [9], the factor group $C_{G}(\sigma_{1})/V$ has only one involution $t \cdot V$ and so $\langle t \rangle V$ is normal in $C_{G}(\sigma_{1})$. By the Frattini argument

$$C_{\mathbf{G}}(\sigma_1) = (C_{\mathbf{G}}(\sigma_1) \cap C_{\mathbf{G}}(t))V = \langle a_2, b_2 \rangle T \cdot V.$$

Because $\langle a_2, b_2 \rangle T$ is not 3-closed, it follows that $T \notin V$ and so $T \cap V = \langle \sigma_1 \rangle$. We get $C_G(\sigma_1) = \langle a_2, b_2, \sigma_2 \rangle V = L_2 V$ where $L_2 \cong SL(2, 3)$. Since $C_G(t) \cap V = \langle \sigma_1 \rangle$, it follows that t acts fixed-point-free on $V/\langle \sigma_1 \rangle$. So $V/\langle \sigma_1 \rangle$ is abelian. Hence $V' \subseteq \langle \sigma_1 \rangle \subseteq Z(V)$ and V is nilpotent of class at most 2.

We have therefore proved the following lemma.

(3.2) LEMMA. The centralizer of the element σ_1 in G is the group L_2V where $L_2 = \langle a_2, b_2\sigma_2 \rangle$ and $V = O(C_G(\sigma_1))$ is odd-order and nilpotent of class at most 2.

The proof of the next lemma is rather involved.

(3.3) LEMMA. We have that $N_G(M)/M$ is isomorphic to A_6 , the alternating group in 6 letters.

PROOF. Since M is characteristic in $N_G(T)$, we get $\langle u, v \rangle \subseteq N_G(M)$. Let $U \supseteq \langle u, v \rangle$ be a Sylow 2-subgroup of $N_G(M)$. If $U \supset \langle u, v \rangle$, this would imply that $C_G(t) \cap U \supset \langle u, v \rangle$. Since $C_G(t) \cap M = T$ is normalized by $C_G(t) \cap U$, this would give a contradiction to the structure of $C_G(t)$. Hence $U = \langle u, v \rangle$ and a Sylow 2-subgroup of $N_G(M)$ is dihedral of order 8.

Since the four group $\langle t, u \rangle$ acts on $O(N_G(M))$ and $C_M \langle t, u \rangle = \langle \sigma \rangle$, we get $O(N_G(M)) = M$. Now suppose that $N_G(M) = N_G(T)$, then M is a Sylow 3-subgroup of G. The groups T and T_1 , being conjugate in G, should be conjugate in $N_G(M)$, by a theorem of Burnside [4], a contradiction. So we get that $N_G(M) \supset N_G(T)$.

By (3.2), $C_G(T) = \langle t \rangle M$ and so $C_G(M) = M$. Hence $N_G(M)/M$ is isomorphic to a subgroup of GL(4, 3). Since $C_G(t) \cap N_G(M) = \langle u, v \rangle T$, we get $C(tM) \cap (N_G(M)/M) = \langle u, v \rangle M/M$. We are now in a position to use the result of Gorenstein-Walter [3], giving $N_G(M)/M \cong A_7$; PSL(2, 7); PSL(2, 9); PGL(2, 3) or PGL(2, 5). Because 7 does not divide |GL(4, 3)|, we have $N_G(M)/M$ is isomorphic to PSL(2, 9); PGL(2, 3) or PGL(2, 5).

Suppose that $N_G(M)/M$ is isomorphic to PGL(2, 3) or PGL(2, 5). Let K be a subgroup of index 2 in $N_G(M)$. Then a Sylow 2-subgroup of K is either $\langle t, u \rangle$ or $\langle t, uv \rangle$. First suppose that it is $\langle t, u \rangle$. We have then F/M is isomorphic to A_4 or A_5 . In either case, there exists an element μ of 3-power order in F such that $N_G\langle t, u \rangle \cap F = \langle t, u \rangle \langle \sigma, \mu \rangle$ where $\langle \sigma, \mu \rangle$ is a group of order 9 and $\mu^{-1}t\mu = u, \mu^{-1}u\mu = tu, \mu^{-1}u\mu = t$. The group $\langle \sigma, \mu \rangle$ is either elementary abelian or cyclic of order 9. Since $C_G(t, u) = E_1\langle \sigma \rangle$, and E_1 is characteristic in $C_G\langle t, u \rangle$, we have $E_1 \triangleleft N_G\langle t, u \rangle$. By (2.7), a Sylow 3-subgroup of $N_G(E_1)$ is elementary abelian of order 9. Hence we have shown that μ is an element of order 3 and $\langle t, u \rangle \langle \mu \rangle \cong A_4$.

Put $\mathcal{M} = M \langle \mu \rangle$. It follows that

$$T_1 = M \cap C_G(u) = T^{\mu}$$
 and $T_2 = M \cap C_G(tu) = T^{\mu^2}$.

Let $\rho = \sigma_1 \sigma_2^{-1}$. Then

$$T = \langle \sigma, \rho \rangle, \ T_1 = \langle \sigma, \rho^{\mu} \rangle, \ T_2 = \langle \sigma, \rho^{\mu^2} \rangle$$

So every element of M can be written uniquely in the form $\sigma^{\alpha} \rho^{\beta} \rho_{1}^{\gamma} \rho_{2}^{\delta}$ where $\rho_{1} = \rho^{\mu}$; $\rho_{2} = \rho^{\mu^{2}}$; $\alpha, \beta, \gamma, \delta = 0, 1 \text{ or } -1$. Therefore the structure of \mathcal{M} is completely determined. Since \mathcal{M} is non-abelian, we have

$$Z(\mathcal{M}) = C_{\mathcal{M}}(\mu) = \langle \sigma, \rho \rho_1 \rho_2 \rangle.$$

An easy computation shows that $\mathcal{M}' = \langle \rho \rho_1 \rho_2, \rho \rho_1^{-1} \rangle$, which is elementary abelian of order 9. Since $Z(\mathcal{M}) \neq \mathcal{M}'$, we get $C_{\mathcal{M}}(\mathcal{M}') = M$ and therefore $M \triangleleft N_G(\mathcal{M})$. This gives $N_G(\mathcal{M}) \subseteq N_G(M)$ and in particular \mathcal{M} is a Sylow 3-subgroup of G.

Let $M_1 = M \cap V$. Suppose that V has a characteristic subgroup X of order ≥ 9 contained in M. Then $X \triangleleft C_{\mathcal{G}}(\sigma_1)$ and so $C_{\mathcal{G}}(X) \cap C_{\mathcal{G}}(\sigma_1)$ is normal in $C_G(\sigma_1)$. Suppose that $t \in C_G(X)$. Then $X \subseteq C_G(t) \cap V = \langle \sigma_1 \rangle$, a contradiction to our assumption. Thus $\langle \sigma_2 \rangle = C_G(X) \cap L_2$, which would imply that $\langle \sigma_2 \rangle$ is normal in L_2 , a contradiction. Hence V does not have any characteristic subgroup of order ≥ 9 contained in M_1 . It follows that M_1 is not a Sylow 3-subgroup of V. Let $M_2 \supset M_1$ be a Sylow 3-subgroup of V. Then $[M_2:M_1] = 3$ and so $\langle M_2, \sigma_2 \rangle$ is a Sylow 3-subgroup of G. If M_2 were abelian, then $C_G(M_1) \supseteq \langle M_2, \sigma_2 \rangle$ and so $M_1 \subseteq Z \langle M_2, \sigma_2 \rangle$, which contradicts $|Z(\mathcal{M})| = 9$. Hence M_2 is non-abelian and so $\langle \sigma_1 \rangle \subseteq Z(M_2) \subseteq M_1$. Thus we get $Z(M_2) = \langle \sigma_1 \rangle$ and also $M'_2 = \langle \sigma_1 \rangle$. Since M_2 is a 3-group of class at most 2, it follows that M_2 is regular (in the sense of P. Hall). If M_2 were not of exponent 3, then M_1 would be characteristic in M_2 , a contradiction. It follows that the Frattini group $\phi(M_2) = \langle \sigma_1 \rangle$ and so $M_2/\langle \sigma_1 \rangle$ is a 'vector space' of dimension 3 over the field of 3 elements F_3 .

For any two elements $\bar{x} = x \langle \sigma_1 \rangle$, $\bar{y} = \langle \sigma_1 \rangle$ of $M_2 / \langle \sigma_1 \rangle$ where $x, y \in M_2$, define $[\bar{x}, \bar{y}] = c$ where $c \in F_3$ and $[x, y] = x^{-1}y^{-1}xy = \sigma_1^c$. Then $[\bar{x}, \bar{y}]$ is a non-singular bilinear skew symmetric form defined on $M_2 / \langle \sigma_1 \rangle$ with values in F_3 [5]. But then the dimension of $M_2 / \langle \sigma_1 \rangle$ must be even by [1], a contradiction.

An identical proof applies when a Sylow 2-subgroup of K is $\langle t, uv \rangle$. Therefore we have shown that $N_G(M)/M$ is isomorphic to A_6 .

We shall now begin the determination of the structure of a Sylow 3-subgroup of G. But first, we look at the structure of $N_G(M)$ more closely. Since the normalizer of a four group in A_6 is of order 24, there exists an element μ of 3-power order such that $N_G\langle t, u \rangle \cap N_G(M) = \langle u, v \rangle \cdot \langle \sigma, \mu \rangle$. By the same reasoning as in (3.3), we conclude that μ is of order 3 and we have $\mu^{-1}t\mu = u$, $\mu^{-1}u\mu = tu$.

Let \mathscr{S} be the isomorphism of $N_G(M)/M$ onto A_6 . Without loss of generality, we may suppose that $(vM)\mathscr{S} = (1324)(56)$, $(uM)\mathscr{S} = (13)(24)$ and choosing μ in $N_G\langle t, u \rangle$ suitably, we may assume that $(\mu M)\mathscr{S} = (132)$. Let $z \in N_G(M)$ such that $(zM)\mathscr{S} = (12)(45)$. Then we have

(*)
$$\begin{array}{l} (\mu M) \mathscr{S} = (132) = e_1; \ (tM) \mathscr{S} = (12)(34) = e_2; \\ (zM) \mathscr{S} = (12)(45) = e_3; \ (tuvM) \mathscr{S} = (12)(56) = e_4, \cdots . \end{array}$$

By Moore, we have $A_6 = \langle e_1, e_2, e_3, e_4 \rangle$. Next we may represent $N_G(M)/M$ as linear transformations on the vector space, M over the field of 3 elements in term of the basis σ , ρ , $\rho_1 = \rho^{\mu}$, $\rho_2 = \rho^{\mu^2}$. The representation is faithful since $C_G(M) = M$. Hence we get

$$\mu M \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}; \quad tM \rightarrow \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix};$$
$$uM \rightarrow \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & 1 & \\ & & & -1 \end{pmatrix}.$$

From the relations $v^2 = t$, $v^{-1}uv = tu$, we get v is represented by the matrix

$$vM \rightarrow \begin{pmatrix} -1 & 0 & \\ 0 & -1 & \\ & 0 & -1 \\ & & 1 & 0 \end{pmatrix}$$

interchanging v by v^{-1} if necessary.

Let (zM) be represented by $(\alpha_{ij}) \in GL(4, 3)$. Then from the relation $(\mu zM)^2 = M$, we get that z is representated by

$$zM \to \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{12} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\ \alpha_{21} & \alpha_{23} & \alpha_{24} & \alpha_{22} \\ \alpha_{21} & \alpha_{24} & \alpha_{22} & \alpha_{23} \end{pmatrix}$$

and from $(zM)^2 = M$, we get

$$(**) \qquad \begin{pmatrix} \alpha_{11}^2 & \alpha_{12} \cdot s & \alpha_{12} \cdot s & \alpha_{12} \cdot s \\ \alpha_{21} \cdot s & g+h_1 & g+h_2 & g+h_2 \\ \alpha_{21} \cdot s & g+h_2 & g+h_1 & g+h_2 \\ \alpha_{21} \cdot s & g+h_2 & g+h_2 & g+h_1 \end{pmatrix} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \cdots$$

where

$$s = \alpha_{11} + \alpha_{22} + \alpha_{23} + \alpha_{24}$$

$$g = \alpha_{12}\alpha_{21}$$

$$h_1 = \alpha_{22}^2 + \alpha_{23}^2 + \alpha_{24}^2$$

$$h_2 = \alpha_{22}\alpha_{23} + \alpha_{23}\alpha_{24} + \alpha_{24}\alpha_{22}.$$

We have $(z \cdot tuvM) \rightarrow (456)$. Therefore the group $M \langle \mu, ztuv \rangle$ is a Sylow 3-subgroup of $N_G(M)$. As before, put $\mathscr{M} = M \langle \mu \rangle$. By the proof in (3.3), we have $Z(\mathscr{M}) = \langle \sigma, \rho \rho_1 \rho_2 \rangle$; $\mathscr{M}' = \langle \rho \rho_1 \rho_2, \rho \rho_1^{-1} \rangle$. Hence $Z(\mathscr{M}) \cap \mathscr{M}' = \langle \rho \rho_1 \rho_2 \rangle$ is characteristic in \mathscr{M} and so $\langle \rho \rho_1 \rho_2 \rangle$ is normal in $M \langle \mu, ztuv \rangle$. Therefore we have $\rho \rho_1 \rho_2$ centralized by $\lambda = ztuv$.

Now λ is represented by the matrix

$$\lambda M \to \begin{pmatrix} -\alpha_{11} & \alpha_{12} & \alpha_{12} & \alpha_{12} \\ -\alpha_{21} & \alpha_{22} & \alpha_{24} & \alpha_{23} \\ -\alpha_{21} & \alpha_{23} & \alpha_{22} & \alpha_{24} \\ -\alpha_{21} & \alpha_{24} & \alpha_{23} & \alpha_{22} \end{pmatrix}$$

From $(\lambda M)^3 = M$, we get $\alpha_{11} = -1$. Since λ commute with $\rho \rho_1 \rho_2$, we obtain $\alpha_{22} + \alpha_{23} + \alpha_{24} = 1$. Since $(tz)^3 \in M$, this implies that $\alpha_{12}\alpha_{21}(1+\alpha_{22}) = -1$ (by working at the (1, 1) entry of the representation of tz). Therefore $\alpha_{12}\alpha_{21} \neq 0$. First suppose that $\alpha_{12}\alpha_{21} = 1$. Then we have $\alpha_{22} = 1$. By (**), we get $h_2 = -1$. So we obtain $\alpha_{24} = -\alpha_{23} \neq 0$. Hence tz is represented by the matrix

$$tzM \rightarrow \begin{pmatrix} -1 & \alpha_{12} & \alpha_{12} & \alpha_{12} \\ \alpha_{12} & 1 & \alpha_{23} & -\alpha_{23} \\ -\alpha_{12} & -\alpha_{23} & \alpha_{23} & -1 \\ -\alpha_{12} & \alpha_{23} & -1 & -\alpha_{23} \end{pmatrix}$$

and we check that $(tz)^3 \notin M$, a contradiction.

Thus we must have $\alpha_{12}\alpha_{21} = -1$. Then $\alpha_{22} = 0$, from $\alpha_{22} + \alpha_{23} + \alpha_{24} = 1$, we get $\alpha_{23} = \alpha_{24} = -1$. Hence we have z represented by

$$zM \rightarrow \begin{pmatrix} -1 & \alpha_{12} & \alpha_{12} & \alpha_{12} \\ -\alpha_{12} & 0 & -1 & -1 \\ -\alpha_{12} & -1 & -1 & 0 \\ -\alpha_{12} & -1 & 0 & -1 \end{pmatrix}$$

and

$$\lambda M \to \begin{pmatrix} -1 & \alpha_{12} & \alpha_{12} & \alpha_{12} \\ -\alpha_{12} & 0 & -1 & -1 \\ -\alpha_{12} & -1 & 0 & -1 \\ -\alpha_{12} & -1 & -1 & 0 \end{pmatrix}.$$

Interchanging λ by λ^{-1} , if necessary, we may suppose that $\alpha_{12} = -1$.

Now $M\langle\lambda,\mu\rangle$ is a Sylow 3-subgroup of $N_G(M)$ and by the structure of A_6 , the commutator $[\lambda,\mu] \in M$. Since M is abelian, and $M\langle\lambda,\mu\rangle$ is not, we get $Z(M\langle\lambda,\mu\rangle) = C_M\langle\lambda,\mu\rangle = \langle\rho\rho_1\rho_2\rangle$. An easy computation shows that the commutator group of $M\langle\lambda,\mu\rangle$ contains $\langle\sigma,\rho\rho_1\rho_2,\rho\rho_1^{-1}\rangle$ and is contained in M. Since $Z(M\langle\lambda,\mu\rangle) \neq (M\langle\lambda,\mu\rangle)'$, we see that M is characteristic in $M\langle\lambda,\mu\rangle$. So we have $N_G(M\langle\lambda,\mu\rangle) \subseteq N_G(M)$. Hence $M\langle\lambda,\mu\rangle$ is a Sylow 3-subgroup of G. and moreover, by the structure of A_6 , the normalizer of $M\langle\lambda,\mu\rangle$ is a splitting extension of $M\langle\lambda,\mu\rangle$ by a group of order 4.

Next we check that we have $z' = (\mu^2 tz)^3$ such that $(z')\rho\rho_1\rho_2 z' = \sigma\rho$. Let $\mu' = (z')^{-1}\mu z$ and $\lambda' = (z')^{-1}\lambda z'$, we see that $\langle \lambda', \mu' \rangle \subseteq C_G(\sigma_1)$. and that μ', λ' are represented by the following matrices.

$$\mu' M \to \begin{pmatrix} -1 & -1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}; \quad \lambda' M \to \begin{pmatrix} -1 & -1 & -1 & 1 \\ 1 & 0 & -1 & 1 \\ -1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}.$$

Therefore we have

$$(\mu')^{-1}\lambda'M \to \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \quad (\mu')^{-1}(x')^{-1} \cdot M \to \begin{pmatrix} 0 & 1 & 0 & 1 \\ -1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}.$$

The group $M\langle\lambda',\mu'\rangle$ is contained in $C_G(\sigma_1)$. We turn our attention back to $C_G(\sigma_1)$. Let $U_1 \subseteq V$ be the Sylow 3-subgroup of V. We have $M \cap V = M_1$ is elementary abelian of order 27. Suppose that $\rho_1 = \rho^{\mu} \notin M_1$. Then we have $\rho_1 = \sigma_2^j m$ for some fixed j = 1 or -1 and $m \in M_1$. Now t acts fixed-point-free on $V/\langle \sigma_1 \rangle$. Therefore we get

$$t\rho_1 t = \sigma_2^j m^{-1} \sigma_1^i = \rho_1^{-1} = \sigma_2^{-j} m^{-1} \sigma_1^i$$

giving $\sigma_2^i = \sigma_1^i$, a contradiction. Similarly we can show that $\rho_2 = \rho^{\mu^2} \in M_1$.

Let $\langle \rho_1^{a_2}, \rho_2^{a_2} \rangle = \langle \rho_3, \rho_4 \rangle \subseteq U_1$. By way of contradiction, suppose that $\langle \rho_3, \rho_4 \rangle \cap M_1$ is non-empty. Then there exists an element $\rho_3^i \rho_4^j \in M_1$ for fixed i, j not both zero. Since σ_2 centralize M_1 , we would then get $b_2^{-1} \rho_1^i \rho_2^j b_2 = a_2^{-1} \rho_1^i \rho_2^j a_2$. This is a contradiction, since $C_G(t) \cap V = \langle \sigma_1 \rangle$. Thus $\langle \rho_3, \rho_4 \rangle \subseteq M_1$. Since a Sylow 3-subgroup of G is of order 3⁶ we must have $U_1 = \langle \sigma_1, \rho_1, \rho_2, \rho_3, \rho_4 \rangle$.

The group $U_1/\langle \sigma_1 \rangle$ is abelian and so is elementary abelian of order 81. We may then represent the group $L_2 = \langle a_2, b_2, \sigma_2 \rangle$ as linear transformations on the 'vector space' $U_1/\langle \sigma_1 \rangle$ over the field of 3 elements. We get in terms of the basis $\rho_1\langle \sigma_1 \rangle$, $\rho_2\langle \sigma_1 \rangle$, $\rho_3\langle \sigma_1 \rangle$, $\rho_4\langle \sigma_1 \rangle$, the representation of a_2

$$a_2 \rightarrow \begin{pmatrix} & -1 & 0 \\ & 0 & -1 \\ 1 & 0 & \\ 0 & 1 & \end{pmatrix}.$$

We have shown that $v^{-1}\rho_1 v = \rho_2$, $v^{-1}\rho_2 v = \rho_1^{-1}$. Therefore with the relation $v^{-1}a_2v = a_2^{-1}$, we get

$$v \rightarrow \begin{pmatrix} 0 & -1 & & \\ 1 & 0 & & \\ & & 0 & 1 \\ & & -1 & 0 \end{pmatrix}$$

Let σ_2 be represented by the matrix

$$\sigma_2 \rightarrow \begin{pmatrix} I & C \\ 0 & D \end{pmatrix}$$

where (C) and (D) are 2×2 matrices. From the relation $(a_2\sigma_2)^3 = 1$, we get that $(C) = (-D^{-1})$. Since (D) is non-singular, we have det $(D) = \pm 1$. Suppose det (D) = -1, then using the relation $v^{-1}\sigma_2 v = \sigma_2^{-1}$, we obtain a contradiction. Hence det (D) = 1. Again by the relation $v^{-1}\sigma_2 v = \sigma_2^{-1}$, we obtain that (D) = identity matrix. Hence σ_2 is represented by

$$\sigma_2 = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

It follows that $\langle \rho_3, \rho_4 \rangle \subseteq N_G(M) \cap C_G(\sigma_1) - M$. So comparing the action of the group $\langle \lambda', \mu' \rangle$ on M, we conclude that $\rho_3 M = (\mu')^{-1} \lambda' M$ and $\rho_4 M = (\mu')^{-1} (\lambda')^{-1} M$. We have

$$N_{G}(P) = U_{1}(N_{G}(\sigma_{2}) \cap L_{2}\langle v \rangle) = U_{1}\langle \sigma_{2} \rangle \langle v \rangle = P \langle v \rangle$$

where $P = U_1 \langle \sigma_2 \rangle$. Thus we have proved the following lemma.

(3.4) LEMMA. The group $P = M \langle \rho_3, \rho_4 \rangle$ is a Sylow 3-subgroup of G and has the following structure:

$$M = TT_1T_2,$$

an elementary abelian group of order 81 where

$$T = C_M(t) = \langle \sigma, \rho \rangle$$

$$T_1 = C_M(u) = \langle \sigma, \rho_1 \rangle$$

$$T_2 = C_M(tu) = \langle \sigma, \rho_2 \rangle$$

elementary abelian of order 9 and

$$\begin{split} \rho_{3}^{-1}\sigma_{1}\rho_{3} &= \sigma_{1}; \quad \rho_{3}^{-1}\sigma_{2}\rho_{3} = \sigma_{2}\rho_{3}\sigma_{1}; \quad \rho_{3}^{-1}\rho_{1}\rho_{3} = \rho_{1}\sigma_{1}^{-1}; \quad \rho_{3}^{-1}\rho_{2}\rho_{3} = \rho_{2}; \\ \rho_{4}^{-1}\sigma_{1}\rho_{4} &= \sigma_{1}; \quad \rho_{4}^{-1}\sigma_{2}\rho_{4} = \sigma_{2}\rho_{4}\sigma_{1}; \quad \rho_{4}^{-1}\rho_{1}\rho_{4} = \rho_{1}; \qquad \rho_{4}^{-1}\rho_{2}\rho_{4} = \rho_{2}\sigma_{1}^{-1} \\ Moreover N_{G}(P) &= P \cdot \langle v \rangle \text{ where} \\ v^{-1}\rho_{1}v &= \rho_{2}, \quad v^{-1}\rho_{2}v = \rho_{1}^{-1}, \quad v^{-1}\rho_{3}v = \rho_{4}^{-1}, \quad v^{-1}\rho_{4}v = \rho_{3}. \end{split}$$

4. Final characterization

Using the informations already found, we shall now prove that G is isomorphic to $U_4(3)$. The following preliminary lemmas are required.

(4.1) LEMMA. The group P and its conjugate t_1Pt_1 have trivial intersection.

PROOF. We have $P \subseteq C_{\mathbf{G}}(\sigma_1)$. Therefore

$$P \cap t_1 P t_1 \subseteq C_{\mathcal{G}}(\sigma_1) \cap C_{\mathcal{G}}(\sigma_1^{t_1}) \subseteq C_{\mathcal{G}}(\sigma_1) \cap C_{\mathcal{G}}(a_1 b_1) = \langle \sigma_2 \rangle.$$

The group $P \cap t_1 P t_1$ is normalized by t_1 . So it follows that $P \cap t_1 P t_1 = 1$.

(4.2) LEMMA. We have the following relations:

$$(a_2\sigma_2)^3 = (ut\rho_3)^3 = (u\rho_4)^3 = (vu\rho_3^{-1}\rho_4)^3 = (tuv\rho_3^{-1}\rho_4^{-1})^3 = 1.$$

PROOF. Using our representation, of $N_G(M)$ as linear transformation on the vector space M, we compute that $(ut\rho_3)^3 \in M$. Since $\rho_3 = a_2^{-1}\rho_1 a_2$, we have $ut\rho_3 \in C_G(utt_1)$. So $(ut\rho_3)^3 \in M \cap C_G(utt_1) \subseteq P \cap C_G(utt_1) = \langle \rho_3 \rangle$. Therefore we get $(ut\rho_3)^3 = 1$.

90

Next we have $u\rho_4 = v(ut\rho_3)v^{-1}$. So we get $(u\rho_4)^3 = 1$. Again from our representations of uv and $\rho_3^{-1}\rho_4$, we verify that $(uv\rho_3^{-1}\rho_4)^3 \in M$. Also we have $uv\rho_3^{-1}\rho_4 \in C_G(uvt_1)$. Hence

$$(uv\rho_3^{-1}\rho_4)^3 \subseteq M \cap C_G(uvt_1) \subseteq P \cap C_G(uvt_1) = \langle \rho_3^{-1}\rho_4 \rangle.$$

Showing that $(uv\rho_3^{-1}\rho_4)^3 = 1$. By (3.4) we have $(tuv\rho_3^{-1}\rho_4^{-1}) = v^{-1}(uv\rho_3^{-1}\rho_4)v$. Therefore $(tuv\rho_3^{-1}\rho_4^{-1})^3 = 1$.

By the structure of *H*, we know that $(a_2\sigma_2)^3 = 1$.

The assertions of this lemma are completely proved.

(4.3) LEMMA. The group $W = N_G \langle v \rangle | \langle v \rangle$ is generated by the involutions $r_1 = a_2 \langle v \rangle$ and $r_2 = u \langle v \rangle$ and is dihedral of order 8.

PROOF. Obvious from the structure of H.

Put $B = N_G(P)$, and $N = N_G\langle v \rangle$. We want to show that the set of elements in BNB forms a subgroup of G. For any $w \in W$, define l(w) = l to be the smallest positive integer such that $w = r_{i_1}r_{i_2}\cdots r_{i_l}$ where $r_{i_j} \in \{r_1, r_2\}$. Let $\omega(r_1) = a_2, \omega(r_2) = u$. For any $w \in W$, and $w = r_{i_1} \cdots r_{i_d}$, define $\omega(w) = \omega(r_{i_1}) \cdots \omega(r_{i_d})$. We shall denote BwB to mean $B\omega(w)B$.

(4.4) LEMMA. The set of elements in $B \cup Br_i B$ (i = 1, 2) forms a subgroup of G.

PROOF. Let $g = b\omega(r_i)b' \in Br_iB$ where $b, b' \in B$. Then the element $g' = (b')^{-1}\omega(r_i)(\omega(r_i)^{-2}b^{-1}) \in Br_iB$ and is an inverse of g.

Let $G_1 = B \cup Br_1 B = B \cup Ba_2 B$. Clearly to show that G_1 is closed with respect to multiplication, we need only to show that $a_2 \sigma_2^{\delta} a_2 \in G_1$ $(\delta = 0, 1, -1)$; since B has the form $\langle \sigma_2 \rangle (\langle v \rangle \langle \sigma_1, \rho_1, \rho_2, \rho_3, \rho_4 \rangle)$ and $\langle v \rangle \langle \sigma_1, \rho_1, \rho_2, \rho_3, \rho_4 \rangle$ is normalized by a_2 . If $\delta = 0$, then $a_2 \sigma_2^{\delta} a_2 = t \in B$. If δ is 1, then by (4.3), $a_2 \sigma_2 a_2 = \sigma_2^{-1} a_2(t\sigma_2^{-1}) \in Ba_2 B$. Similarly of $\delta = -1$, we get $a_2 \sigma_2^{-1} a_2 = t\sigma_2 a_2 \sigma_2 t \in Ba_2 B$. Hence we have shown that G_1 is a subgroup of G.

Next to show that $G_2 = B \cup Br_2B$ is a subgroup of G, we need to show that $u\rho_3^i u\rho_4^j \in G_2$ (i, j = 0, 1, -1). By using (4.3), and similar reasoning as in the last case, this is in fact true.

(4.5) LEMMA. For any i and $w \in W$, if $l(r_i w) \ge l(w)$, then $r_i Bw \subseteq Br_i w B$.

PROOF. First of all, we construct table I showing the action of a_2 and u on P by conjugation.

Tanta I

	σ_1	σ_2	ρ_1	ρ_2	ρ_3	ρ_4		
a_2	σ_1		ρ_3	ρ_4	ρ_1^{-1}	ρ_2^{-1}		
u	σ_{2}	σ_1	ρ_1	ρ_2^{-1}				

To prove this lemma, we construct table II, showing $l(r_iw)$ and l(w) for all *i* and $w \in W$. Clearly we need only to see that $r_1\sigma_2w \subseteq Br_1wB$ and $r_2\rho_3^i\rho_4^jw \subseteq Br_2wB$ (i, j = 0, 1, -1). It is easily verified that for those $w \in W$ such that $l(r_2w) \geq l(w)$, we can always get $r_1\sigma_2w \in Br_1wy_1$ and $r_2\rho_3^i\rho_4^jw \in Br_2\rho_3^i\rho_4^jy_2$, using the informations in table I. Hence the lemma is completely proved.

w	l(w)	$l(r_1w)$	<i>y</i> ₁	$l(r_2w)$	<i>y</i> 2
1	0	1	1	1	1
r ₁	1	0		2	$\rho_1^{-i} \rho_2^{-i}$
r ₂	1	2	σ_1	0	
r ₁ r ₂	2	1		3	$\rho_1^{-i} \rho_2^j$
$r_{2}r_{1}$	2	3	σ_1	1	
<i>r</i> ₁ <i>r</i> ₂ <i>r</i> ₁	3	2		4	$ ho_3^{-i} ho_4^j$
$r_{2}r_{1}r_{2}$	3	4	σ_{2}	2	
$r_1 r_2 r_1 r_2$	4	3		3	

Table II

(4.6) LEMMA. The set of elements $G_0 = BNB$ is a subgroup of G and if we have $Bw_1B = Bw_2B$, then $w_1 = w_2$.

PROOF. It follows from (4.4), (4.5) and Tits [8].

We shall next compute the order of G_0 . Define for any $w \in W$, the group B_w generated by elements $x \in P$ such that $\omega(w) \times \omega(w)^{-1} \in t_1 P t_1$. The groups B_w for all $w \in W$ are shown in the next table.

TABLE III								
1	<i>r</i> ₁	r ₂	<i>r</i> ₁ <i>r</i> ₂					
1	$\langle \sigma_2 \rangle$	$\langle \rho_3, \rho_4 \rangle$	$\langle \sigma_1, \rho_3, \rho_4 \rangle$					
<i>P</i>	$\langle \sigma_1, \rho_1, \rho_2, \rho_3, \rho_4 \rangle$	M	$\langle \sigma_2, \rho_1, \rho_2 \rangle$					
	$r_1 r_2 r_1$	r ₂ r ₁ r ₂	r ₁ r ₂ r ₁ r ₂					
2>	M	$\langle \sigma_{1}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4} \rangle$	P					
ı>	$\langle ho_{3}, ho_{4} angle$	$\langle \sigma_2 \rangle$	1					
	1 P 2>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

We observe that for every B_w , there exists the subgroup $(B_w)'$ such that $B_w(B_w)' = P$ and $B_w \cap (B_w)' = 1$ (see (4.1)).

(4.7) LEMMA. The order of G_0 is $2^7 \cdot 3^6 \cdot 5 \cdot 7$.

PROOF. We show first that every element of G_0 can be written in the 'normal' form $hp\omega(w)p_w$ where $h \in \langle v \rangle$, $p \in P$ and $p_w \in B_w$. By (4.6), every element x in G_0 has the form $x = b_1\omega(w)b_2$ where $b_1, b_2 \in B$. Since we have $P = B_w(B_w)'$ we may write $b_2 = hp'_2p_2$ where $h \in \langle v \rangle$, $p_2 \in B_w$ and $p'_2 \in (B_w)'$. From the facts $\omega(w)h\omega(w)^{-1} \in \langle v \rangle$ and $\omega(w)p'_2\omega(w)^{-1} \in P$, we get $x = b\omega(w)p_2$ showing the existence of the 'normal' form.

To show the uniqueness of the 'normal' form, suppose that

$$b\omega(w)b_w = b'\omega(w')b'_{w'}.$$

By (4.6), we have w = w'. Therefore we get

$$(b')^{-1}b = \omega(w)b_w(b'_w)^{-1}_{t_1}\omega(w)^{-1}.$$

Since $(b')^{-1}b \in B$ and

$$\omega(w)b_w(bw')^{-1}\omega(w)^{-1}\in P^{t_1}$$

we obtain

$$(b')^{-1}b \in B \cap P^{t_1} \subseteq P.$$

The uniqueness follows by (4.1).

By (4.1), the 8 double cosets in BNB are distinct, therefore we have

$$|G_0| = |B| \sum_{w} |B_w| = 2^7 \cdot 3^6 \cdot 5 \cdot 7.$$

To conclude the proof of the theorem, we require the following result of Thompson.

LEMMA (Thompson). Let \mathcal{M} be a subgroup of \mathfrak{G} such that

- (a') $|\mathcal{M}|$ is even.
- (b') \mathcal{M} contains the centralizer of each of its involutions.

(c') $\bigcap_{s \in \mathfrak{G}} \mathcal{M}^s$ is of odd order.

Let \mathscr{S} be a S_2 -subgroup of \mathscr{M} and let I be an involution in $Z(\mathscr{S})$. We have $(d') \ N(\mathscr{S}) \subseteq \mathscr{M}$.

Then

- (i) $i(\mathcal{M}) = 1$ (the number of conjugate classes of involution in \mathcal{M})
- (ii) \mathcal{M} contains a subgroup \mathcal{M}_0 of odd order such that $\mathcal{M} = \mathcal{M}_0 C_{\mathcal{M}}(I)$.

Using the informations of our tables (I, II, III), (4.2) and the structures of P and $\langle v \rangle$, we can multiply any two elements of G_0 in the 'normal' form to get the product *uniquely* in the 'normal' form. Now if X is any finite group satisfying properties (a) and (b) of the theorem, then X contains a subgroup X_0 of order $|U_4(3)|$ with uniquely determined multiplication table. Hence taking X to be $U_4(3)$, we see that $X_0 = U_4(3)$ and so $G_0 \cong U_4(3)$.

Consequently G_0 satisfies conditions (a'), (b') and (d') of Thompson lemma. Suppose the (c') is also fulfilled, then we obtain that G_0 contains a subgroup M_0 of odd order such that $G_0 = M_0 C_G(t) = M_0 H$.

Suppose that $|M_0 \cap H| = 3^2$, then we have $|M_0| = 3^6 \cdot 5 \cdot 7$. Let S_3 be a Sylow 3-subgroup of M_0 . By (3.4) we get $N_{M_0}(S_3) = S_3$. This is a contradiction since $|M_0: N_{M_0}(S_3)| = 5 \cdot 7 \neq 1 \pmod{3}$. Hence we must have $|M_0| = 3^4 \cdot 5 \cdot 7$ or $3^5 \cdot 5 \cdot 7$. Now M_0 is soluble and so by P. Hall (4], there exists a subgroup of order $5 \cdot 7$ in M_0 . Clearly K is abelian. Let S_7 be the Sylow 7-subgroup of K. By Sylow's Theorem, we get that S_7 is normal in M_0 . Applying Sylow's theorem again, we obtain that $N_{G_0}(S_7)$ is $2^4 \cdot 3^6 \cdot 5 \cdot 7$, $2^5 \cdot 3^4 \cdot 5 \cdot 7$, $2^2 \cdot 3^4 \cdot 5 \cdot 7$ or $2 \cdot 3^6 \cdot 5 \cdot 7$. The first 3 cases are not possible, since this would then imply that an involution of G_0 is centralized by elements of order 7, a contradiction of structure of H. Thus we have $|N_{G_0}(S_7)| = 2 \cdot 3^6 \cdot 5 \cdot 7$. Now a Sylow 2-subgroup of $N_{G_0}(S_7)$ is cyclic of order 2. Therefore, by Burnside [4], there is a subgroup of order $3^6 \cdot 5 \cdot 7$ in $N_{G_2}(S_7)$ and this gives a contradiction as before.

Thus we must get $\bigcap_{g \in G} G_0^g$ is even. By (2.6), the group G is simple. Hence $G = G_0 \cong U_4(3)$, proving our theorem.

Acknowledgement

The author is greatly indebted to Professor Z. Janko, who suggested and supervised this research.

References

- [1] E. Artin, Geometric Algebra, Wiley-Interscience (1957).
- [2] R. Brauer and M. Suzuki, 'On finite groups of even order whose 2-Sylow group is a quaternion group', Proc. Nat. Acad. Sci., U.S.A. 45 (1959), 1757-1759.
- [3] D. Gorenstein and J. H. Walter, 'On finite groups with dihedral Sylow 2-subgroups', *Illinois J. Math.* 6 (1962) 553-593.
- [4] M. Hall, The Theory of Groups, (Fifth Printing 1964).
- [5] G. Higman and P. Hall, 'The p-length of a p-soluble group and reduction theorems for Burnside's problem', Proc. London Math. Soc. (3), 7 (1956), 1-42.
- [6] Z. Janko, 'A characterization of the finite simple group $PSp_4(3)$ ', (to appear).
- [7] J. G. Thompson, 'Non-solvable finite groups whose non-identity solvable subgroups have solvable normalizers' (to appear).
- [8] M. Jacques Tits, 'Theorème de Bruhat et sous-groupes paraboliques', C.R. Acad. Sci. Paris, 254 (1962), 2910-2912.
- [9] M. Suzuki, 'On characterization of linear groups', I. Trans. Amer. Math. Soc. 92 (1959).
- [10] H. Wielandt, Beziehungen zwischen Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe', Math. Zeit. 73, 146-158 (1960).

Department of Mathematics Monash University Clayton, Australia